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A B S T R A C T   

Deep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to 
simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. 
Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, 
enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines con-
volutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 
were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a pro-
prietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN 
architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed 
from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class 
Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of 
interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA 
severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 
0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 
and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF ces-
sations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of 
hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be 
helpful as a diagnostic alternative in symptomatic children at risk of OSA.   

1. Introduction 

Obstructive Sleep Apnea (OSA) syndrome is a prevalent sleep dis-
order that affects 1–5% of children worldwide [1,2]. Increased upper 
airway resistance and intermittent collapsibility during sleep result in 
respiratory flow pauses (apneas) and decreased airflow (hypopneas), 
which lead to a fragmented and restless sleep along with gas exchange 
abnormalities [1,2]. Undiagnosed and untreated OSA is associated with 
deleterious neurocognitive, developmental, and behavioral effects, as 
well as cardiovascular and metabolic morbidities [2]. The gold standard 
approach to diagnose OSA in children is the overnight in-lab 

polysomnogram (PSG), in which sleep is evaluated using multiple sen-
sors that record neurological, cardiorespiratory, and other biomedical 
signals [1,3]. These signals are then analyzed to calculate the number of 
apneas and hypopneas during sleep [3]. The American Academy of Sleep 
Medicine (AASM) guidelines define apneas as a reduction greater than 
90% in the airflow (AF) signal during at least two respiratory cycles, and 
hypopneas as a reduction greater than 30% in the AF during the same 
number of cycles followed by a drop of at least 3% in the blood oxygen 
saturation signal (SpO2) or an electroencephalographic arousal [3]. 
Among several indices derived from such analysis of the PSG, the apnea- 
hypopnea index (AHI) is most frequently the major index used to 
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diagnose OSA and establish its severity, and it is defined as the number 
of apneas and hypopneas per hour of sleep (e/h) [2]. The complexity of 
the PSG testing and the scarcity of accredited sleep laboratories with 
expertise in pediatric sleep result in inordinately lengthy waiting lists 
and therefore lead to a large proportion of children not properly or 
timely diagnosed with OSA [1]. Accordingly, children with clinical 
symptoms of OSA would benefit from being assessed with simpler al-
ternatives that could facilitate and speed up their access to treatment 
[2]. 

Simplified diagnostic tests have been developed and tested as an 
alternative to in-lab PSG in the past 20 years. Among these, the most 
popular approaches focus on nocturnal oximetry or respiratory polyg-
raphy [4,5]. AF and SpO2 have been commonly evaluated within these 
approaches due to their simpler acquisition and because these signals 
are involved in the apnea and hypopnea definitions [3]. An additional 
way to simplify signal analyses is to employ automatic signal processing 
algorithms based on machine learning (ML) [6,7]. Most of the previous 
approaches to detect pediatric OSA focused on ML techniques that relied 
on comprehensive signal characterization and feature engineering [7], 
but emergent deep-learning (DL) algorithms eliminate the need of 
feature extraction as they automatically find relevant patterns in the 
recorded data [8]. DL methods have been extensively developed and 
applied in the context of adult sleep apnea detection using different 
signals [8], but have not been properly translated into the pediatric 
population [7]. In contrast, common ML methods have been extensively 
assessed using AF or SpO2 data, like shallow neural networks [9–13], 
and ensemble learning [14–16]. These methods have been typically 
assessed in children regarding to their diagnostic ability in terms of 
sensitivity (Se), specificity (Sp), and accuracy (Acc) considering different 
AHI cutoffs. Noticeably, Acc increases with the threshold and normally 
ranges between 75.2% and 90.7% according to previous studies [9,13]. 
A recent meta-analysis reported Se-Sp pairs of 84.9%-49.9%, 71.4%- 
83.2%, and 65.2%-93.1% in the respective cutoffs 1, 5, and 10 e/h [7]. 
Only two recent studies developed and tested DL methods based on 
Convolutional Neural Networks (CNN) in the pediatric population using 
AF and/or SpO2 [17,18], but other architectures have still not been 
assessed. Regarding DL-based methodologies applied in adult OSA, 
CNNs and Recurrent Neural Networks (RNN) have been proposed to 
analyze different respiratory signals including oronasal AF or effort 
sensors [19–22]. Also, CNNs and deep neural networks (DNN) were 
selected to process SpO2 data [23–25], and other studies included 
diverse signals to detect sleep apnea and/or sleep stages with DL 
[26–30]. 

CNNs and RNNs have demonstrated their usefulness in dealing with 
cardiorespiratory and neurally-derived signals from sleep studies [8]. 
While CNNs are useful to automatically extract complex patterns from 
the biomedical signals, RNNs leverage the temporal distribution of the 
signal information [28,31]. The combination of a CNN with a RNN 
(CNN + RNN) exploits the benefits of both architectures, with CNNs 
being used as time-independent feature extractors formed by convolu-
tion filters, and RNNs being useful to model the temporal structure of the 
patterns extracted in the previous layers [28]. This CNN + RNN archi-
tecture can be suitable to detect OSA as it can model the recurrence of 
apneas within normal breathing patterns in respiratory signals. To the 
best of our knowledge, CNN + RNN models have not been assessed using 
AF and SpO2 signals with the aim of detecting pediatric OSA. Only one 
recent work proposed a 2D CNN to detect OSA in children using both 
signals, which has demonstrated their usefulness and complementarity 
[18]. 

Although the above-mentioned DL algorithms have reached 
remarkable diagnostic performances none of them provide explanations 
of their derivation. Indeed, extant algorithms act as black boxes that 
only provide accurate predictions without a reasoning of what patterns 
influence in the detection of the disease. This issue can be solved using 
Explainable Artificial Intelligence (XAI) methodologies, which are 
aimed at making complex ML/DL models more transparent and 

interpretable [32]. XAI methods have been scarcely applied in the 
context of OSA detection, and has relied on feature engineering rather 
than DL over raw signals [16,33,34]. Explainable DL approaches that 
relied on a CNN to analyze biomedical images or signals frequently 
employed the Gradient-weighted Class Activation Mapping (Grad-CAM) 
algorithm to identify the regions of the inputs that contribute for a 
certain prediction [35]. In this study, we propose an explainable CNN +
RNN algorithm to estimate pediatric OSA severity jointly from AF and 
SpO2 that uses Grad-CAM to provide an identification of the charac-
teristics of the signals that drive the model to detect the disease. 

We hypothesized that a combination CNN + RNN can leverage in-
formation of AF and SpO2 data to detect pediatric OSA. Moreover, Grad- 
CAM can contribute to understand the OSA detection process inside the 
DL architecture by revealing relevant patterns in these two signals. 
Accordingly, the objective of this study was two-fold: (i) to assess the 
diagnostic performance of an estimated AHI derived from a CNN + RNN 
algorithm fed with AF and SpO2 signals; and (ii) to identify the patterns 
that contribute to the detection of OSA in these signals. The novel 
contributions of this article are: (i) the development of a refined DL 
architecture based on the combination of a CNN and a RNN to detect 
OSA from overnight AF and SpO2 data, which has never been tested in 
pediatric OSA; and (ii) the novel use of Grad-CAM as XAI algorithm to 
reveal relevant patterns of the signals discovered by the network and 
used to detect the disease. 

2. Subjects and signals 

In the present study, a public database and a proprietary database 
were used. The Childhood Adenotonsillectomy Trial (CHAT) is a pub-
licly available database provided by the National Sleep Research 
Resource through its repository: https://sleepdata.org/datasets/chat 
[36,37]. This database contains 1,638 PSGs of children between 5 and 
10 years old with OSA symptoms. All the PSG studies included several 
overnight biomedical signals such as electroencephalogram, electro-
cardiogram, electromyogram, respiratory movements and AF, pulse- 
oximetry, body position, etc., and also contained the annotations of 
the apneic events according to the AASM guidelines [38], enabling us to 
generate the labels of the signal segments. The recordings were 
randomly separated into training (60%), validation (20%) and test 
(20%) sets, ensuring that no statistically significant differences (p >
0.01) were present among sets in age, sex, normalized to the age body 
mass index (BMI z-score), and AHI (Table 1). This division was subject- 
wise, so individual data were assigned exclusively to one of the sets. The 
training set was used to train the CNN + RNN model, the validation set 
was used to optimize the AHI detection algorithm, and the test set was 
used to evaluate the estimated AHI and interpret the decisions made by 
the CNN + RNN model. 

A proprietary database from the University of Chicago (UofC), with 
974 sleep studies from subjects aged 0–13 years with clinical suspicion 
of OSA, was also analyzed [9,14]. These recordings were used to 
externally validate and test the proposed AHI estimation algorithm. The 
Ethics Committee of the UofC approved the study protocol, and the legal 
caretakers were informed and gave their signed consent (see Ethical 
Approval section). Children were diagnosed using the PSG according to 
the current AASM rules [39]. All PSGs contained neuronal, cardiore-
spiratory, muscular, body position, etc. signals according to the AASM 
recommendations [38]. The time locations of the apneic events were not 
provided in the UofC database, so data from this database could not be 
used to train the CNN + RNN architecture. These data were used only to 
estimate the total AHI. The subjects in the UofC database were divided 
into validation (60%) and test (40%) sets, with no statistically signifi-
cant differences in age, sex, BMI z-score and AHI (p > 0.01). 

Demographic and clinical data of the subjects that formed the da-
tabases of this study, as well as signal characteristics (duration, sampling 
frequency), are shown in Tables 1 and 2. Some of these variables showed 
statistically significant differences between the CHAT and UofC 
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databases, as shown in Table 1. We dealt with this heterogeneity by 
forming a joint validation dataset of 910 subjects from the CHAT and 
UofC validation sets. This dataset was used to obtain the optimum 
hyperparameter configuration of the CNN + RNN algorithm. The test 
sets of both databases were independently used to assess the diagnostic 
performance of the algorithm. 

AF signals from PSG were recorded using an oronasal thermistor at 
sampling frequencies (fs) ranging 20–512 Hz in the CHAT database and 
200–500 Hz in the UofC database (Table 2), whereas SpO2 signals were 
registered with a photoplethysmography-based pulse oximeter finger 
probe with fs in the range 1–512 Hz in the CHAT database and 25–500 
Hz in the UofC database (Table 2). The duration of the PSG-derived AF 
and SpO2 signals were the same for each subject. An example of these 
signals is shown in Fig. 1, in which apneas and hypopneas are visible in 
the AF waveform and their respective desaturations can be observed in 
the SpO2 profile. 

3. Methods 

An interpretable CNN + RNN model was developed in this study 
from AF and SpO2 data with the aim of predicting OSA presence and 
severity in children. The entire architecture is shown in Fig. 2. The CNN 
+ RNN model was fed with 30-min segments of preprocessed AF and 
SpO2, which were divided into six 5-minute epochs. Each epoch was 
processed in the CNN blocks to form time-independent feature maps. 
The sequences of CNN-derived features were then analyzed in the RNN 
to estimate the number of apneic events present in the segment. Finally, 
the Grad-CAM algorithm was applied to locate the periods of time in 
which the model focused to predict the presence of apneic events. 

3.1. Signal preprocessing and segmentation 

Overnight AF and SpO2 signals were obtained from the PSG and were 
preprocessed with resampling and amplitude normalization. Resam-
pling was first applied to set a common fs of 10 Hz, which reduces 
computational cost while preserving the information in both signals. 
This fs was selected considering that the spectral components contained 
above fs/2 are negligible in both signals according to the Nyquist- 
Shannon theorem. Moreover, the CNN blocks included in the proposed 
architecture were optimized in a previous study using fs = 10 Hz [18]. 
The AF was additionally filtered with a Kaiser window low pass filter to 
reduce noise and preserve the respiratory oscillations. The cutoff fre-
quency of the filter was 1.5 Hz, with a minimum stopband attenuation of 
100 dB beyond 2 Hz [12,18]. AF amplitude was normalized adaptively 
like in previous studies using the pre-processing algorithm proposed by 
Varady et al. [12,13,40]. This method corrects the baseline and adjusts 
the scale of the AF signal segment by segment by subtracting the base-
line and dividing the result by the scale [40]. Finally, both signals were 
standardized to have zero mean and unit standard deviation. 

The signals were arranged into segments of 30-min (18,000 samples 
× 2 signals), and they were subsequently divided into 6 epochs of 5-min 
duration (3,000 samples) to adapt them to the shape of the sequences 
allowed by the CNN + RNN architecture. Therefore, the shape of each 
segment was 6 × 3,000 × 2. The duration of the segments and the epochs 
was selected to cover the typical duration of large clusters of apneic 
events and desaturations that recurrently appear in the polysomno-
graphic records [41], as previously addressed in a study focused on the 
analysis of SpO2 data [17]. After preliminary tests, we set the duration of 
the segments to 30 min since that duration optimized the regression 
problem, and the duration of the epochs was fixed to 5 min, which is 
suitable for the analysis of AF and SpO2 using a CNN [18]. In addition, 
25-min overlapping segments were used to perform data augmentation 
during training and validation. This also allowed us to feed the CNN +
RNN model with segments in which the relevant epochs can be placed in 
any position within the sequence, thus avoiding potential bias towards 
certain epochs. All segments from the CHAT database were labeled with 

Table 1 
Demographic and clinical characteristics of the children in the CHAT and UofC 
databases.   

CHAT- 
Training 

CHAT- 
Validation 

UofC- 
Validation 

CHAT- 
Test 

UofC- 
Test 

Subjects 
(n) 

1,006 
(61.42%) 

326 
(19.90%) 

584 
(59.96%) 

306 
(18.68%) 

390 
(40.04%) 

Age 
(years) 

7 [6; 8](a, 

b) 
7 [6; 8](c,d) 6 [3; 8](a,c, 

e) 
6.9 [6; 
8](e,f) 

5.5 [3; 
9](b,d,f) 

Females 
(n) 

520 
(51.7%)(a, 

b) 

168 
(51.5%)(d) 

238 
(40.8%)(a, 

e) 

168 
(54.9%)(e, 

f) 

137 
(35.1%)(b, 

d,f) 

Males (n) 471 
(46.8%)(a, 

b) 

156 
(47.9%)(d) 

346 
(59.2%)(a, 

e) 

134 
(43.8%)(e, 

f) 

253 
(64.9%)(b, 

d,f) 

BMI z- 
score 

− 0.21 
[− 0.66; 
0.49] 

− 0.28 
[− 0.66; 
0.46] 

− 0.24 
[− 0.61; 
0.43] 

− 0.26 
[− 0.60; 
0.47] 

− 0.17 
[− 0.58; 
0.28] 

AHI 
(events/ 
h) 

2.6 
[1.1; 
5.9](a) 

2.4 
[1.2; 5.8](c) 

4.1 
[1.7; 
10.0](a,c,e) 

2.3 
[1.1; 
6.2](e) 

3.3 
[1.4; 7.9] 

No OSA(1) 

(n) 
219 
(21.8%) 

69 (21.2%) 96 (16.4%) 67 
(21.9%) 

75 
(19.2%) 

Mild 
OSA(2) 

(n) 

496 
(49.3%) 

168 
(51.5%) 

229 
(39.2%) 

148 
(48.4%) 

169 
(43.3%) 

Moderate 
OSA(3) 

(n) 

160 
(15.9%) 

44 (13.5%) 113 
(19.4%) 

49 
(16.0%) 

63 
(16.2%) 

Severe 
OSA(4) 

(n) 

131 
(13.0%) 

45 (13.8%) 146 
(25.0%) 

42 
(13.7%) 

83 
(21.3%) 

Segments 
(n) 

114,873 37,155 58,985 34,771 39,467 

Data presented as median [interquartile range] or n (%). 
AHI = apnea-hypopnea index; BMI z-score = normalized to the age body mass 
index; OSA = Obstructive Sleep Apnea; CHAT = Childhood Adenotonsillectomy 
Trial, UofC = University of Chicago. 
(1): AHI < 1 event/h; (2): 1 ≤ AHI < 5 events/h; (3): 5 ≤ AHI < 10 events/h; (4): 
AHI ≥ 10 events/h. 
(a): Statistically significant differences (p < 0.01, Bonferroni correction) be-
tween CHAT-Training and UofC-Validation. 
(b): Statistically significant differences (p < 0.01, Bonferroni correction) be-
tween CHAT-Training and UofC-Test. 
(c): Statistically significant differences (p < 0.01, Bonferroni correction) be-
tween CHAT-Validation and UofC-Validation. 
(d): Statistically significant differences (p < 0.01, Bonferroni correction) be-
tween CHAT-Validation and UofC-Test. 
(e): Statistically significant differences (p < 0.01, Bonferroni correction) be-
tween CHAT-Test and UofC-Validation. 
(f): Statistically significant differences (p < 0.01, Bonferroni correction) be-
tween CHAT-Test and UofC-Test. 

Table 2 
Characteristics of the signals included in the CHAT and UofC databases.   

CHAT UofC 

fs AF (Hz) 20 Hz: 3 (0.18%); 25 Hz: 1 (0.06%); 
32 Hz: 368 (22.47%); 50 Hz: 806 
(49.21%); 125 Hz: 19 (1.16%); 128 
Hz: 35 (2.14%); 200 Hz: 201 
(12.27%); 256 Hz: 21 (1.28%); 512 
Hz:184 (11.23%); 

200 Hz: 674 (69.20%); 500 
Hz: 300 (30.80%) 

fs SpO2 (Hz) 1 Hz: 368 (22.47%); 2 Hz: 401 
(24.48%); 10 Hz: 410 (25.03%); 12 
Hz: 1 (0.06%); 16 Hz: 35 (2.14%); 
125 Hz: 19 (1.16%); 200 Hz: 199 
(12.15%); 256 Hz: 21 (1.28%); 512 
Hz: 184 (11.23%) 

25 Hz:297 (30.49%); 200 Hz: 
525 (53.90%); 500 Hz: 152 
(15.61%) 

Duration 
(minutes) 

586.39 [546.30; 645.97] 532.86 [497.10; 568.22] 

Data presented as median [interquartile range] or n (%). 
AF = airflow signal, CHAT = Childhood Adenotonsillectomy Trial, fs = sampling 
frequency, SpO2 = oximetry signal, UofC = University of Chicago. 
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the number of apneic or hypopneic events that begin and end within the 
30-min segment, which were used to train and validate the CNN + RNN 
model [18,24]. 

3.2. CNN + RNN architecture 

A combination of CNN and RNN models was developed and trained 
using a dataset of 30-min segments of AF and SpO2 signals, labeled with 
the number of apneas and hypopneas and distributed in six 5-min 
epochs. The convolutional part of the architecture was implemented 

as a stack of Time Distributed (TD) layers which encapsulated the layers 
of a previously presented CNN trained with AF and SpO2 data [18]. The 
TD layers work with each epoch of the input segment independently to 
return a sequence of processed data with the same length (6 epochs). A 
total of 8 blocks of 5 consecutive CNN layers -Convolutional 2D, Batch 
Normalization, Rectified Linear Unit (ReLU) activation, Max Pooling, 
and Dropout- embedded into TD layers were arranged with the aim of 
learning the AF and SpO2 features from each epoch related with apneic 
events [17]. The architecture is depicted in Fig. 2. Each convolutional 
layer generated 3D feature maps from the epochs using the 2D 

Fig. 1. Airflow (top) and oximetry (bottom) signals with apneas, hypopneas, and their respective desaturations.  

Fig. 2. Overview of the proposed methodology based on a deep-learning architecture combining convolutional and recurrent neural networks (CNN + RNN): 
Preprocessing of overnight airflow (AF) and oximetry (SpO2) signals from polysomnography (PSG), segmentation into sequences of six 5-min epochs (30 min total), 
and estimation of the apnea-hypopnea index (AHI) through the CNN + RNN algorithm. The CNN is a stack of time distributed (TD) layers that encapsulate 2D 
convolutional (Conv2D), batch normalization (BatchNorm), rectified linear unit (ReLU), max pooling (MaxPool), dropout and flattening layers. Bidirectional gated 
recurrent unit (GRU) and fully connected layers formed the RNN. The final estimation is ŷi, the total number of apneic events in the segment. The estimations of all 
segments are used to calculate the final AHI of each subject through a linear regression model. 
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convolution operation [42]: 

xj
i[m, n] =

∑17

k=1

∑2

l=1
wj

i[k, l]⋅ai[m − k+ 1, n − l+ 1] + bj
i (1)  

where xj
i is the feature map generated in the convolutional block i (i = 1, 

…, 8), with the filter with weights wj
i and bias bj

i (j = 1, …, 64) and ai as 
the input to the i-th convolutional block. Each convolutional layer was 
composed of 64 2D filters with kernel size 17 × 2, stride 1, and zero 
padding to ensure that the input and output lengths are the same. Next, 
the batch normalization layer applied a normalization of the feature 
maps generated by the previous layer [42]. The standard ReLU activa-
tion was then applied [42]: 

ReLU
(
xj

i
)
= max

(
0, xj

i
)

(2)  

where xj
i is the value of each sample of the feature map. Dimensionality 

reduction was applied to the activations using a max pooling layer 2 × 1 
to halve the length of the feature maps while the width and depth are 
kept. The last layer of the convolutional blocks was a dropout layer that 
randomly removed 10% of the activations (P = 0.1) during each training 
batch to reduce overfitting [17,18]. 

Next to the TD layers of the 8 convolutional blocks, three alternatives 
were studied to connect the output of the last CNN block, i.e., a sequence 
of six feature maps (4D tensor, shape 6 × 11 × 2 × 64), to the input of 
the RNN block (2D tensor, first dimension equal to 6): (i) a Global 
Average Pooling (GAP) layer inside a TD layer that calculates the mean 
of each channel of the feature maps, resulting in a sequence of six vectors 
of size 64 [28,43]; (ii) a flattening operation wrapped into a TD layer to 
reshape the feature maps into a sequence of six vectors of 1,408 ele-
ments; (iii) flattening followed by a fully connected layer (both encap-
sulated into a TD) that derive one value per sequence element [18]. The 
resulting sequence is then processed with a Bidirectional Gated Recur-
rent Unit (Bi-GRU) layer to analyze the temporal distribution of the 
features extracted in the CNN throughout the sequence. This layer is the 
main part of the RNN, which analyzes the temporal patterns of the data 
in both directions [42]. The GRU recurrent units were selected due to 
their simplicity and lower computational cost, reaching nearly the same 
performance compared with LSTM [44]. The number of units of the Bi- 
GRU (NG) defines the dimensionality of the output and was optimized in 
this study. We varied NG in the range {1, 2, 4, …, 64} to find the best 
performing configuration. The recurrent dropout and the dropout rates 
of the GRU layer were both empirically set to 0.1 after preliminary tests 
[17,18]. A fully connected layer with a linear activation unit was finally 
implemented to obtain the prediction of the number of apneas/hypo-
pneas in each 30-min segment. 

The proposed CNN + RNN architecture is an improved version of the 
CNN model developed and validated in our previous work [18]. The 
optimum architecture and weights of the CNN were transferred to the 
CNN + RNN model, so the training and optimization were carried out as 
a transfer-learning approach: the weights of the pretrained CNN blocks 
were fixed and only the RNN part was trained from scratch. Therefore, 
most of the structural hyperparameters of the CNN were inherited and 
not changed. During training, the adaptive momentum estimation 
(Adam) algorithm was used to optimize the model, using an initial 
learning rate of 10− 3 and the default momentum-related parameters β1 
= 0.9 and β2 = 0.999 [45]. Like in previous studies, the Huber loss with 
delta (δ) parameter fixed to δ = 1 was employed in the Adam optimi-
zation, that has shown its robustness in regression with large outliers 
[46]. The validation data was used during the training process to su-
pervise the convergence of the CNN optimization by calculating a vali-
dation loss. Additional callbacks were implemented to control the 
convergence of training using the validation data. The learning rate was 
reduced by a factor of 2 during training when the validation loss stopped 
decreasing during 10 epochs [42,47]. Early stopping was also imple-
mented to avoid overfitting. If the validation loss did not improve during 

the 30 epochs after reaching its minimum, the training was stopped and 
the weights were restored to those obtained in the epoch with the best 
validation loss [42,47]. 

Once the optimized DL model was trained and validated, it was 
applied to the overnight segmented signals to derive an estimation of the 
AHI for each subject. An estimation of the number of apneic events in 
each 30-min segment (yi) was obtained and divided by the segment 
duration (0.5 h), and the mean rate of apneic events per hour throughout 
the recording (total: N segments) formed a primary prediction of the 
AHI: 

AHIPR =
1
N
∑N

i=1

yi

0.5
(3) 

AHIPR may underestimate the actual AHI because it uses all the 
available segments instead of the segments in which the subject was 
sleeping [4]. Therefore, a linear regression model was implemented to 
correct this bias. This linear regression was aimed at finding the opti-
mum coefficients of a linear equation that estimates the final AHI from 
AHIPR. 

3.3. Model explainability using Grad-CAM 

The CNN + RNN model was analyzed using Grad-CAM, a XAI method 
that generates post-hoc explanations using the gradients of the target into 
the convolutional layers of a CNN-based model [32,48]. Class Activation 
Mapping (CAM) was originally proposed using image classification- 
aimed CNN architectures using a GAP layer before the final classifica-
tion layer. CAM aims to generate attribution maps that locate the 
discriminative regions of the input that lead to a certain classification 
[32,48]. Grad-CAM is a generalization of the original CAM algorithm 
that uses the gradients of the convolutional layers to identify the most 
sensitive samples of the input that influence the final prediction of the 
network. These gradient-based attribution maps are the heatmaps, 
which can be obtained from every convolutional layer in the model [48]. 
Firstly, the gradients of the model output ŷ with respect to the feature 
maps of the i-th convolutional layer xj

i are computed and averaged 
through the number of maps [48]: 

ai =
1
N

∑

j

∂ŷ
∂xj

i,
(4)  

where N = 64 is the number of feature maps (filters) in the i-th layer. The 
heatmaps are then obtained as a gradient-weighted combination of the 
feature maps after a ReLU activation [48]: 

LGradCAM = ReLU

(
∑

i
ai⋅xj

i

)

(5) 

The Grad-CAM heatmaps have the same size as the input to the i-th 
convolutional layer, so in each layer they have different lengths. We 
resized and averaged the Grad-CAM heatmaps in all layers to obtain 
heatmaps of the same size as the input segments in this study, as this 
provided us a better representation of the contribution of all convolu-
tional layers. The Grad-CAM heatmaps are stronger in the zones that 
increase the final prediction, so they point to zones with apneas/hypo-
pneas and normal breathing zones in which subtle changes may 
contribute to detect potential apneic events. 

3.4. Model optimization and diagnostic performance 

The proposed CNN + RNN architecture was aimed at predicting the 
total AHI from overnight signals. In order to evaluate the diagnostic 
performance, the subject-wise AHI was used to classify the severity of 
OSA into four childhood-specific levels: no OSA (AHI < 1 e/h), mild OSA 
(1 ≤ AHI < 5 e/h), moderate OSA (5 ≤ AHI < 10 e/h) and severe OSA 
(AHI ≥ 10 e/h) [2,4]. The 4-class Cohen’s Kappa (κ) coefficient was used 
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to find the optimal hyperparameters of the model in the validation set. 
The Cohen’s κ is useful in unbalanced multiclass classification tasks, 
because it is less biased towards the majority class than the 4-class ac-
curacy (Acc4), which computes the rate of correct predictions regardless 
the distribution of classes [49]. 

The agreement between the DL-derived AHI and the reference AHI 
from the manually scored PSG was evaluated in the test set using Bland- 
Altman plots and the intraclass correlation coefficient (ICC) [50]. The 
classification into the four severity levels was assessed in the test set 
using confusion matrices, Acc4, and κ [49]. The diagnostic ability of the 
algorithm was also evaluated in increased severity AHI-based cutoffs (1, 
5 and 10 e/h) by means of sensitivity (Se), specificity (Sp), accuracy 
(Acc), positive and negative predictive values (PPV, NPV), and positive 
and negative likelihood ratios (LR+, LR − ). 

4. Results 

4.1. CNN + RNN model optimization and diagnostic ability 

Fig. 3 shows the Cohen’s κ obtained in the validation set using 
different connections of the CNN with the RNN and with varying values 
of NG. The maximum performance in the validation set was κ = 0.5077 
with NG = 4 and using a TD flattening layer between the convolutional 
blocks and the Bi-GRU. The performance of other configurations was 
slightly lower, so this optimum model was finally selected to evaluate 
the test data. 

The regression model based on the optimum CNN + RNN was 
applied to estimate the AHI of the subjects in the test set. The scatter 
plots in Fig. 4, as well as the Bland-Altman plots in Fig. 5 show the de-
viation of the AHI estimates with respect to the manually scored AHI. 
The agreement between the actual and the estimated AHI was ICC =
0.9465 in the CHAT test set and ICC = 0.9004 in the UofC test set. The 
mean error (bias) was below 1 e/h in both databases and the dispersion 
of the error was lower in the CHAT test set than in the UofC test set, 
which is consistent with the subject classification results obtained in 
both databases. Fig. 6 shows the confusion matrices obtained from the 
estimated AHI, by assigning each value to one out of the 4 OSA classes 
(no OSA, mild, moderate, and severe OSA). The 4-class metrics obtained 
in the test sets were Acc4 = 74.51%, κ = 0.6231 in the CHAT database, 
and Acc4 = 62.31%, κ = 0.4495 in the UofC database. The slight ten-
dency to underestimate the AHI shown in the CHAT database was also 
present in the confusion matrix obtained in this dataset. On the contrary, 
the proportion of subjects with an overestimated OSA severity was 
higher in the UofC data. The diagnostic performances of the proposed 

algorithm in the common AHI cutoffs for mild, moderate, and severe 
OSA are shown in Table 3. In general, the accuracies surpassed 84% in 
the three AHI cutoffs of both databases and remained higher in the 
CHAT data. 

4.2. Gradient-based explanations using Grad-CAM 

The final CNN + RNN model was assessed using Grad-CAM expla-
nations to identify the patterns that led the algorithm to detect OSA 
events in the AF and SpO2 signals. The heatmaps in Fig. 7 show examples 
of patterns that drive the model to accurately predict the number of 
apneic events, together with a zoom in a relevant region of the heatmap 
and the PSG-derived annotations of the apneic events. In the segment 
without apneas/hypopneas in Fig. 7 (a), the Grad-CAM heatmap indi-
cate zones in which the algorithm could potentially have detected an 
apnea or hypopnea in the AF without desaturation, but both the gradi-
ents and the estimation were low. Fig. 7 (b) shows an accurately pre-
dicted segment with a single apnea, in which the zoom in the Grad-CAM 
heatmap points both the apnea in the AF and a consecutive desaturation 
in the SpO2. The example of Fig. 7 (c) shows the Grad-CAM heatmaps of 
a segment with an apnea and a hypopnea, both linked to SpO2 desatu-
rations. The zoom in the heatmap in Fig. 7 (d) point to a group of 
consecutive hypopneas accompanied by desaturations and a PSG-scored 
arousal. 

Fig. 8 shows the heatmaps of some observed inaccurate predictions 
accompanied with a zoom of a region where some mistakes were 
observed. The segment in Fig. 8 (a) shows consecutive hypopneas which 
are not strongly highlighted in the AF, leading to underestimation. In 
this case, the algorithm could not identify the hypopneas not linked to 
substantial desaturations. In Fig. 8 (b), the model was unable to indicate 
some consecutive hypopneas in the AF without evident desaturations 
but associated with arousals according to the PSG annotations. The ar-
tifacts in both signals and a desaturation in Fig. 8 (c) drove the model to 
predict more than one apneic event, one of those with a desaturation 
located between two periods of SpO2 signal loss and probably after a 
sudden movement that worsened the AF signal quality. Finally, Fig. 8 (d) 
shows an example of a segment with three desaturations correctly 
highlighted, but not accompanied with evident AF reductions and 
therefore not scored as hypopneas. 

5. Discussion 

In this study, we have developed a DL model with a remarkable 
diagnostic performance that also is interpretable. This is the first study 
that proposes an explainable DL algorithm that not only reaches accu-
rate diagnosis of pediatric OSA, but also provide an identification of the 
patterns that lead the algorithm to predict the presence of apneic events 
over AF and SpO2 signals. 

5.1. CNN + RNN architecture 

This is the first time that a novel CNN + RNN architecture is suc-
cessfully tested to assess pediatric OSA, since the previous studies only 
relied on CNNs [17,18]. The combination of CNN and RNN models has 
been previously tested to score sleep stages from electroencephalogram 
(EEG) and photoplethysmography signals [28,43], and is also frequent 
in the field of adult OSA using different cardiorespiratory signals 
[26,31,43]. The results of this study confirm that CNN + RNN can be 
also applied to analyze AF and SpO2 data. Our architecture specifically 
focused on predicting the number of respiratory events in 30-min signal 
segments and then estimating the global AHI of each subject using these 
predictions. The epoch length (5 min) was suitable for the processing in 
the TD CNN blocks, as demonstrated in our previous work [18]. By 
selecting this epoch length, we could also transfer the optimized layers 
of the previous CNN to the TD CNN proposed in this study and train the 
CNN + RNN model using transfer learning, which is another novelty of 

Fig. 3. Diagnostic performance of the convolutional and recurrent neural 
network (CNN + RNN) architecture for varying number of units in the Bidi-
rectional GRU (Bi-GRU) layer (NG) and different connections of the CNN with 
the RNN in the validation set. 
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Fig. 4. Scatter plots of actual and estimated apnea-hypopnea index (AHI) in CHAT and UofC test sets.  

Fig. 5. Bland-Altman plots of actual and estimated apnea-hypopnea index (AHI) in CHAT and UofC test sets.  

Fig. 6. Confusion matrices of the predicted obstructive sleep apnea (OSA) severity against the actual OSA severity in CHAT and UofC test sets. 0: no OSA; 1: mild 
OSA; 2: moderate OSA; 3: severe OSA. 
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the study. This approach allowed us not only to simplify the training and 
validation of a deep architecture of more than 40 layers, but also to 
leverage the pattern recognition ability of the CNN that had been opti-
mized in past studies. In addition, the sequences of six CNN-processed 
epochs were analyzed in the RNN using a Bi-GRU layer, which 
allowed us to model the recurrence of respiratory events concentrated in 
long-time clusters. The best configuration of the Bi-GRU layer and the 
optimal data representation of the TD CNN were accomplished by 
inserting a TD flattening layer after the CNN blocks (Fig. 3), which le-
verages the entire feature maps obtained in the CNN without dimen-
sionality reduction before the GRU. In addition, the optimal NG = 4 was 
low, suggesting that modeling the recurrence of apneas/hypopneas in a 
large cluster using 5-min steps does not require high complexity. For the 
sake of completeness, the architecture obtained using a transfer learning 
approach was further optimized with fine tuning (i.e., by unlocking all 
layers of the base CNN model and training again), allowing all the layers 
to be trainable again after applying transfer learning. However, no im-
provements were observed in terms of diagnostic ability. Optimization 
of other hyperparameters did not produce higher performance in the 
validation data, so the proposed configuration seems to be nearly 
optimal. 

5.2. Grad-CAM explanations of the model 

The second source of novelty of this study is the application of XAI to 
clarify the mechanisms that produce the model predictions. To our 
knowledge, only one study employed XAI analysis in pediatric OSA 
detection [16]. However, the methodology applied in that study relied 
on feature-engineering rather than DL, applying Shapley Additive Ex-
planations (SHAP) values to demographic, anthropometric, and heart 
rate-derived variables, together with the oxygen desaturation index. In 
our case, we focused on generating localization maps over AF and SpO2 
signals using Grad-CAM, thus allowing the identification of the most 
important parts of the signals for pediatric OSA detection. This tech-
nique has not been applied in the context of sleep apnea, and recent 
studies have only applied that to identify sleep stages from a single- 
channel EEG [51,52]. 

Figs. 7 and 8 show some cases in which the heatmaps generated using 
Grad-CAM highlight the most sensitive zones, where an apneic event 
could be present. Concretely, we can notice that the regions in which the 
AF amplitude suddenly changes, the algorithm tends to be more sensi-
tive (Fig. 7 (a)). It is also noticeable that missed breaths are also high-
lighted (Fig. 7 (a), (b), (d)), but the algorithm also examines drops in the 
oxygen saturation. In general, the heatmap of SpO2 is stronger in the 
case of detecting hypopneas with desaturations (Fig. 7 (c) and 8 (a)), 
which are the frequent respiratory abnormality in children. This is 
consistent with the definition of apneas and hypopneas, in which partial 
reduction of AF should be followed by a desaturation or an arousal to be 
considered a hypopnea. As hypopneas are often not easily visible in the 
AF signal, the associated desaturations aid in the detection of these 
events (Fig. 8 (a), (d)), which could help sleep technicians to review 
and/or improve manual scoring. In this case, the heatmaps are stronger 
in the SpO2 pattern, indicating that the SpO2 signal complements the AF 

when the respiratory flow reductions are not clear. Interestingly, the 
heatmaps of SpO2 also highlight flat zones in the SpO2 that correspond to 
normal oxygenation (Fig. 7 (a) and 8 (b)), suggesting that the model 
links these flat zones with zero apneas/hypopneas. However, the 
interpretation could be the opposite: a small variation in the SpO2 signal 
could trigger the detection of an apneic event because the AF heatmap is 
highlighting possible amplitude variations or missed breaths (Fig. 7 (a)). 
Large prediction errors are also possible, and in these cases Grad-CAM 
can provide clues to understand why the model prediction failed. For 
example, artifacts due to signal loss or movements are highlighted in the 
AF heatmap in Fig. 8 (c). In this case, a sudden artifact may have 
influenced the prediction of more apneic events than were actually 
scored in the segment. Signal loss in the SpO2 was also highlighted, 
probably indicating that a hypopnea has not been scored but was 
detected due to border effects. Nevertheless, artifacts do not frequently 
influence the detection of respiratory events, and it was observed that 
the model is more accurate when dealing with normal breathing seg-
ments with no apneas or hypopneas. 

5.3. Diagnostic ability and comparison with previous studies 

The proposed CNN + RNN algorithm clearly surpasses previous ap-
proaches in terms of diagnostic performance in the CHAT and the UofC 
test sets. The diagnostic ability of previous studies focused on pediatric 
OSA is represented in Table 4. Our study involved 2,612 pediatric sub-
jects from two different databases, which is one of the largest cohorts to 
date in the literature. The study of Hornero et al. involved a multicentric 
database of 4,191 children [9], and Ye et al. employed a database of 
3,139 subjects [16]. Regarding 4-class classification of OSA severity, our 
DL approach surpassed previous ML methods that relied on AF and SpO2 
and obtained Acc4 < 60% and κ < 0.4100 in the UofC database [12–14]. 
In addition, the accuracies reached in this study are also higher to those 
reached in previous CNN-based architectures focused on pediatric OSA 
[17,18]. According to the extant literature, the diagnostic ability of ML- 
based methods to predict OSA in children increases proportionally to the 
AHI threshold employed to differentiate OSA, as it is frequently easier to 
detect severe OSA than to distinguish between healthy subjects and mild 
OSA patients [7]. The results achieved by our algorithm also showed 
that tendency, with the lowest Acc obtained in the most restrictive cutoff 
and the highest Acc to diagnose the most severe condition (Table 3). Our 
study obtained the highest Acc in 1 e/h among the studies that employed 
the CHAT and/or UofC databases, together with remarkable NPV and 
LR- in this cutoff in both test sets. This indicates that the proposed model 
is valuable to discard the presence of OSA with the most restrictive 
criteria. Regarding the results of the study of Ye et al., they reached very 
high Acc = 90.45% and Sp = 100% in 1 e/h, but the test database was 
limited to 12 healthy children in a total of 628 subjects [16]. Garde et al. 
obtained more balanced Se and Sp using a dataset of 207 pediatric 
subjects, but Acc = 75% was among the lowest [53]. Our previous 2D 
CNN reached lower Acc and more unbalanced Se and Sp in the CHAT 
database [18]. The Sp in 1 e/h was much lower than Se in 1 e/h in 
comparison with previous works that also employed the UofC database, 
due to the slight tendency of the network to overestimate the AHI in this 

Table 3 
Diagnostic ability of the model for the AHI cutoffs 1, 5, and 10 events/h in the test sets of CHAT and UofC databases.  

AHI 
cutoff 

Test set Se (%) Sp (%) Acc (%) PPV (%) NPV (%) LRþ LR- 

1 e/h CHAT  87.03  88.06  87.25  96.30  65.56  7.2887  0.1473 
UofC  96.83  30.67  84.10  85.43  69.70  1.3965  0.1035 

5 e/h CHAT  80.22  99.07  93.46  97.33  92.21  86.2363  0.1997 
UofC  82.88  85.66  84.62  77.56  89.32  5.7777  0.1999 

10 e/h CHAT  71.43  96.97  93.46  78.95  95.52  23.5714  0.2946 
UofC  78.31  93.81  90.51  77.38  94.12  12.6538  0.2312 

Acc = accuracy; AHI = apnea-hypopnea index; CHAT = Childhood Adenotonsillectomy Trial; e/h = events/hour; LR+ = positive likelihood ratio; LR- = negative 
likelihood ratio; NPV = negative predictive value; PPV = positive predictive value; Se = sensitivity; Sp = specificity; UofC = University of Chicago. 
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Fig. 7. Grad-CAM heatmaps generated from different segments with their corresponding estimations: (a) segment without apneas; (b) segment with an apnea [A] 
and desaturations [D] in which heatmaps point both the AF interruption and the SpO2 desaturation; (c) segment with an apnea [A] followed by a hypopnea [H], both 
associated with desaturations [D]; (d) segment with consecutive hypopneas [H] followed by oxygen desaturations [D] lower than 3% and an arousal [*]. 
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Fig. 8. Grad-CAM heatmap generated from segments with inaccurate predictions: (a) consecutive hypopneas [H] associated to desaturations [D] and arousals [*], in 
which the latter were not identified; (b) a group of successive hypopneas [H] associated to arousals [*] that were not highlighted; (c) overestimation caused by 
artifacts and signal loss [X] in both signals near to a possible apnea/hypopnea associated to a desaturation [D] that was not scored; (d) three consecutive desatu-
rations [D] in which a previous hypopnea was not clearly visible in the AF and therefore not scored by the expert. 
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dataset. Other studies that employed the UofC database also over-
estimated the AHI and obtained low Sp in 1 e/h [12,14,17]. This might 
indicate that these algorithms are prone to identify mild OSA patterns in 
healthy subjects of the UofC test database and therefore misclassify them 
as having mild OSA, an issue that actually may be inconsequential when 
considering the current clinical practice underlying the management of 
symptomatic children. This tendency was not observed in the CHAT 
dataset, maybe indicating that inter-scorer variability seriously affects 
the diagnostic performance of the ML/DL algorithms optimized with 
these databases [54]. This highlights the need for additional studies with 
a wide range of pediatric sleep datasets to further improve generaliz-
ability. To mitigate the difference between CHAT and UofC databases in 
terms of this inter-scorer variability, the validation set comprised sub-
jects from both databases, resulting in high accuracies in the two of them 
compared with the literature. Our CNN + RNN approach obtained 
similar performance in the CHAT database in both 5 and 10 e/h with 
respect to the previous CNN-based approach [18]. Likewise, all the 
diagnostic metrics in 5 and 10 e/h improved in the UofC test set, in 
which our model reached Acc and Se close to the highest in all cutoffs. 
This might indicate that the proposed CNN + RNN architecture suits 
better analyzing long sequences with potential clusters of consecutive 

apneas/hypopneas and desaturations. Moreover, Se, Sp, and Acc to 
establish the presence of moderate-to-severe OSA, as well as Se and Acc 
in 10 e/h, were also higher than previous AF and/or SpO2-derived 
feature-engineering approaches [9,12–14]. This reinforces the suit-
ability of DL methods to detect pediatric OSA, as they reach high per-
formance by automatically extracting the information from the input 
signals and demonstrates the generalizability of our proposal since it 
reached high diagnostic performance for all cutoffs in both databases. 
Finally, the application of XAI adds value to our proposal against opaque 
models. Only one of the studies in the literature included an XAI algo-
rithm to investigate the model outcomes, so most of the previous pub-
lished models lack the capability to justify the reasons that led these 
models to predict the presence of OSA. 

In summary, the results of this study confirm that a CNN + RNN 
architecture has the capability to identify pediatric OSA using AF and 
SpO2 and that Grad-CAM explanations are useful to provide a reasoning 
about the model predictions. 

5.4. Limitations and future work 

This study presents some limitations that should be pointed out. The 

Table 4 
Diagnostic performance of state-of-the-art approaches in the childhood OSA context.  

Study Signal Methods: Extraction / Selection / Classification / XAI / Validation N◦ Subjects Cutoff 
(events/h) 

Se 
(%) 

Sp 
(%) 

Acc 
(%) 

Ye et al. (2023) [16] SpO2, 
HR 

Sociodemographic, anthropometric, ODI, mean and max. HR / - / 
XGBoost / SHAP/Holdout 

3,139 1  90.3  100.0  90.4 
5  82.1  93.8  85.7 
10  84.8  92.1  89.8 

Calderón et al. (2020) 
[15] 

SpO2 Oxygen desaturations, ODI / - / LR, AdaBoost / - / 15-fold cross 
validation 

453 (CHAT) 5  62.0  96.0  79.0 

Hornero et al. (2017) [9] SpO2 Time statistics, spectral, nonlinear, ODI / FCBF / MLP regression / - / 
Holdout 

4,191 1  84.0  53.2  75.2 
5  68.2  87.2  81.7 
10  68.7  94.1  90.2 

Xu et al. (2019) [10] SpO2 Time statistics, spectral, nonlinear, ODI / FCBF / MLP regression / - / 
External validation 

432 1  95.3  19.1  79.6 
5  77.8  80.5  79.4 
10  73.5  92.7  88.2 

Garde et al. (2019) [53] SpO2, 
PRV 

Time statistics, spectral, ODI (SpO2), spectral (PRV) / Stepwise LR / 
Binary LR (for each cutoff) / - / Holdout 

207 1  80.0  65.0  75.0 
5  85.0  79.0  82.0 
10  82.0  91.0  89.0 

Barroso-García (2021a)  
[12] 

AF, SpO2 Bispectral (AF), ODI (SpO2) / FCBF / MLP regression / - / Bootstrap 946 (UofC) 1  98.0  15.3  82.2 
5  81.6  83.0  82.5 
10  72.3  95.0  90.2 

Barroso-García (2021b)  
[13] 

AF, SpO2 Wavelet (AF), ODI (SpO2) / FCBF / BY-MLP regression / - / Bootstrap 946 (UofC) 1  91.2  43.3  82.0 
5  79.3  83.8  82.1 
10  74.9  95.0  90.7 

Jiménez-García et al. 
(2020) [14] 

AF, SpO2 Time statistics, spectral, nonlinear, ODI / FCBF / Multiclass AdaBoost / - / 
Holdout 

974 (UofC) 1  92.1  36.0  81.3 
5  76.0  85.7  82.1 
10  62.7  97.7  90.3 

Vaquerizo-Villar et al. 
(2021) [17] 

SpO2 - / - / CNN / - / Holdout 1,638 
(CHAT) 

1  71.2  81.8  77.6 
5  83.7  100.0  97.4 
10  83.9  99.3  97.8 

980 (UofC) 1  90.8  36.4  80.1 
5  76.0  88.6  83.9 
10  79.5  95.8  92.3 

Jiménez-García et al. 
(2022) [18] 

AF, SpO2 - / - / 2D CNN / - / Holdout 1638 
(CHAT) 

1  82.4  92.5  84.6 
5  80.2  99.1  93.5 
10  71.4  98.1  94.4 

974 (UofC) 1  95.2  37.3  84.1 
5  82.2  85.3  84.1 
10  78.3  93.5  90.3 

This study AF, 
SpO2 

- / - / CNN þ RNN / Grad-CAM / Holdout 1,638 
(CHAT) 

1  87.0  88.1  87.3 
5  80.2  99.1  93.5 
10  71.4  97.0  93.5 

974 (UofC) 1  96.8  30.7  84.1 
5  82.9  85.7  84.6 
10  78.3  93.8  90.5 

Acc = Accuracy; AF = Airflow signal; ANN = Artificial Neural Network; BY-MLP = Multilayer perceptron neural network with Bayesian approach; CHAT = Childhood 
Adenotonsillectomy Trial; CNN = Convolutional neural network; FCBF = Fast correlation-based filter; Grad-CAM = Gradient-weighted Class Activation Mapping; HR 
= Heart rate; LR = Logistic regression; M3f = 3rd order statistical moment in the frequency band; MLP = Multilayer perceptron neural network; ODI = Oxygen 
desaturation index; PRV = Pulse Rate Varibility; Se = Sensitivity; SHAP = Shapley Additive Explanations; Sp = Specificity; SpO2 = Oxygen saturation signal; UofC =
University of Chicago; XAI = Explainable Artificial Intelligence. 
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combination of CNN and RNN can be further developed using novel DL 
approaches such as transformers and other hybrid architectures. 
Another limitation arises from the exclusive use of Grad-CAM to explain 
our model. Future goals may include testing other XAI algorithms like 
SHAP. Finally, although our model was developed and tested using two 
different databases, it would also be convenient to employ more mul-
ticentric databases that may include at-home or ambulatory recordings 
to validate our proposal and increase the robustness of our results. 

6. Conclusion 

A combination of CNN and RNN architectures trained with AF and 
SpO2 signals showed high diagnostic performance in the detection of 
pediatric OSA. The proposed CNN + RNN reaches accurate estimations 
of pediatric OSA at the same time that the Grad-CAM XAI algorithm has 
the capability to justify these estimates by highlighting specific OSA- 
characteristic patterns of both signals, facilitating the model interpre-
tation. The desaturations that followed apneas and/or hypopneas, along 
with the sudden AF amplitude changes were clearly identified as rele-
vant patterns using Grad-CAM. These explanations serve to increase the 
trustworthiness of the model and can be used as a tool to aid sleep 
physicians to analyze and interpret these signals with the objective of 
simplifying the diagnosis of pediatric OSA. 
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[15] J.M. Calderón, J. Álvarez-Pitti, I. Cuenca, F. Ponce, P. Redon, Development of a 
minimally invasive screening tool to identify obese Pediatric population at risk of 
obstructive sleep Apnea/Hypopnea syndrome, Bioengineering 7 (2020) 1–13, 
https://doi.org/10.3390/bioengineering7040131. 

[16] P. Ye, H. Qin, X. Zhan, Z. Wang, C. Liu, B. Song, Y. Kong, X. Jia, Y. Qi, J. Ji, 
L. Chang, X. Ni, J. Tai, Diagnosis of obstructive sleep apnea in children based on 
the XGBoost algorithm using nocturnal heart rate and blood oxygen feature, Am. J. 
Otolaryngol. 44 (2022), 103714, https://doi.org/10.1016/j.amjoto.2022.103714. 

[17] F. Vaquerizo-Villar, D. Alvarez, L. Kheirandish-Gozal, G.C. Gutierrez-Tobal, 
V. Barroso-Garcia, E. Santamaria-Vazquez, F. del Campo, D. Gozal, R. Hornero, 
A Convolutional Neural Network Architecture to Enhance Oximetry Ability to 
Diagnose Pediatric Obstructive Sleep Apnea, IEEE J. Biomed. Heal. Informatics. 25 
(2021) 2906–2916, https://doi.org/10.1109/JBHI.2020.3048901. 
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