102 research outputs found

    From Personalized Medicine to Population Health: A Survey of mHealth Sensing Techniques

    Full text link
    Mobile Sensing Apps have been widely used as a practical approach to collect behavioral and health-related information from individuals and provide timely intervention to promote health and well-beings, such as mental health and chronic cares. As the objectives of mobile sensing could be either \emph{(a) personalized medicine for individuals} or \emph{(b) public health for populations}, in this work we review the design of these mobile sensing apps, and propose to categorize the design of these apps/systems in two paradigms -- \emph{(i) Personal Sensing} and \emph{(ii) Crowd Sensing} paradigms. While both sensing paradigms might incorporate with common ubiquitous sensing technologies, such as wearable sensors, mobility monitoring, mobile data offloading, and/or cloud-based data analytics to collect and process sensing data from individuals, we present a novel taxonomy system with two major components that can specify and classify apps/systems from aspects of the life-cycle of mHealth Sensing: \emph{(1) Sensing Task Creation \& Participation}, \emph{(2) Health Surveillance \& Data Collection}, and \emph{(3) Data Analysis \& Knowledge Discovery}. With respect to different goals of the two paradigms, this work systematically reviews this field, and summarizes the design of typical apps/systems in the view of the configurations and interactions between these two components. In addition to summarization, the proposed taxonomy system also helps figure out the potential directions of mobile sensing for health from both personalized medicines and population health perspectives.Comment: Submitted to a journal for revie

    Delivering IoT Services in Smart Cities and Environmental Monitoring through Collective Awareness, Mobile Crowdsensing and Open Data

    Get PDF
    The Internet of Things (IoT) is the paradigm that allows us to interact with the real world by means of networking-enabled devices and convert physical phenomena into valuable digital knowledge. Such a rapidly evolving field leveraged the explosion of a number of technologies, standards and platforms. Consequently, different IoT ecosystems behave as closed islands and do not interoperate with each other, thus the potential of the number of connected objects in the world is far from being totally unleashed. Typically, research efforts in tackling such challenge tend to propose a new IoT platforms or standards, however, such solutions find obstacles in keeping up the pace at which the field is evolving. Our work is different, in that it originates from the following observation: in use cases that depend on common phenomena such as Smart Cities or environmental monitoring a lot of useful data for applications is already in place somewhere or devices capable of collecting such data are already deployed. For such scenarios, we propose and study the use of Collective Awareness Paradigms (CAP), which offload data collection to a crowd of participants. We bring three main contributions: we study the feasibility of using Open Data coming from heterogeneous sources, focusing particularly on crowdsourced and user-contributed data that has the drawback of being incomplete and we then propose a State-of-the-Art algorith that automatically classifies raw crowdsourced sensor data; we design a data collection framework that uses Mobile Crowdsensing (MCS) and puts the participants and the stakeholders in a coordinated interaction together with a distributed data collection algorithm that prevents the users from collecting too much or too less data; (3) we design a Service Oriented Architecture that constitutes a unique interface to the raw data collected through CAPs through their aggregation into ad-hoc services, moreover, we provide a prototype implementation

    A crowdsensing method for water resource monitoring in smart communities

    Get PDF
    Crowdsensing aims to empower a large group of individuals to collect large amounts of data using their mobile devices, with the goal of sharing the collected data. Existing crowdsensing studies do not consider all the activities and methods of the crowdsensing process and the key success factors related to the process. Nor do they investigate the profile and behaviour of potential participants. The aim of this study was to design a crowdsensing method for water resource monitoring in smart communities. This study opted for an exploratory study using the Engaged Scholarship approach, which allows the study of complex real-world problems based on the different perspectives of key stakeholders. The proposed Crowdsensing Method considers the social, technical and programme design components. The study proposes a programme design for the Crowdsensing Methodwhich is crowdsensing ReferenceFrameworkthat includes Crowdsensing Processwith key success factors and guidelines that should be considered in each phase of the process. The method also uses the Theory of Planned Behaviour (TPB) to investigate citizens’intention to participate in crowdsensing for water resource monitoring and explores their attitudes, norms and perceived behavioural control on these intentions. Understanding the profiles of potential participants can assist with designing crowdsensing systems with appropriate incentive mechanisms to achieve adequate user participation and good service quality. A survey was conducted to validate the theoretical TB model in a real-world context. Regression and correlation analyses demonstrated that the attitudes, norms and perceived behavioural control can be used to predict participants’ intention to participate in crowdsensing for water resource monitoring. The survey results assisted with the development of an Incentive Mechanism as part of the Crowdsensing Method. This mechanism incorporates recruitment and incentive policies, as well as guidelines derived from the literature review and extant system analysis. The policies, called the OverSensepolicies, provide guidance for recruitment and rewarding of participants using the popular Stackelberg technique. The policies were evaluated using simulation experiments with a data set provided by the case study, the Nelson Mandela Bay Municipality. The results of the simulation experiments illustrated that the OverSenserecruitmentpolicycan reduce the computing resources required for the recruitment of participants and that the recruitment policy performs better than random or naïve recruitment policies. The proposed Crowdsensing Method was evaluated using an ecosystem of success factors for mobile-based interventions identified in the literature and the Crowdsensing Method adhered to a majority (90%) of the success factors. This study also contributes information systems design theory by proposing several sets of guidelines for crowdsensing projects and the development of crowdsensing systems. This study fulfils an identified need to study the applicability of crowdsensing for water resource monitoring and explores how a crowdsensing method can create a smart community

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities

    Get PDF
    Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies, and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas

    行動認識機械学習データセット収集のためのクラウドソーシングの研究

    Get PDF
    In this thesis, we propose novel methods to explore and improve crowdsourced data labeling for mobile activity recognition. This thesis concerns itself with the quality (i.e., the performance of a classification model), quantity (i.e., the number of data collected), and motivation (i.e., the process that initiates and maintains goal-oriented behaviors) of participant contributions in mobile activity data collection studies. We focus on achieving high-quality and consistent ground-truth labeling and, particularly, on user feedback’s impact under different conditions. Although prior works have used several techniques to improve activity recognition performance, differences to our approach exist in terms of the end goals, proposed method, and implementation. Many researchers commonly investigate post-data collection to increase activity recognition accuracy, such as implementing advanced machine learning algorithms to improve data quality or exploring several preprocessing ways to increase data quantity. However, utilizing post-data collection results is very difficult and time-consuming due to dirty data challenges for most real-world situations. Unlike those commonly used in other literature, in this thesis, we aim to motivate and sustain user engagement during their on-going-self-labeling task to optimize activity recognition accuracy. The outline of the thesis is as follows: In chapter 1 and 2, we briefly introduce the thesis work and literature review. In Chapter 3, we introduce novel gamified active learning and inaccuracy detection for crowdsourced data labeling for an activity recognition system (CrowdAct) using mobile sensing. We exploited active learning to address the lack of accurate information. We presented the integration of gamification into active learning to overcome the lack of motivation and sustained engagement. We introduced an inaccuracy detection algorithm to minimize inaccurate data. In Chapter 4, we introduce a novel method to exploit on-device deep learning inference using a long short-term memory (LSTM)-based approach to alleviate the labeling effort and ground truth data collection in activity recognition systems using smartphone sensors. The novel idea behind this is that estimated activities are used as feedback for motivating users to collect accurate activity labels. In Chapter 5, we introduce a novel on-device personalization for data labeling for an activity recognition system using mobile sensing. The key idea behind this system is that estimated activities personalized for a specific individual user can be used as feedback to motivate user contribution and improve data labeling quality. We exploited finetuning using a Deep Recurrent Neural Network (RNN) to address the lack of sufficient training data and minimize the need for training deep learning on mobile devices from scratch. We utilized a model pruning technique to reduce the computation cost of on-device personalization without affecting the accuracy. Finally, we built a robust activity data labeling system by integrating the two techniques outlined above, allowing the mobile application to create a personalized experience for the user. To demonstrate the proposed methods’ capability and feasibility in realistic settings, we developed and deployed the systems to real-world settings such as crowdsourcing. For the process of data labeling, we challenged online and self-labeling scenarios using inertial smartphone sensors, such as accelerometers. We recruited diverse participants and con- ducted the experiments both in a laboratory setting and in a semi-natural setting. We also applied both manual labeling and the assistance of semi-automated labeling. Addition- ally, we gathered massive labeled training data in activity recognition using smartphone sensors and other information such as user demographics and engagement. Chapter 6 offers a brief discussion of the thesis. In Chapter 7, we conclude the thesis with conclusion and some future work issues. We empirically evaluated these methods across various study goals such as machine learning and descriptive and inferential statistics. Our results indicated that this study enabled us to effectively collect crowdsourced activity data. Our work revealed clear opportunities and challenges in combining human and mobile phone-based sensing techniques for researchers interested in studying human behavior in situ. Researchers and practitioners can apply our findings to improve recognition accuracy and reduce unreliable labels by human users, increase the total number of collected responses, as well as enhance participant motivation for activity data collection.九州工業大学博士学位論文 学位記番号:工博甲第526号 学位授与年月日:令和3年6月28日1 Introduction|2 Related work|3 Achieving High-Quality Crowdsourced Datasets in Mobile Activity Recognition|4 On-Device Deep Learning Inference for Activity Data Collection|5 On-Device Deep Personalization for Activity Data Collection|6 Discussion|7 Conclusion九州工業大学令和3年

    RTbust: Exploiting Temporal Patterns for Botnet Detection on Twitter

    Full text link
    Within OSNs, many of our supposedly online friends may instead be fake accounts called social bots, part of large groups that purposely re-share targeted content. Here, we study retweeting behaviors on Twitter, with the ultimate goal of detecting retweeting social bots. We collect a dataset of 10M retweets. We design a novel visualization that we leverage to highlight benign and malicious patterns of retweeting activity. In this way, we uncover a 'normal' retweeting pattern that is peculiar of human-operated accounts, and 3 suspicious patterns related to bot activities. Then, we propose a bot detection technique that stems from the previous exploration of retweeting behaviors. Our technique, called Retweet-Buster (RTbust), leverages unsupervised feature extraction and clustering. An LSTM autoencoder converts the retweet time series into compact and informative latent feature vectors, which are then clustered with a hierarchical density-based algorithm. Accounts belonging to large clusters characterized by malicious retweeting patterns are labeled as bots. RTbust obtains excellent detection results, with F1 = 0.87, whereas competitors achieve F1 < 0.76. Finally, we apply RTbust to a large dataset of retweets, uncovering 2 previously unknown active botnets with hundreds of accounts
    corecore