20 research outputs found

    Final Summary of "Interdisciplinary Study of Shewanella oneidensis MR-1's Metabolism & Metal Reduction"

    Get PDF
    Our project focused primarily on analysis of different types of data produced by global high-throughput technologies, data integration of gene annotation, and gene and protein expression information, as well as on getting a better functional annotation of Shewanella genes. Specifically, four of our numerous major activities and achievements include the development of: statistical models for identification and expression proteomics, superior to currently available approaches (including our own earlier ones); approaches to improve gene annotations on the whole-organism scale; standards for annotation, transcriptomics and proteomics approaches; and generalized approaches for data integration of gene annotation, gene and protein expression information

    Cross-Sample Validation Provides Enhanced Proteome Coverage in Rat Vocal Fold Mucosa

    Get PDF
    The vocal fold mucosa is a biomechanically unique tissue comprised of a densely cellular epithelium, superficial to an extracellular matrix (ECM)-rich lamina propria. Such ECM-rich tissues are challenging to analyze using proteomic assays, primarily due to extensive crosslinking and glycosylation of the majority of high Mr ECM proteins. In this study, we implemented an LC-MS/MS-based strategy to characterize the rat vocal fold mucosa proteome. Our sample preparation protocol successfully solubilized both proteins and certain high Mr glycoconjugates and resulted in the identification of hundreds of mucosal proteins. A straightforward approach to the treatment of protein identifications attributed to single peptide hits allowed the retention of potentially important low abundance identifications (validated by a cross-sample match and de novo interpretation of relevant spectra) while still eliminating potentially spurious identifications (global single peptide hits with no cross-sample match). The resulting vocal fold mucosa proteome was characterized by a wide range of cellular and extracellular proteins spanning 12 functional categories

    Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned.</p> <p>Results</p> <p>We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the <it>in vivo </it>expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology), we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO) functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines.</p> <p>Conclusion</p> <p>We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and inform gene prediction algorithms.</p

    Network-assisted protein identification and data interpretation in shotgun proteomics

    Get PDF
    Protein assembly and biological interpretation of the assembled protein lists are critical steps in shotgun proteomics data analysis. Although most biological functions arise from interactions among proteins, current protein assembly pipelines treat proteins as independent entities. Usually, only individual proteins with strong experimental evidence, that is, confident proteins, are reported, whereas many possible proteins of biological interest are eliminated. We have developed a clique-enrichment approach (CEA) to rescue eliminated proteins by incorporating the relationship among proteins as embedded in a protein interaction network. In several data sets tested, CEA increased protein identification by 8–23% with an estimated accuracy of 85%. Rescued proteins were supported by existing literature or transcriptome profiling studies at similar levels as confident proteins and at a significantly higher level than abandoned ones. Applying CEA on a breast cancer data set, rescued proteins coded by well-known breast cancer genes. In addition, CEA generated a network view of the proteins and helped show the modular organization of proteins that may underpin the molecular mechanisms of the disease

    Profiling extra cellular matrix associated proteome of human fetal nucleus pulposus in search for regenerative targets

    Get PDF
    Degeneration of the intervertebral disc is associated with a decrease in extra-cellular matrix (ECM) content due to an imbalance in anabolic and catabolic signaling. Our previous study profiled the core matrisome of fetal NP's and identified various proteins with anabolic potential for regenerative therapies. This study aims to complement those results by exploring ECM regulators, associated proteins and secreted factors of the fetal nucleus pulposus (NP). Proteomic data of 9 fetal, 7 healthy adults (age 22-79), and 11 degenerated NP's was analyzed. Based on the selection criteria, a total of 45 proteins were identified, of which 14 were uniquely expressed or upregulated in fetus compared to adult NP's. Pathway analysis with these proteins revealed a significant upregulation of one pathway and two biological processes, in which 12 proteins were involved. Prolyl 4 hydroxylase (P4HA) 1 and 2, Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) 1, and Heat shock protein 47 (SERPINH1) were involved in 'collagen biosynthesis' pathway. In addition, PLOD 1, SERPINH1, Annexin A1 and A4, CD109 and Galectin 3 (LGALS3) were all involved in biological process of 'tissue development'. Furthermore Annexin A1, A4 and A5, LGALS-3 and SERPINF1 were featured in 'negative regulation of cell death'. In conclusion, additionally to core ECM proteome, this study reveals ECM regulators and ECM affiliated proteins of interest to study for regenerative therapies, and their potential should be validated in future mechanistic experiments.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome

    Get PDF
    Infections by the Burkholderia cepacia complex (Bcc) remain seriously life threatening to cystic fibrosis (CF) patients, and no effective eradication is available. A vaccine to protect patients against Bcc infections is a highly attractive therapeutic option, but none is available. A strategy combining the bioinformatics identification of putative surface-exposed proteins with an experimental approach encompassing the “shaving” of surface-exposed proteins with trypsin followed by peptide identification by liquid chromatography and mass spectrometry is here reported. The methodology allowed the bioinformatics identification of 263 potentially surface-exposed proteins, 16 of them also experimentally identified by the “shaving” approach. Of the proteins identified, 143 have a high probability of containing B-cell epitopes that are surface-exposed. The immunogenicity of three of these proteins was demonstrated using serum samples from Bcc-infected CF patients and Western blotting, validating the usefulness of this methodology in identifying potentially immunogenic surface-exposed proteins that might be used for the development of Bcc-protective vaccines

    Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae

    Get PDF
    Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation

    Influence of endplate avulsion and Modic changes on the inflammation profile of herniated discs: a proteomic and bioinformatic approach

    Get PDF
    Purpose The aim of this observational radiographic and proteomic study is to explore the influence of both Modic change (MC) and endplate avulsion (EPA) on the inflammation profile of herniated discs using a proteomic and bioinformatics approach. Methods Fifteen nucleus pulposus (NP) harvested from surgery underwent LC-MS/MC analysis, the proteome was subsequently scanned for inflammatory pathways using a bioinformatics approach. All proteins that were identified in inflammatory pathways and Gene Ontology and present in > 7 samples were integrated in a multiple regression analysis with MC and EPA as predictors. Significant proteins were imputed in an interaction and pathway analysis. Results Compared to annulus fibrosus tear (AFT), six proteins were significantly altered in EPA: catalase, Fibrinogen beta chain, protein disulfide-isomerase, pigment epithelium-derived factor, osteoprotegerin and lower expression of antithrombin-III, all of which corresponded to an upregulation of pathways involved in coagulation and detoxification of reactive oxygen species (ROS). Moreover, the presence of MC resulted in a significant alteration of nine proteins compared to patients without MC. Patients with MC showed a significantly higher expression of clusterin and lumican, and lower expression of catalase, complement factor B, Fibrinogen beta chain, protein disulfide-isomerase, periostin, Alpha-1-antitrypsin and pigment epithelium-derived factor. Together these altered protein expressions resulted in a downregulation of pathways involved in detoxification of ROS, complement system and immune system. Results were verified by Immunohistochemistry with CD68 cell counts. Conclusion Both EPA and MC status significantly influence disc inflammation. The beneficial inflammatory signature of EPA illustrates that endplate pathology does not necessarily have to worsen the outcome, but the pathological inflammatory state is dependent on the presence of MC.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    DNA Repair of 8-oxo-7,8-Dihydroguanine Lesions in Porphyromonas gingivalis

    Get PDF
    The persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike other organisms, a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxoG) in P. gingivalis was suggested. Because the uvrB gene is known to be important in nucleotide excision repair, the role of this gene in the repair of oxidative stress-induced DNA damage was investigated. A 3.1 kb fragment containing the uvrB gene was PCR-amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a uvrB-deficient mutant by allelic exchange. When plated on Brucella blood agar, the mutant strain, designated P. gingivalis FLL144, was similar in black-pigmentation and beta-hemolysis when compared to the parent strain. In addition, P. gingivalis FLL144 demonstrated no significant difference in growth rate, proteolytic activity or sensitivity to hydrogen peroxide when compared to the parent strain. However, in contrast to the wild-type, P. gingivalis FLL144 was significantly more sensitive to UV irradiation. The enzymatic removal of 8-oxoG from duplex DNA was unaffected by the inactivation of the uvrB gene. DNA affinity fractionation identified unique proteins that preferentially bound to the oligonucleotide fragment carrying the 8-oxoG lesion. Analysis of these proteins indicates that a conserved hypothetical protein, PG1037, was of particular interest. This protein is encoded as a part of an operon which is flanked by two genes, namely, PG1036 (uvrA) and PG1038 (prcA). The uvrA-pg1037-prcA operon in P. gingivalis is upregulated in the presence of H2O2. A PCR-based linear transformation method was successfully used to inactivate the uvrA and prcA genes by allelic exchange mutagenesis. Similar to the wild-type when plated on Brucella blood agar, the isogenic mutants were blackpigmented and beta-hemolytic. The mutants showed different generation time and levels of proteolytic activities compared to the wild-type strains. The uvrA- and prcA-defective mutants were more sensitive to H2O2 and were significantly more sensitive to UV irradiation than the parent strain. Additionally, glycosylase assays revealed that 8-oxoG repair activities were similar in both wild-type and mutant P. gingivalis strains. In protein-protein interaction studies we identified a protein complex associated with the removal of the 8-oxoG lesion. Collectively, these findings suggest that the uvrA-pg1037-prcA operon plays an important role in peroxide resistance in P. gingivalis and that a complex may be required to remove the 8-oxoG lesion. Also, the repair of oxidative stress-induced DNA damage involving 8-oxoG occurs by a yet to be described mechanism
    corecore