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Constraints matrices with block-angular structures are pervasive in Optimization. Interior-point
methods have shown to be competitive for these structured problems by exploiting the linear alge-
bra. One of these approaches solved the normal equations using sparse Cholesky factorizations for the
block constraints, and a preconditioned conjugate gradient (PCG) for the linking constraints. The
preconditioner is based on a power series expansion which approximates the inverse of the matrix of
the linking constraints system. In this work we present an efficient solver based on this algorithm.
Some of its features are: it solves linearly constrained convex separable problems (linear, quadratic
or nonlinear); both Newton and second-order predictor-corrector directions can be used, either with
the Cholesky+PCG scheme or with a Cholesky factorization of normal equations; the preconditioner
may include any number of terms of the power series; for any number of these terms, it estimates the
spectral radius of the matrix in the power series (which is instrumental for the quality of the precondi-
tioner). The solver has been hooked to SML, a structure-conveying modelling language based on the
popular AMPL modeling language. Computational results are reported for some large and/or difficult
instances in the literature: (1) multicommodity flow problems; (2) minimum congestion problems; (3)
statistical data protection problems using ℓ1 and ℓ2 distances (which are linear and quadratic prob-
lems, respectively), and the pseudo-Huber function, a nonlinear approximation to ℓ1 which improves
the preconditioner. In the largest instances, of up to 25 millions of variables and 300000 constraints,
this approach is from two to three orders of magnitude faster than state-of-the-art linear and quadratic
optimization solvers.

Keywords: interior-point methods; structured problems; normal equations; preconditioned
conjugate gradient; large-scale optimization; optimization software

AMS Subject Classification: 90C51, 90C25, 90C06, 90C05, 90C20

1. Introduction

Block-angular structures are used as a modelling tool in many situations, such as mul-
tiperiod or multicommodity problems, two-stage stochastic problems, and, in general,
models involving linking variables or linking constraints. These structured problems have
applications, for instance, in the energy, logistics, telecommunications and big-data fields.
The resulting optimization problems have in common a huge number of variables, and a
large number of linear constraints. Interior-point methods (IPMs) are in general compet-
itive against other techniques in those cases.

This work presents an efficient interior-point solver for block-angular convex optimiza-
tion problems, which relies on a combination of Cholesky factorizations and precondi-
tioned conjugate gradient (PCG) for the solution of the linear systems at each interior-
point iterations. This Cholesky+PCG combination was initially suggested for the case
of multicommodity flows in [10]; it was later extended to general problems in [12], in-
cluding a Matlab prototype. The solver introduced in this work, named BlockIP is not
merely a “C++ translation” of this Matlab prototype. It includes many other features,
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being the three most relevant: (i) it may solve convex nonlinear separable optimization
problems; (ii) the addition of proximal point and quadratic regularizations, which may
significantly improve the quality of the preconditioner as shown in [14]; (ii) an estimation
of the spectral radius of a certain matrix which intervenes in the preconditioner, following
[9], which can be used as a measure of the quality of preconditioner. This estimation has
been extended in this work to more complex preconditioners, i.e., involving more terms of
a certain power series; Proposition 3.5 provides this result. In addition, BlockIP resulted
to be much more efficient than the Matlab prototype, allowing us to solve problems of
up to 25 millions of variables and 300000 constraints (see Section 5), which were out of
the scope of [12].
BlockIP solves the normal equations, unlike other PCG-based IPMs that focus on the

augmented system, such as [5, 22, 31]. Normal equations were solved by some of the earlier
preconditioners for network flows problems [18, 33], but also by some recent approaches
[3]. Although PCG usually provides an approximate solution of the linear systems of
equations, it has recently been shown that those inexact solutions also guarantee the
convergence of the IPM [20].

The structure of the paper is as follows. The formulation of the block-angular problem
considered is given in Section 2. Section 3 outlines the PCG-based IPM, including three
subsections summarizing some of the main features implemented in the solver, namely,
the power series preconditioner; improving the preconditioner by reducing the spectral
radius of a certain matrix through quadratic or nonlinear terms in the objective; and
the estimation of this spectral radius by Ritz values. Though the material of these three
subsections comes, mainly, from [12], [14] and [9], it is included here for completeness.
Section 4 describes the specialized solver. Finally, Section 5 provides computational results
in the solution of three types of problems: multicommodity flows, minimum congestion,
and a disclosure control problem in statistical tabular data.

2. Convex block-angular problems

The standard form of the linearly constrained convex block-angular problems considered
in this work is

min
k
∑

i=0

fi(x
i)

s. to
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0 ≤ xi ≤ ui i = 0, . . . , k.

(1)

Matrices Ai ∈ R
mi×ni and Li ∈ R

l×ni , i = 1, . . . , k define the block and linking con-
straints, respectively, k being the number of blocks. Vectors xi ∈ R

ni , i = 1, . . . , k,
are the variables for each block. x0 ∈ R

l are the slacks of the linking constraints.
bi ∈ R

mi , i = 1, . . . , k is the right-hand-side vector for each block of constraints, whereas
b0 ∈ R

l is for the linking constraints. The upper bounds for each group of variables are
defined by ui, i = 0, . . . , k. Note that with this standard formulation linking constraints
are of the form b0 − u0 ≤ ∑k

i=1 Lix
i ≤ b0. As it will be shown later, slacks of linking

constraints play a significant role in the quality of the preconditioner, and they should not
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be removed. Equality linking constraints can be formulated by setting u0 ≈ 0. Functions
fi : R

ni → R, i = 0, . . . , k, are assumed to be convex. Although the specialized IPM to be
described is valid for any fi, for the sake of efficiency we will restrict to separable func-
tions, i.e., ∇2fi(x

i) are (positive semidefinite) diagonal matrices. Note that any convex
quadratic problem can be transformed into a separable equivalent one by the addition
of extra variables and constraints [35, Ch.23]. It is also worth to remark that slacks may
also intervene in the objective function; this may be helpful to preserve the separabil-
ity of the problem, avoiding terms of the form f0(b

0 −∑k
i=1 Lix

i). The particular case

of linear and convex quadratic separable problems is obtained with fi(x
i) = ci

⊤
xi and

fi(x
i) = ci

⊤
xi + 1

2
xi

⊤
Qix

i, Qi positive semidefinite and diagonal, for i = 1 . . . , k. (1) is

an optimization problem with m =
∑k

i=1mi+ l constraints and n =
∑k

i=1 ni+ l variables.
The structure of the constraints matrix of (1) is usually named primal block-angular.

More general structures (i.e., such as those of [21]) are obtained if, for some i, mi is 0,
i.e., a group of variables only appears in the linking constraints. For instance, if mk = 0
we have











A1

. . .

Ak−1

L1 . . . Lk−1 Lk I











. (2)

Dual block-angular structures, as those appearing in two-stage stochastic optimization
problems with recourse, can be formulated as (1) by considering the dual problem. Even
problems with both linking variables and linking constraints may be transformed to (1)
by replicating columns and adding extra linking constraints.

On the other hand, when k = 1, the specialized method can be applied to any linearly
constrained convex problem by considering a partition of the linear constraints, as follows

min f(x) + f0(x
0)

s. to Ax = b
Lx+ x0 = b0

0 ≤ x ≤ u , 0 ≤ x0 ≤ u0.

(3)

If k = 1 and l = 0, (1) reduces to the standard linearly constrained convex problem
min f(x) s. to Ax = b, 0 ≤ x ≤ u.

3. Overview of the interior-point method for block-angular problems

Problem (1) can be written as the general convex optimization problem

min f(x)
s. to Ax = b

0 ≤ x ≤ u,
(4)

where x, u ∈ R
n, A ∈ R

m×n, b ∈ R
m, and f : Rn → R. Vectors x, u and b are made up

of the k + 1 vectors xi, ui and bi, i = 0 . . . , k.
By convexity, the first order KKT conditions of (4) are necessary and sufficient. Per-

turbing its complementarity equations with a parameter µ ∈ R
+, the KKT-µ conditions
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can be written as

rc ≡ ∇f(x)− (A⊤λ+ z − w) = 0,
rb ≡ b−Ax = 0,
rxz ≡ µe−XZe = 0,
rsw ≡ µe− SWe = 0,

(x, s, z, w) ≥ 0,

(5)

where e ∈ R
n is a vector of 1’s; λ ∈ R

m, z ∈ R
n and w ∈ R

n are, respectively, the vectors
of Lagrange multipliers of the equality constraints, lower and upper bounds; s = u−x; and
matrices X,Z, S,W ∈ R

n×n are diagonal matrices made up of vectors x, z, s, w. The set
of unique solutions of (5) for each µ value is known as the central path, and when µ → 0
these solutions converge to those of (4). The nonlinear system (5) is usually solved by a
sequence of damped Newton’s directions (i.e., with step length reduction to preserve the
nonnegativity of variables), reducing the µ parameter at each iteration. This procedure is
known as the primal-dual path-following interior-point algorithm. An excellent discussion
about the theoretical properties of this and other interior-point algorithms can be found
in [29, 34, 36].

The linearization of (5) provides a linear system of variables ∆x, ∆λ, ∆z and ∆w.
After eliminating ∆w and ∆z, as follows:

∆z = X−1rxz −X−1Z∆x (6)

∆w = S−1rsw + S−1W∆x, (7)

we obtain the augmented system form

[

−Θ−1 A⊤

A

] [

∆x
∆λ

]

=

[

r
rb

]

, (8)

where Θ and r are defined as

Θ = (ZX−1 +WS−1 +∇2f(x))−1 r = rc + S−1rsw −X−1rxz. (9)

Note that, if the objective function is separable, Θ is an easily computable diagonal
matrix. Additionally, eliminating ∆x from the first group of equations of (8), the normal
equations are obtained:

(AΘA⊤)∆λ = rb +AΘr (10)

∆x = Θ(A⊤∆λ− r). (11)

The method of this paper solves the normal equations, and thus the Newton direction is
computed by (10), (11), (6) and (7).

Exploiting the structure of A, and appropriately partitioning Θ, as follows

A =
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the matrix of system (10) can be recast as

AΘA⊤ =



















A1Θ1A
⊤
1 A1Θ1L

⊤
1

. . .
...

AkΘkA
⊤
k AkΘkL

⊤
k

L1Θ1A
⊤
1 . . . LkΘkA

⊤
k Θ0 +

∑k
i=1 LiΘiL

⊤
i



















=

[

B C
C⊤ D

]

, (12)

B ∈ R
ñ×ñ (ñ =

∑k
i=1 ni), C ∈ R

ñ×l and D ∈ R
l×l being the blocks of AΘA⊤, and Θi,

i = 0, . . . , k, the submatrices of Θ associated with the k + 1 groups of variables in (1),
i.e., Θi = (ZiX

−1
i +WiS

−1
i +∇2fi(x

i))−1. Denoting by g the right-hand-side of (10), and
appropriately partitioning g and ∆λ, the normal equations can be written as

[

B C
CT D

] [

∆λ1

∆λ2

]

=

[

g1
g2

]

. (13)

3.1 Solving the normal equations by PCG

Eliminating ∆λ1 from the first group of equations of (13), we obtain

(D − C⊤B−1C)∆λ2 = (g2 − C⊤B−1g1) (14)

B∆λ1 = (g1 − C∆y2). (15)

System (15) is solved by performing k Cholesky factorizations, one for each diagonal block
AiΘiA

⊤
i , i = 1 . . . k, of B. System (14) with the Schur complement

S = D − C⊤B−1C, (16)

of dimension l—the number of linking constraints—, may exhibit a big fill-in, and it
is prohibitive if computed by Cholesky. It will be solved by a PCG, which is outlined
in Figure 1. A good preconditioner is instrumental. The solver in this work considers
the preconditioner derived in [10] for multicommodity flows, and extended to general
problems in [12]. The preconditioner relies on the fact that (16) is a P -regular splitting,
i.e., S is symmetric and positive definite, D is nonsingular and D +C⊤B−1C is positive
definite. Therefore the P -regular splitting theorem [4] [32, pp. 254–255] guarantees that

ρ(D−1(C⊤B−1C)) < 1, (17)

where ρ(·) denotes the spectral radius of a matrix (i.e., the maximum absolute eigenvalue).
(To simplify the notation, ρ(D−1(C⊤B−1C) will be referred as to simply ρ.) This allows
us to compute the inverse of S, as shown by the next result (see [10, Prop. 4] for a proof).

Proposition 3.1 The inverse of the Schur complement D − C⊤B−1C can be computed
as

(D − C⊤B−1C)−1 =

(

∞
∑

i=0

(D−1(C⊤B−1C))i

)

D−1. (18)
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1. Algorithm PCG(S,M, ḡ,∆λ20 , ǫ,imax)
2. // Solve S∆λ2 = ḡ by PCG with preconditioner M
3. Initializations: i := 0; r0 := ḡ − S∆λ20 ;
4. Solve Mz0 = r0; p0 := z0;
5. while ||rk|| > ǫ and i < imax do
6. qi := Spi;
7. αi := (z⊤i ri)/(p

⊤

i qi);
8. ∆λ2i+1

:= ∆λ2i + αipi;
9. ri+1 := ri − αiqi;

10. Solve Mzi+1 = ri+1;
11. βi := (z⊤i+1ri+1)/(z

⊤

i ri);
12. pi+1 := zi+1 + βipi;
13. i := i+ 1;
14. end while
15. Return ∆λ2 := ∆λ2i ;
16. End_algorithm

Figure 1. The PCG algorithm for the solution of S∆λ2 = ḡ ≡ g2 − C⊤B−1g1 with preconditioner M

1. Algorithm Mz = r(D,C,B, r, h)
2. v := D−1r;
3. z0 := v;
4. for j := 1 to φ do
5. zj := D−1(C⊤(B−1(Czj−1))) + v;
6. end for
7. Return z := zh

Figure 2. Algorithm for computing z = M−1r

The preconditioner M−1 is an approximation of S−1 obtained by truncating the infinite
power series (18) at some term φ. For instance, for φ = 0 and φ = 1 we have

M−1 = D−1 if φ = 0,
M−1 = (I +D−1(C⊤B−1C))D−1 if φ = 1.

The larger φ, the better the approximation of the inverse. On the other hand, systems
Mz = r (for some vectors z and r) have to be solved at each PCG iteration (step 10
of PCG algorithm of Figure 1), and any extra term in the series means an additional
system with matrix B. This is clearly seen in the algorithm of Figure 2, which shows
how Mz = r is iteratively computed in the specialized interior-point solver. Note that
matrix C⊤B−1C does not need to be built, and aside from the solution of systems with
B and D, only matrix-vector products with C and C⊤ (i.e., with Li, L

⊤
i , Ai and A⊤

i ,
i = 1, . . . , k) are required. This also applies to the PCG algorithm of Figure 1. It is thus
possible to partially apply the matrix-free paradigm [19]. Efficient implementations of this
matrix-vector products for particular Ai and Li, i = 1, . . . , k, matrices can significantly
speed the computational efficiency. Aside from general matrices (either stored rowwise or
columnwise), the solver of this paper includes matrix-vector routines for some particular
classes of matrices, such as node-arc incidence matrices (both for oriented and nonoriented
flows), diagonal and identity matrices, and diagonal-diagonal (i.e., [D1 D2], D1, D2 being
diagonal) and identity-identity matrices (i.e., [I I], I being the identity matrix). Other
matrix types can be easily added.

The value of φ that optimizes the tradeoff between a good quality and an efficient
preconditioner is problem dependent, and finding a dynamic updating procedure for each
interior-point iteration is still work in progress. It is worth noting that, although Proposi-
tion 3.1 is valid for any primal block-angular problem, the preconditioner is only useful in
practice for separable problems; otherwise, nondiagonal Θi matrices make systems with
B prohibitive.
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3.2 Improving the spectral radius

The quality of the preconditioner depends on ρ, which is always in [0, 1): the farther from
1, the closer M−1 is to S−1. In practice it has been observed that ρ comes closer to 1 as
we approach the optimal solution for most instances. However, as shown in [14], non-zero
Hessians reduce ρ, and this opens the possibility for improving the preconditioner by the
addition of a quadratic regularization term. This assertion is supported by the following
theorem and proposition (see [14] for a proof):

Theorem 3.2 The spectral radius ρ of D−1(C⊤B−1C) is bounded by

0 ≤ ρ ≤ max
j∈{1,...,l}

γj
(

uj

vj

)2

Θ0j + γj

< 1, (19)

where u is the eigenvector (or one of the eigenvectors) of D−1(C⊤B−1C) for ρ; γj, j =
1, . . . , l, and V = [V1 . . . Vl], are respectively the eigenvalues and matrix of columnwise

eigenvectors of
∑k

i=1 LiΘiLi
⊤; v = V ⊤u; and, abusing of notation, we assume that for

vj = 0, (uj/vj)
2 = +∞.

Proposition 3.3 Consider a linear problem and a non-linear one obtained by adding
(likely small) Hessian terms ∇2fi(x

i) ≻ 0, i = 1, . . . , k. Assume ûj/v̂j ≤ uj/vj, j =
1, . . . , l, where “hatted” and “non-hatted” terms refer, respectively, to the linear and non-
linear problems, and u and v are defined as in Theorem 3.2. Then bound (19) is smaller
for the non-linear than for the linear problem.

The fulfillment of the technical condition ûj/v̂j ≤ uj/vj , j = 1, . . . , l in Proposition
3.3 is problem dependent, and it may not be easy to check. However for some important
classes of problems, such as those where Li, i = 1, . . . , k, are diagonal matrices, this
assumption may be seen to hold [14]. It is also worth to note that the presence of slacks
in the linking constraints is instrumental, otherwise Θ0 = 0 and the bound (19) would
be equal to 1.

Theorem 3.2 and Proposition 3.3 state that the bound on the spectral radius (and thus
eventually the spectral radius when it is close to 1) is reduced if we consider a Hessian
term to Θ, defined in (9). In the limit, as shown by next proposition (see [14] for a proof),
the spectral radius goes to 0 for very large Hessians, and therefore PCG will become
extremely efficient:

Proposition 3.4

lim
∇2fi(x

i)→+∞

i=1,...,k

ρ = 0. (20)

In practice, if the problem is linear or the Hessian is close to 0, a non-zero Hessian can
be added by a quadratic regularization. The interior-point solver of this work implements
two types of regularizations: a proximal point and a quadratic regularization. They are
based on the addition of a quadratic term to the standard logarithmic barrier function
B(x, µ) of (4)

B(x, µ) , f(x) + µ

(

−
n
∑

i=1

lnxi −
n
∑

i=1

ln(ui − xi)

)

, (21)
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µ ∈ R
+ being the barrier parameter. In the proximal point regularization, B(x, µ) is

replaced by

BP (x, µ) , f(x) +
1

2
(x− x̄)⊤QP (x− x̄) + µ

(

−
n
∑

i=1

lnxi −
n
∑

i=1

ln(ui − xi)

)

, (22)

QP being a diagonal positive definite matrix (which can be dynamically updated at each
interior-point iteration, as done in [1]), and x̄ the current point obtained by the interior-
point algorithm. The alternative quadratic regularization introduced in [14] considers

BQ(x, µ) , f(x) + µ

(

1

2
x⊤QRx−

n
∑

i=1

lnxi −
n
∑

i=1

ln(ui − xi)

)

, (23)

QR being a diagonal positive semidefinite matrix. Unlike BP , BQ does not depend on the
current point, and its reduction to 0 is controlled by µ, the standard barrier parameter.

Using either B, BP , or BQ only changes the dual feasibility of KKT conditions and
matrix Θ, defined in (5) and (9), respectively. Dual feasibility becomes

A⊤λ+ z − w =∇f(x) for B, (24)

A⊤λ+ z − w =∇f(x) +QP (x− x̄) for BP , and (25)

A⊤λ+ z − w =∇f(x) + µQRx for BQ. (26)

(26) is equivalent to (24) when µ tends to zero (i.e., when we approach the optimal
solution), whereas this only happens for (25) when evaluated at current point (x = x̄).
The Θ matrices are

Θ = (ZX−1 +WS−1 +∇2f(x))−1 for B, (27)

Θ =( QP + ZX−1 +WS−1 +∇2f(x))−1 for BP , and (28)

Θ =(µQR + ZX−1 +WS−1 +∇2f(x))−1 for BQ. (29)

The main difference between (28) and (29) is that µQR tends to zero with µ and therefore
(29) approximates (27) better than (28). Therefore, in general, BQ should be preferred
to BP . The computational results of this paper have been obtained with BQ.

3.3 Estimating the spectral radius

Although knowing the spectral radius ρ of D−1(C⊤B−1C) would be instrumental to fore-
cast the efficiency of the preconditioner, its computation is impractical. Even computing
its upper bound (19) may be prohibitive, but for some particular classes of problems.

However, a procedure to estimate ρ was recently introduced in [9] for φ = 0, i.e., when
the preconditioner M−1 only includes one term of the power series, thus being equal to
D−1. In this case, the preconditioned system (D −C⊤B−1C)∆λ2 = ḡ solved by PCG in
asymmetric form is

(I −D−1(C⊤B−1C))∆λ2 = D−1ḡ.

Clearly, by linear algebra, if σmin is the minimum eigenvalue of I −D−1(C⊤B−1C) then
1 − σmin is the spectral radius of D−1(C⊤B−1C). The minimum eigenvalue σmin of I −
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D−1(C⊤B−1C) can be estimated from the solution of (10) by PCG, using the relation
between PCG and Lanczos method [25]. From this relation (see [23, Chapter 9],[27] for
details) it is known that the eigenvalues of the tridiagonal matrices

Tk =















γ1 η2
η2 γ2 η3

. . .
. . .

. . .

ηk−1 γk−1 ηk
ηk γk















, (30)

k = 1, . . . , l, converge to the eigenvalues of the preconditioned matrix of the system solved
by PCG as k (the number of PCG iterations) approaches l, where the coefficients γi and
ηj can be computed from the PCG algorithm of Figure 1 as follows:

γk =
1

αk−1

+
βk−1

αk−2

, β0 = 0, α−1 = 0, ηk+1 = −
√
βk

αk−1

.

Eigenvalues of Tk are known as Ritz values. In general, the extreme eigenvalues of the
preconditioned matrix (the ones we are interested in, for the estimation of the spectral
radius) are well approximated already during early PCG iterations [27]. In [9] it was
observed that very tight estimations require PCG solutions of high precision.

The previous estimations have been extended in this work to consider any number
φ ≥ 0 of terms in the power series preconditioner:

Proposition 3.5 Let M−1 =

(

φ
∑

i=0

(D−1(C⊤B−1C))i

)

D−1 be the preconditioner with

φ terms of the power series (18). And let σmin be the smallest eigenvalue of the precondi-
tioned matrix M−1S. Then the spectral radius of (D−1(C⊤B−1C)) is

ρ = φ+1
√
1− σmin. (31)

Proof. Denoting D−1(C⊤B−1C) as Q, we have

M−1S = (I +Q+ · · ·+Qφ)D−1(D −Q) = I −Qφ+1.

By linear algebra, if σ is an eigenvalue of I −Qφ+1 with eigenvector v, then φ+1
√
1− σ is

eigenvalue of Q with the same eigenvector. The spectral radius of Q is thus provided by
the smallest eigenvalue σmin. �

By the previous proposition, ρ can be easily estimated as φ+1
√
1− σ̃min, where σ̃min is

the smallest Ritz value.

4. Solver implementation details

The specialized block-angular IPM described in the previous section has been effi-
ciently implemented in a software package named BlockIP. BlockIP is written in
C++, using the object oriented paradigm. It is roughly about 14000 lines of source
code, aside from the external package for Cholesky factorization. Actually, BlockIP
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is only linked to the Ng-Peyton block sparse Cholesky package [30]; other more re-
cent Cholesky packages can be added in the future, which may likely improve the
performance of the solver. The package can be obtained for research purposes from
http://www-eio.upc.edu/~jcastro/BlockIP.html. The distribution contains a refer-
ence manual and an example illustrating the use of the package.

Since BlockIP includes the features of the early prototype described in [12], these will
be omitted here. Some additional new features of BlockIP are:

(1) BlockIP may handle linear, quadratic and convex linearly constrained block-angular
optimization problems. It may deal with either problems in the standard form (4)
and in the more general form

min f(x)
s. to bl ≤ Ax ≤ br

l ≤ x ≤ u,
(32)

which are internally transformed to the standard form. Since gradients and Hessians
are computed in the original space of variables by user functions, the standard form is
preferred (particularly for nonlinear problems) to avoid the extra overhead of trans-
forming the current point to the original space of variables for function evaluations.

(2) BlockIP stops at the feasible point of iteration j when the relative gap between the
primal and dual objectives, denoted by pj and dj , is below some optimality gap. The
relative gap is computed as (pj − dj)/(1 + pj). For linear and quadratic problems pj

and dj are

pj = c⊤xj +
1

2
xj

⊤
Qxj dj = b⊤λj − u⊤wj − 1

2
xj

⊤
Qxj

while for nonlinear problems they are computed as

pj = f(xj) dj = L(xj , λj , zj , wj) = f(xj)− λj⊤(Axj − b)− zj
⊤
xj − wj⊤sj ,

L denoting the Lagrangian function.
(3) BlockIP implements two types of directions: the standard Newton direction which was

described in Section 3; and the second order heuristic direction of [26], which requires
the solution of two systems (10) with different right-hand-sides. Both directions can
be computed by solving the normal equations by either a Cholesky factorization or
by the PCG-based approach of Subsection 3.1. In general, the reduction of iterations
caused by the second order direction is not worthwhile when using PCG, since, as far
as we know, the solution of the first system can not be efficiently used as a warm-start
for the second one. Indeed, from the results of [10] this strategy was not successful
for multicommodity flows problems.

(4) The solver implements the two types of regularizations presented in Subsection 3.2:
the proximal point and the quadratic regularization. Although both are similar in
practice, the quadratic regularization is preferred by the discussion in Subsection 3.2.
Following [14], the quadratic regularization matrix QR of (23) is heuristically updated
at each interior-point iteration i as

QR := δ · i · µi/µ0I,

where µ0 and µi are the barrier parameter at the starting and current point, and δ is
a (usually small) initial regularization value. The product by i, the iteration counter,
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...
// declare N (block constraints matrix) as a Matrix for BlockIP
MatrixBlockIP N;
// declare arc source and destination vectors
int *src, *dst;
// N is created as network matrix
// numArcs and numNodes previously assigned; true means oriented
N.create_network_matrix(numArcs, numNodes, src, dst, true);
// fill src and dst; src and dst allocated by create_network_matrix()
...
// declare L (linking constraints matrix) as a Matrix for BlockIP
MatrixBlockIP L;
// L is created as an identity matrix
L.create_identity_matrix(numArcs);

BlockIP bip; // declare BlockIP problem

double *cost, *qcost, *ub, *rhs;
// creation of BlockIP problem
// numBlocks previosuly assigned; true means same N and L for all blocks
bip.create_problem(BlockIP::QUADRATIC, cost, qcost, NULL, NULL, ub, rhs,

numBlocks, true, &N, true, &L);
// fill cost, qcost, ub, rhs.
...
bip.minimize();

Figure 3. Piece of code illustrating the usage of the BlockIP callable library for the solution of a oriented quadratic

multicommodity flow problem

#typeobj 0=linear 1=quadratic 2=nonlinear
1
#number of blocks
2
#sameN 1=yes 0=no
1
#Matrix: first line m,n,nnz; next nnz lines i,j,a
3 5 7
1 1 1
1 2 1
1 3 1
2 1 -1
2 4 1
3 2 -1
3 5 1
...

Figure 4. Example using the particular BlockIP file format

is an attempt to compensate for the quick reduction of µi when the optimal solution
is approached.

(5) BlockIP may compute the Ritz values, and thus the spectral radius ρ, for any number
φ of terms in the preconditioner, as described in Subsection 3.3. The value φ can also
be selected by the user. As in [9], Ritz values are efficiently computed by using the
SSTEQR LAPACK routine [2]; the extra CPU time needed by this computation is
negligible.

(6) Problems can be provided in four different formats.
(a) The most efficient way is using the BlockIP callable library, which provides rou-

tines to create problems from matrices and vectors. The code of Figure 3 il-
lustrates how the callable library could be used to formulate, in this example,
a oriented quadratic multicommodity flow problem. Particular matrix formats
(network—oriented and nonoriented—, general rowwise or columnwise, diagonal,
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ROWS
E Block1:Cons1
...
E LinkCons1
...
COLUMNS
Block1:Var1 obj 1 Block1:Cons1 1
...
Slack1 LinkCons1 1
...

Figure 5. Syntax of row and column entries of structured MPS extension for block-angular problems

set ORIG; # origins
set DEST; # destinations
set PROD; # products
param supply {PROD,ORIG} >= 0; # amounts available at origins
param demand {PROD,DEST} >= 0; # amounts required at destinations
param limit {ORIG,DEST} >= 0;
param cost {PROD,ORIG,DEST} >= 0; # shipment costs per unit

block Prod{p in PROD}:
var Trans {ORIG, DEST} >= 0; # units to be shipped
minimize total_cost: sum {i in ORIG,j in DEST} cost[p,i,j]*Trans[i,j];
subject to Supply {i in ORIG}: sum {j in DEST} Trans[i,j] = supply[p,i];
subject to Demand {j in DEST}: sum {i in ORIG} Trans[i,j] = demand[p,j];

end block;

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Prod[p].Trans[i,j] <= limit[i,j];

Figure 6. Example of SML–AMPL code for a multicommodity transportation problem

identity, etc.) can be exploited through the callable library. Nonlinear objective
functions—including gradient and Hessian evaluations—have to be provided as
C++ routines.

(b) Problems can also be efficiently provided by an input file using a specific format
for BlockIP. This format consists on a set of scalars, vectors and sparse matrices
defining the problem parameters. Sparse matrices are provided in coordinate
scheme, i.e, a set of triples (i, j, aij) where (i, j) denote the row and column
location of the nonzero element aij . An example is shown in Figure 4.

(c) Input files can also be in structured MPS format, an extension of the well-known
MPS format created for BlockIP. Figure 5 illustrates the syntax of this format.
All variables and constraints preceded by the same prefix (ended with “:”) are
associated to the same block. Constraints and variables without a prefix corre-
spond, respectively, to linking constraints and their slacks. Standard packages
can read structured MPS files without modification.

(d) The last format is based on SML [15], a structure-conveying modelling language
based on the popular AMPL [17] modeling language. In addition to hooking
BlockIP to it, SML was extended to deal with nonlinear separable problems
(see [24] for details). Briefly, SML extends AMPL with the block and end block

keywords. Variables and constraints defined within these keywords are associated
to the same block, whereas those outside correspond to linking constraints and
their slacks. Figure 6 illustrates how a simple multicommodity transportation
problem from [17] could be formulated with SML.
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Table 1. Dimensions and results for multicommodity instances

BlockIP CPLEX 12.5
Instance k m n Iter CPU PCG Iter CPU

tripart1 16 3294 33774 51 0.8 1260 19 0.3

tripart2 16 13301 135941 68 10 4034 17 4

tripart3 20 25541 329161 78 20 3363 19 13

tripart4 35 38004 869814 131 268 20791 24 34

gridgen1 320 329831 985191 199 253 4790 33 883

5. Computational results with some applications

Three applications have been considered for testing the performance of BlockIP: the mul-
ticommodity flow problem (linear optimization model), the minimum congestion problem
(linear optimization model), and a statistical tabular data confidentiality problem (linear,
quadratic or nonlinear optimization model). BlockIP has been compared with the state-
of-the-art CPLEX 12.5 package for the linear and quadratic instances. Both the simplex
and (interior-point) barrier CPLEX algorithms have been tried for all the instances, and
the tables of next subsections report the results with the most efficient option for each
instance. For the nonlinear problems we only report results with BlockIP, since other
nonlinear interior-point packages could not solve them. The optimality gap was set to
10−5 for both BlockIP and CPLEX, since tighter tolerances may be problematic for a
PCG-based IPM. A value φ = 0 was considered for the number of terms of the precondi-
tioner. The quadratic regularization (23) has been used for BlockIP. Default options have
been used for other CPLEX and BlockIP parameters, unless explicitly stated. All runs
were carried out on a Fujitsu Primergy RX300 server with 3.33 GHz Intel Xeon X5680
CPUs with 144 gigabytes of memory, under a GNU/Linux operating system (OpenSuse
11.4), without exploitation of parallelism capabilities.

5.1 Multicommodity problems

The purpose of the multicommodity problem is to route a set of items (the commodities)
at a minimum cost over a capacitated network. This problem is formulated as

min
k
∑

i=1

ci
⊤
xi

s. to Nxi = bi i = 1, . . . , k
k
∑

i=1

xi + s ≤ u

0 ≤ xi ≤ ui i = 1, . . . , k, 0 ≤ s ≤ u,

(33)

where N is a node-arc incidence matrix of m′+1 nodes (one node is removed to guarantee
full row-rank) and n′ arcs, bi are the vectors of supply-demand at the nodes for each
commodity, s are the slacks of the linking constraints, ui are the vectors of arc capacities
for each commodity, and u is the vector of arc total capacities for all the commodities.
The number of linking constraints is l = n′. Multicommodity problems match the general

block-angular formulation (1) with Ai = N , Li = I, and fi(x
i) = ci

⊤
xi, for i = 1, . . . , k.

Note that D, defined in (12), is diagonal, since Li are identities, and thus step 10 of the
PCG algorithm of Figure 1 only involves a diagonal matrix when φ = 0.

Several standard classes of multicommodity instances are available from the literature.
Many of them are already satisfactorily solved by generic solvers [8]. Therefore, we se-
lected a small set of —small/medium— five instances which are considered difficult in the
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literature [11]. Table 1 reports, for each instance, the number of blocks (k), constraints
(m) and variables (n); the number of IPM iterations (“Iter”) and CPU time (“CPU”)
required by BlockIP and CPLEX; and the overall number of PCG iterations (“PCG”)
performed by BlockIP. The CPU of the faster run is marked in boldface. From 1 we see
that BlockIP is only competitive for the most difficult and largest instance.

5.2 Minimum congestion problems

The minimum congestion problem (also known as the maximum concurrent flow [7]) is
defined on an infeasible nonoriented multicommodity flow problems. Its purpose is to min-
imize ‖y‖∞, where y is the vector of relative increments in arc capacities needed to make
the multicommodity flow problem feasible. This problem, with practical applications in
telecommunications, has proved to be difficult for simplex algorithms [6].

Denoting by xi
+

and xi
−

the forward and backward flows for each commodity, and
considering the extra variable t ∈ R, it can be formulated as:

min t

s. to Nxi
+ −Nxi

−

= bi i = 1, . . . , k
k
∑

i=1

(xi
+

j + xi
−

j )− yjuj ≤ 0 j = 1, . . . , n′

yj − t ≤ 0 j = 1, . . . , n′

xi
+

, xi
− ≥ 0 i = 1, . . . , k

yj ≥ 0 j = 1, . . . , n′

(34)

This formulation contains a dense column because of t, and thus the matrix D (needed
for the preconditioner) becomes very dense. A more appropriate formulation is obtained
by considering ti, i = 1, . . . , n′ for each arc, with the extra constraints ti = ti+1. The
resulting model is:

min t1
s. to Nxi

+ −Nxi
−

= bi i = 1, . . . , k
k
∑

i=1

(xi
+

j + xi
−

j )− yjuj ≤ 0 j = 1, . . . , n′

yj − tj ≤ 0 j = 1, . . . , n′

tj − tj+1 = 0 j = 1, . . . , n′ − 1

xi
+

, xi
− ≥ 0 i = 1, . . . , k

yj ≥ 0 j = 1, . . . , n′

(35)

Matrix D of the preconditioner for (35) is of larger dimension but sparser. Unlike in
Subsection 5.1, the linking constraints, and thus D, are not diagonal matrices.

Table 2 reports the dimensions and results for some instances. They were obtained by
making infeasible some multicommodity instances (produced with the standard Mnetgen
generator) increasing the demands and supplies. The meaning of the columns is the same
as in Table 1. The two numbers in the instance name denote the number of arcs and
nodes of the network. BlockIP was competitive even for the smaller instances, being up
to ten times faster for the larger ones.
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Table 2. Dimensions and results for minimum congestion instances

BlockIP CPLEX 12.5
Instance k m n Iter CPU PCG Iter CPU

M32-32 34 2449 33533 93 0.9 289 17 1.3
M64-64 66 5564 67962 94 2 183 17 4
M128-64 66 11640 155742 97 7 234 19 22
M128-128 130 19867 314243 97 15 213 20 52
M256-256 258 71891 1139467 110 161 891 22 627
M512-64 66 470075 634143 131 95 1223 21 1071
M512-128 130 79765 1249145 131 244 2090 25 2520

5.3 Statistical tabular data confidentiality problems

National statistical agencies have to guarantee that confidential information can not be
be disclosed from tabular data released. One of the data protection approaches consists,
broadly speaking, in computing the closest safe table to the original one, in an attempt
to minimize the information loss (see, for instance, [13] for a recent survey on these
topics). Representing a table of n′ cells as a vector a ∈ R

n′

that satisfies the constraints
Aa = b, la ≤ a ≤ ua, the goal is to find cell perturbations x ∈ R

n′

such that:

• minimize ||x||ℓ for some distance ℓ;
• x+a satisfy the table constraints, that is, A(x+a) = b, la ≤ x+a ≤ ua, or equivalently

Ax = 0, l ≤ x ≤ u, where l = la − a and u = ua − a;
• a subset of sensitive cells S ⊆ {1, . . . , n′} is safely shifted from their original values, that

is, αi ≤ xi ≤ βi i ∈ S, where αi, βi are some given parameters such that 0 6∈ [αi, βi].

This results in the following optimization problem:

min
x

||x||ℓ
s. to Ax = 0

l ≤ x ≤ u
αi ≤ xi ≤ βi i ∈ S,

(36)

which exhibits a block-angular structure for some classes of tables, such as three-
dimensional ones, i.e., boxes of data obtained by crossing three categorical variables (see
[13] for details).

Using ℓ1, and considering the splitting x = x+ − x−, x+ ≥ 0, x− ≥ 0, the objective
function of (36) becomes

‖x‖ℓ1 =
n
∑

i=1

|xi| =
n
∑

i=1

(x+i + x−i ), (37)

obtaining a linear optimization problem. For the Euclidean distance ℓ2, no splitting of
variables is necessary, resulting in a quadratic optimization problem of objective

‖x‖2ℓ2 =
n
∑

i=1

x2i . (38)

By Subsection 3.2, the PCG is expected to be more efficient with the quadratic than the
linear objective because of the nonzero Hessian. According to that, we also considered a
strictly convex nonlinear approximation of ℓ1 given by the pseudo-Huber function

ϕδ(xi) =
√

δ2 + x2i − δ, (39)
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Table 3. Dimensions and results for ℓ1

BlockIP CPLEX 12.5
Instance k m n Iter CPU PCG Iter CPU

25-25-25 25 1850 31875 168 4 16475 13 1

25-25-50 50 3075 63125 172 12 22430 14 2

25-50-25 25 3100 63750 194 19 34863 13 2

25-50-50 50 4950 126250 200 61 57641 15 10

50-25-25 25 3100 63750 200 28 53667 14 1

50-25-50 50 4950 126250 62 1 526 15 7
50-50-25 25 4975 127500 187 33 28669 15 9

50-50-50 50 7450 252500 133 16 5523 16 41
100-100-100 100 29900 2010000 23 8 25 8 986
100-100-200 200 49800 4010000 32 25 35 9 2262
200-100-200 200 79800 8020000 32 49 42 10 8789
200-200-200 200 119800 16040000 35 144 49 8 64521
500-500-50 50 299950 25250000 40 424 57 9 19595
500-50-500 500 299500 25025000 54 227 76 9 17415

Table 4. Dimensions and results for ℓ2

BlockIP CPLEX 12.5
Instance k m n Iter CPU PCG Iter CPU

25-25-25 25 1850 16250 11 0.0 22 9 0.8
25-25-50 50 3075 31875 10 0.1 13 9 1.4
25-50-25 25 3100 32500 10 0.1 14 8 1.2
25-50-50 50 4950 63750 10 0.1 12 7 5.8
50-25-25 25 3100 32500 10 0.1 15 9 1.2
50-25-50 50 4950 63750 10 0.1 13 8 4.2
50-50-25 25 4975 65000 10 0.1 12 8 5.1
50-50-50 50 7450 127500 10 0.2 12 7 19
100-100-100 100 29900 1010000 10 3 10 7 874
100-100-200 200 49800 2010000 10 6 10 7 1802
200-100-200 200 79800 4020000 10 11 10 8 7319
200-200-200 200 119800 8040000 9 29 9 8 65467
500-500-50 50 299950 12750000 10 91 10 7 15437
500-50-500 500 299500 12525000 10 28 10 8 14784

Table 5. Dimensions and results for pseudo-Huber function and ℓ1 in small instances

ϕδ ℓ1
Instance k m n Iter CPU PCG CPU PCG

25-25-25 25 1850 16250 156 1 3285 4 16475
25-25-50 50 3075 31875 152 2 2940 12 22430
25-50-25 25 3100 32500 146 2 2525 19 34863
25-50-50 50 4950 63750 159 5 4658 61 57641
50-25-25 25 3100 32500 150 2 2404 28 53667
50-25-50 50 4950 63750 143 4 4392 1 526
50-50-25 25 4975 65000 163 4 3298 33 28669
50-50-50 50 7450 127500 152 6 1831 16 5523

δ being a small positive value. Properties of the pseudo-Huber function and its applica-
tion to compressed sensing problems are described in [16]. The objective function of the
resulting convex optimization problem is

f(x) =
n
∑

i=1

ϕδ(xi) ≈ ‖x‖ℓ1 . (40)

Tables 3, 4 and 5 report the results with, respectively, (37), (38) and (40). We
generated two types of instances, small and large, clearly separated in the tables.
The name of the instances denote the number of categories of the three categorical
variables. The instance generator of three-dimensional tables can be retrieved from
http://www-eio.upc.es/~jcastro/CTA_3Dtables.html. Large instances could not be
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solved with the pseudo-Huber function. Other state-of-the-art nonlinear IPM packages
could not even solve the small instances with the pseudo-Huber function. The meaning of
the columns is the same as in tables of previous subsections. For ℓ1 we see that BlockIP
is far more efficient as the size of the optimization problem becomes really large (millions
of variables), being one to two orders of magnitude faster than CPLEX. For ℓ2 the results
are even better, being two to three orders of magnitude faster in the larger instances.
The benefit of a nonzero Hessian in the quality of the preconditioner is clearly seen from
the number of PCG iterations: it is smaller for ℓ2 than for ℓ1. Finally, Table 5 shows the
results with the pseudo-Huber function. We see again the advantage of a nonzero Hessian:
the nonlinear problem is solved more efficiently than the linear one for all the instances
(but one), requiring less PCG iterations.

6. Conclusions

The BlockIP implementation of the PCG-based IPM using the power series precondi-
tioner has shown to be a very efficient tool for the solution of some classes of large convex
separable block-angular problems. We do not claim such good efficiencies can be observed
in all block-angular problems; this depends, among other factors, on the value of the spec-
tral radius of D−1(C⊤B−1C) which is problem dependent. Therefore, the regularization
strategies included in BlockIP (either the proximal point or the quadratic terms) may be
instrumental for some problems. The estimation of the spectral radius through Ritz val-
ues can also be used as a guidance for the suitability of this approach to some particular
problem.

Among the further tasks to be done we find: improving the efficiency of the PCG by
adaptive selection of φ, the number of terms in the preconditioner, using the estimation
of ρ by the Ritz values; adaptive selection of either Newton or second-order directions,
according to the quality of the preconditioner at each interior-point iteration; testing
other (linear and nonlinear) classes of block-angular problems (e.g., routing problems in
telecommunication networks, formulated as nonlinear multicommodity flows); using this
approach within a more general framework for the solution of large mixed integer problems
with block-angular structure (e.g., [28]); and implementing within BlockIP other type of
preconditioners, such as, e.g., the hybrid approach described in [9]. Some of these tasks
are already under development.
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