3,857 research outputs found

    A Subgradient Method for Free Material Design

    Get PDF
    A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into a saddle-point form in which the inverse of the stiffness matrix A(E) in the constraint is eliminated. The size of A(E) is generally large, denoted as N by N. This is the first formulation of FMO without A(E). We apply the primal-dual subgradient method [17] to solve the restricted saddle-point formula. This is the first gradient-type method for FMO. Each iteration of our algorithm takes a total of O(N2)O(N^2) foating-point operations and an auxiliary vector storage of size O(N), compared with formulations having the inverse of A(E) which requires O(N3)O(N^3) arithmetic operations and an auxiliary vector storage of size O(N2)O(N^2). To solve the problem, we developed a closed-form solution to a semidefinite least squares problem and an efficient parameter update scheme for the gradient method, which are included in the appendix. We also approximate a solution to the bounded Lagrangian dual problem. The problem is decomposed into small problems each only having an unknown of k by k (k = 3 or 6) matrix, and can be solved in parallel. The iteration bound of our algorithm is optimal for general subgradient scheme. Finally we present promising numerical results.Comment: SIAM Journal on Optimization (accepted

    Dual methods and approximation concepts in structural synthesis

    Get PDF
    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins

    Interior-point solver for convex separable block-angular problems

    Get PDF
    Constraints matrices with block-angular structures are pervasive in Optimization. Interior-point methods have shown to be competitive for these structured problems by exploiting the linear algebra. One of these approaches solved the normal equations using sparse Cholesky factorizations for the block constraints, and a preconditioned conjugate gradient (PCG) for the linking constraints. The preconditioner is based on a power series expansion which approximates the inverse of the matrix of the linking constraints system. In this work we present an efficient solver based on this algorithm. Some of its features are: it solves linearly constrained convex separable problems (linear, quadratic or nonlinear); both Newton and second-order predictor-corrector directions can be used, either with the Cholesky+PCG scheme or with a Cholesky factorization of normal equations; the preconditioner may include any number of terms of the power series; for any number of these terms, it estimates the spectral radius of the matrix in the power series (which is instrumental for the quality of the precondi- tioner). The solver has been hooked to SML, a structure-conveying modelling language based on the popular AMPL modeling language. Computational results are reported for some large and/or difficult instances in the literature: (1) multicommodity flow problems; (2) minimum congestion problems; (3) statistical data protection problems using l1 and l2 distances (which are linear and quadratic problems, respectively), and the pseudo-Huber function, a nonlinear approximation to l1 which improves the preconditioner. In the largest instances, of up to 25 millions of variables and 300000 constraints, this approach is from two to three orders of magnitude faster than state-of-the-art linear and quadratic optimization solvers.Preprin

    High performance interior point methods for three-dimensional finite element limit analysis

    Get PDF
    The ability to obtain rigorous upper and lower bounds on collapse loads of various structures makes finite element limit analysis an attractive design tool. The increasingly high cost of computing those bounds, however, has limited its application on problems in three dimensions. This work reports on a high-performance homogeneous self-dual primal-dual interior point method developed for three-dimensional finite element limit analysis. This implementation achieves convergence times over 4.5× faster than the leading commercial solver across a set of three-dimensional finite element limit analysis test problems, making investigation of three dimensional limit loads viable. A comparison between a range of iterative linear solvers and direct methods used to determine the search direction is also provided, demonstrating the superiority of direct methods for this application. The components of the interior point solver considered include the elimination of and options for handling remaining free variables, multifrontal and supernodal Cholesky comparison for computing the search direction, differences between approximate minimum degree [1] and nested dissection [13] orderings, dealing with dense columns and fixed variables, and accelerating the linear system solver through parallelization. Each of these areas resulted in an improvement on at least one of the problems in the test set, with many achieving gains across the whole set. The serial implementation achieved runtime performance 1.7× faster than the commercial solver Mosek [5]. Compared with the parallel version of Mosek, the use of parallel BLAS routines in the supernodal solver saw a 1.9× speedup, and with a modified version of the GPU-enabled CHOLMOD [11] and a single NVIDIA Tesla K20c this speedup increased to 4.65×

    Interior Point Methods for Massive Support Vector Machines

    Get PDF
    We investigate the use of interior point methods for solving quadratic programming problems with a small number of linear constraints where the quadratic term consists of a low-rank update to a positive semi-de nite matrix. Several formulations of the support vector machine t into this category. An interesting feature of these particular problems is the vol- ume of data, which can lead to quadratic programs with between 10 and 100 million variables and a dense Q matrix. We use OOQP, an object- oriented interior point code, to solve these problem because it allows us to easily tailor the required linear algebra to the application. Our linear algebra implementation uses a proximal point modi cation to the under- lying algorithm, and exploits the Sherman-Morrison-Woodbury formula and the Schur complement to facilitate e cient linear system solution. Since we target massive problems, the data is stored out-of-core and we overlap computation and I/O to reduce overhead. Results are reported for several linear support vector machine formulations demonstrating the reliability and scalability of the method
    corecore