784 research outputs found

    Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review

    Get PDF
    Sleep apnea syndrome (SAS), which can significantly decrease the quality of life is associated with a major risk factor of health implications such as increased cardiovascular disease, sudden death, depression, irritability, hypertension, and learning difficulties. Thus, it is relevant and timely to present a systematic review describing significant applications in the framework of computational intelligence-based SAS, including its performance, beneficial and challenging effects, and modeling for the decision-making on multiple scenarios.info:eu-repo/semantics/publishedVersio

    A Panoramic Study of Obstructive Sleep Apnea Detection Technologies

    Get PDF
    This study offers a literature research reference value for bioengineers and practitioner medical doctors. It could reduce research time and improve medical service efficiency regarding Obstructive Sleep Apnea (OSA) detection systems. Much of the past and the current apnea research, the vital signals features and parameters of the SA automatic detection are introduced.The applications for the earlier proposed systems and the related work on real-time and continuous monitoring of OSA and the analysis is given. The study concludes with an assessment of the current technologies highlighting their weaknesses and strengths which can set a roadmap for researchers and clinicians in this rapidly developing field of study

    Design of an intelligent decision support system applied to the diagnosis of obstructive sleep apnea

    Get PDF
    Obstructive sleep apnea (OSA), characterized by recurrent episodes of partial or total obstruction of the upper airway during sleep, is currently one of the respiratory pathologies with the highest incidence worldwide. This situation has led to an increase in the demand for medical appointments and specific diagnostic studies, resulting in long waiting lists, with all the health consequences that this entails for the affected patients. In this context, this paper proposes the design and development of a novel intelligent decision support system applied to the diagnosis of OSA, aiming to identify patients suspected of suffering from the pathology. For this purpose, two sets of heterogeneous information are considered. The first one includes objective data related to the patient’s health profile, with information usually available in electronic health records (anthropometric information, habits, diagnosed conditions and prescribed treatments). The second type includes subjective data related to the specific OSA symptomatology reported by the patient in a specific interview. For the processing of this information, a machine-learning classification algorithm and a set of fuzzy expert systems arranged in cascade are used, obtaining, as a result, two indicators related to the risk of suffering from the disease. Subsequently, by interpreting both risk indicators, it will be possible to determine the severity of the patients’ condition and to generate alerts. For the initial tests, a software artifact was built using a dataset with 4400 patients from the Álvaro Cunqueiro Hospital (Vigo, Galicia, Spain). The preliminary results obtained are promising and demonstrate the potential usefulness of this type of tool in the diagnosis of OSA.Xunta de Galicia | Ref. ED481A-2020/03

    Feature Selection for the Detection of Sleep Apnea using Multi-Bio Signals from Overnight Polysomnography

    Full text link
    © 2018 IEEE. Patients with sleep apnea (SA) are at increased risk of stroke and cardiovascular disease. Diagnosis of sleep apnea depends on the standard overnight polysomnography (PSG). In this study, the DREAM Apnea Database was used to evaluate the importance of the various features proposed in the literature for the analysis of sleep apnea. Various timeand frequency- domain features that include wavelet and power spectral density were extracted from ECG, EMG, EEG, airflow, SaO2, abdominal and thoracic recordings. Evaluation measures of one-way analysis of variance (ANOVA) and Rank-Sum test were used to test the performance of different features. The selected feature subset indicated that frequency-domain features outperform time-domain ones. This study will help in enhancing the detection accuracy of sleep apnea for the various polysomnography signals

    IoT-Based Wireless Polysomnography Intelligent System for Sleep Monitoring

    Full text link
    © 2013 IEEE. Polysomnography (PSG) is considered the gold standard in the diagnosis of obstructive sleep apnea (OSA). The diagnosis of OSA requires an overnight sleep experiment in a laboratory. However, due to limitations in relation to the number of labs and beds available, patients often need to wait a long time before being diagnosed and eventually treated. In addition, the unfamiliar environment and restricted mobility when a patient is being tested with a polysomnogram may disturb their sleep, resulting in an incomplete or corrupted test. Therefore, it is posed that a PSG conducted in the patient's home would be more reliable and convenient. The Internet of Things (IoT) plays a vital role in the e-Health system. In this paper, we implement an IoT-based wireless polysomnography system for sleep monitoring, which utilizes a battery-powered, miniature, wireless, portable, and multipurpose recorder. A Java-based PSG recording program in the personal computer is designed to save several bio-signals and transfer them into the European data format. These PSG records can be used to determine a patient's sleep stages and diagnose OSA. This system is portable, lightweight, and has low power-consumption. To demonstrate the feasibility of the proposed PSG system, a comparison was made between the standard PSG-Alice 5 Diagnostic Sleep System and the proposed system. Several healthy volunteer patients participated in the PSG experiment and were monitored by both the standard PSG-Alice 5 Diagnostic Sleep System and the proposed system simultaneously, under the supervision of specialists at the Sleep Laboratory in Taipei Veteran General Hospital. A comparison of the results of the time-domain waveform and sleep stage of the two systems shows that the proposed system is reliable and can be applied in practice. The proposed system can facilitate the long-Term tracing and research of personal sleep monitoring at home

    Assessment of Cardiorespiratory Interactions during Apneic Events in Sleep via Fuzzy Kernel Measures of Information Dynamics

    Get PDF
    Apnea and other breathing-related disorders have been linked to the development of hypertension or impairments of the cardiovascular, cognitive or metabolic systems. The combined assessment of multiple physiological signals acquired during sleep is of fundamental importance for providing additional insights about breathing disorder events and the associated impairments. In this work, we apply information-theoretic measures to describe the joint dynamics of cardiorespiratory physiological processes in a large group of patients reporting repeated episodes of hypopneas, apneas (central, obstructive, mixed) and respiratory effort related arousals (RERAs). We analyze the heart period as the target process and the airflow amplitude as the driver, computing the predictive information, the information storage, the information transfer, the internal information and the cross information, using a fuzzy kernel entropy estimator. The analyses were performed comparing the information measures among segments during, immediately before and after the respiratory event and with control segments. Results highlight a general tendency to decrease of predictive information and information storage of heart period, as well as of cross information and information transfer from respiration to heart period, during the breathing disordered events. The information-theoretic measures also vary according to the breathing disorder, and significant changes of information transfer can be detected during RERAs, suggesting that the latter could represent a risk factor for developing cardiovascular diseases. These findings reflect the impact of different sleep breathing disorders on respiratory sinus arrhythmia, suggesting overall higher complexity of the cardiac dynamics and weaker cardiorespiratory interactions which may have physiological and clinical relevance

    Oximetry use in obstructive sleep apnea

    Get PDF
    Producción CientíficaIntroduction. Overnight oximetry has been proposed as an accessible, simple, and reliable technique for obstructive sleep apnea syndrome (OSAS) diagnosis. From visual inspection to advanced signal processing, several studies have demonstrated the usefulness of oximetry as a screening tool. However, there is still controversy regarding the general application of oximetry as a single screening methodology for OSAS. Areas covered. Currently, high-resolution portable devices combined with pattern recognition-based applications are able to achieve high performance in the detection this disease. In this review, recent studies involving automated analysis of oximetry by means of advanced signal processing and machine learning algorithms are analyzed. Advantages and limitations are highlighted and novel research lines aimed at improving the screening ability of oximetry are proposed. Expert commentary. Oximetry is a cost-effective tool for OSAS screening in patients showing high pretest probability for the disease. Nevertheless, exhaustive analyses are still needed to further assess unattended oximetry monitoring as a single diagnostic test for sleep apnea, particularly in the pediatric population and in especial groups with significant comorbidities. In the following years, communication technologies and big data analysis will overcome current limitations of simplified sleep testing approaches, changing the detection and management of OSAS.This research has been partially supported by the projects DPI2017-84280-R and RTC-2015-3446-1 from Ministerio de Economía, Industria y Competitividad and European Regional Development Fund (FEDER), the project 66/2016 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), and the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León and FEDER. D. Álvarez was in receipt of a Juan de la Cierva grant IJCI-2014-22664 from the Ministerio de Economía y Competitividad

    Sleep-wake stages classification using heart rate signals from pulse oximetry

    Get PDF
    The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature selection with support vector machine and feature importance with random forest. The algorithms were designed, trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and thus potentially improving the estimation of AHI based on only pulse oximetry.Fil: Casal, Ramiro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Di Persia, Leandro Ezequiel. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentin

    An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals

    Get PDF
    Producción CientíficaDeep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines convolutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a proprietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF cessations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children at risk of OSA.Ministerio de Ciencia e Innovación /AEI/10.13039/501100011033/ FEDER (grants PID2020-115468RB-I00 and PDC2021-120775-I00)CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB19/01/00012), Instituto de Salud Carlos IIINational Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I
    corecore