7 research outputs found

    Bit-Interleaved Coded Modulation

    Get PDF

    Bit-interleaved coded modulation

    Full text link

    Low-Density Hybrid-Check Coded Superposition Mapping and its Application in OFDM and MIMO

    Get PDF
    Since Shannon’s landmark paper, many approaches have been proposed to achieve the channel capacity. In the low SNR regime, the problem has almost been solved by capacity achieving channel codes. The research on coded modulation in the high SNR regime is still under development. Among many methods in accomplishing this goal, superposition mapping is an elegant way as it does not require extra shaping to generate a Gaussian-like distributed signal. Superposition mapping has been shown to offer very close to capacity performance for the AWGN channel by combining with an irregular channel code. The aim of this thesis is to search for a code which provides stable performance for moderate sequence length and sufficient number of iterations, which is more suitable for implementation. Concerning channel coding for superposition mapping, a generalized code design has recently been proposed. The so-called low-density hybrid-check (LDHC) coding intends to contrive coding and modulation in a joint way. The LDHC coding is constructed by integrating modulation into the Tanner graph. Thus, the complete code can be obtained by taking the effects of all the components into account. In this thesis, the LDHC code design is extended to OFDM and MIMO. For OFDM, the bit loading can be realized in the graph. In case of MIMO with spatial multiplexing, the code is extended to the spatial domain. In both cases, a suitable system structure will be proposed in this thesis. It will also be shown how this novel code design improves the system performance

    Low-Density Parity-Check Coded High-order Modulation Schemes

    Full text link
    In this thesis, we investigate how to support reliable data transmissions at high speeds in future communication systems, such as 5G/6G, WiFi, satellite, and optical communications. One of the most fundamental problems in these communication systems is how to reliably transmit information with a limited number of resources, such as power and spectral. To obtain high spectral efficiency, we use coded modulation (CM), such as bit-interleaved coded modulation (BICM) and delayed BICM (DBICM). To be specific, BICM is a pragmatic implementation of CM which has been largely adopted in both industry and academia. While BICM approaches CM capacity at high rates, the capacity gap between BICM and CM is still noticeable at lower code rates. To tackle this problem, DBICM, as a variation of BICM, introduces a delay module to create a dependency between multiple codewords, which enables us to exploit extrinsic information from the decoded delayed sub-blocks to improve the detection of the undelayed sub-blocks. Recent work shows that DBICM improves capacity over BICM. In addition, BICM and DBICM schemes protect each bit-channel differently, which is often referred to as the unequal error protection (UEP) property. Therefore, bit mapping designs are important for constructing pragmatic BICM and DBICM. To provide reliable communication, we have jointly designed bit mappings in DBICM and irregular low-density parity-check (LDPC) codes. For practical considerations, spatially coupled LDPC (SC-LDPC) codes have been considered as well. Specifically, we have investigated the joint design of the multi-chain SC-LDPC and the BICM bit mapper. In addition, the design of SC-LDPC codes with improved decoding threshold performance and reduced rate loss has been investigated in this thesis as well. The main body of this thesis consists of three parts. In the first part, considering Gray-labeled square M-ary quadrature amplitude modulation (QAM) constellations, we investigate the optimal delay scheme with the largest spectrum efficiency of DBICM for a fixed maximum number of delayed time slots and a given signal-to-noise ratio. Furthermore, we jointly optimize degree distributions and channel assignments of LDPC codes using protograph-based extrinsic information transfer charts. In addition, we proposed a constrained progressive edge growth-like algorithm to jointly construct LDPC codes and bit mappings for DBICM, taking the capacity of each bit-channel into account. Simulation results demonstrate that the designed LDPC-coded DBICM systems significantly outperform LDPC-coded BICM systems. In the second part, we proposed a windowed decoding algorithm for DBICM, which uses the extrinsic information of both the decoded delayed and undelayed sub-blocks, to improve the detection for all sub-blocks. We show that the proposed windowed decoding significantly outperforms the original decoding, demonstrating the effectiveness of the proposed decoding algorithm. In the third part, we apply multi-chain SC-LDPC to BICM. We investigate various connections for multi-chain SC-LDPC codes and bit mapping designs and analyze the performance of the multi-chain SC-LDPC codes over the equivalent binary erasure channels via density evolution. Numerical results demonstrate the superiority of the proposed design over existing connected-chain ensembles and over single-chain ensembles with the existing bit mapping design

    Advanced constellation and demapper schemes for next generation digital terrestrial television broadcasting systems

    Get PDF
    206 p.Esta tesis presenta un nuevo tipo de constelaciones llamadas no uniformes. Estos esquemas presentan una eficacia de hasta 1,8 dB superior a las utilizadas en los últimos sistemas de comunicaciones de televisión digital terrestre y son extrapolables a cualquier otro sistema de comunicaciones (satélite, móvil, cable¿). Además, este trabajo contribuye al diseño de constelaciones con una nueva metodología que reduce el tiempo de optimización de días/horas (metodologías actuales) a horas/minutos con la misma eficiencia. Todas las constelaciones diseñadas se testean bajo una plataforma creada en esta tesis que simula el estándar de radiodifusión terrestre más avanzado hasta la fecha (ATSC 3.0) bajo condiciones reales de funcionamiento.Por otro lado, para disminuir la latencia de decodificación de estas constelaciones esta tesis propone dos técnicas de detección/demapeo. Una es para constelaciones no uniformes de dos dimensiones la cual disminuye hasta en un 99,7% la complejidad del demapeo sin empeorar el funcionamiento del sistema. La segunda técnica de detección se centra en las constelaciones no uniformes de una dimensión y presenta hasta un 87,5% de reducción de la complejidad del receptor sin pérdidas en el rendimiento.Por último, este trabajo expone un completo estado del arte sobre tipos de constelaciones, modelos de sistema, y diseño/demapeo de constelaciones. Este estudio es el primero realizado en este campo

    Bit-Wise Decoders for Coded Modulation and Broadcast Coded Slotted ALOHA

    Get PDF
    This thesis deals with two aspects of wireless communications. The first aspect is about efficient point-to-point data transmission. To achieve high spectral efficiency, coded modulation, which is a concatenation of higher order modulation with error correction coding, is used. Bit-interleaved coded modulation (BICM) is a pragmatic approach to coded modulation, where soft information on encoded bits is calculated at the receiver and passed to a bit-wise decoder. Soft information is usually obtained in the form of log-likelihood ratios (also known as L-values), calculated using the max-log approximation. In this thesis, we analyze bit-wise decoders for pulse-amplitude modulation (PAM) constellations over the additive white Gaussian noise (AWGN) channel when the max-log approximation is used for calculating L-values. First, we analyze BICM systems from an information theoretic perspective. We prove that the max-log approximation causes information loss for all PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We then analyze how the max-log approximation affects the generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder. Second, we compare the performance of the standard BICM decoder with that of the ML decoder. We show that, when the signal-to-noise ratio (SNR) goes to infinity, the loss in terms of pairwise error probability is bounded by 1.25 dB for any two codewords. The analysis further shows that the loss is zero for a wide range of linear codes. The second aspect of wireless communications treated in this thesis is multiple channel access. Our main objective here is to provide reliable message exchange between nodes in a wireless ad hoc network with stringent delay constraints. To that end, we propose an uncoordinated medium access control protocol, termed all-to-all broadcast coded slotted ALOHA (B-CSA), that exploits coding over packets at the transmitter side and successive interference cancellation at the receiver side. The protocol resembles low-density parity-check codes and can be analyzed using the theory of codes on graphs. The packet loss rate performance of the protocol exhibits a threshold behavior with distinct error floor and waterfall regions. We derive a tight error floor approximation that is used for the optimization of the protocol. We also show how the error floor approximation can be used to design protocols for networks, where users have different reliability requirements. We use B-CSA in vehicular networks and show that it outperforms carrier sense multiple access currently adopted as the MAC protocol for vehicular communications. Finally, we investigate the possibility of establishing a handshake in vehicular networks by means of B-CSA
    corecore