85 research outputs found

    A key Management Scheme for Access Control to GNSS Services

    Get PDF
    Conditional access is a challenging problem in GNSS scenarios. Most key management schemes present in literature can not cope with all GNSS related issues, such as extremely low bandwidth, stateless receivers and the absence of an aiding channel. After assessing existing techniques, a novel key management scheme called RevHash has been devised with particular emphasis on guaranteeing revocation capabilities to the system, in order for it to be robust against anomalies and attacks

    Key management for encrypted broadcast

    Full text link

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    Disertační práce se zabývá kryptografickými protokoly poskytující ochranu soukromí, které jsou určeny pro zabezpečení komunikačních a informačních systémů tvořících heterogenní sítě. Práce se zaměřuje především na možnosti využití nekonvenčních kryptografických prostředků, které poskytují rozšířené bezpečnostní požadavky, jako je například ochrana soukromí uživatelů komunikačního systému. V práci je stanovena výpočetní náročnost kryptografických a matematických primitiv na různých zařízeních, které se podílí na zabezpečení heterogenní sítě. Hlavní cíle práce se zaměřují na návrh pokročilých kryptografických protokolů poskytujících ochranu soukromí. V práci jsou navrženy celkově tři protokoly, které využívají skupinových podpisů založených na bilineárním párování pro zajištění ochrany soukromí uživatelů. Tyto navržené protokoly zajišťují ochranu soukromí a nepopiratelnost po celou dobu datové komunikace spolu s autentizací a integritou přenášených zpráv. Pro navýšení výkonnosti navržených protokolů je využito optimalizačních technik, např. dávkového ověřování, tak aby protokoly byly praktické i pro heterogenní sítě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    A practical key management and distribution system for IPTV conditional access

    Get PDF
    Conditional Access (CA) is widely used by pay-television operators to restrict access to content to authorised subscribers. Commercial CA solutions are available for structured broadcast and Internet Protocol Television (IPTV) environments, as well as Internet-based video-on-demand services, however these solutions are mostly proprietary, often inefficient for use on IP networks, and frequently depend on smartcards for maintaining security. An efficient, exible, and open conditional access system that can be implemented practically by operators with large numbers of subscribers would be beneficial to those operators and Set-Top-Box manufacturers in terms of cost savings for royalties and production costs. Furthermore, organisations such as the South African Broadcasting Corporation that are transitioning to Digital-Terrestrial-Television could use an open Conditional Access System (CAS) to restrict content to viewing within national borders and to ensure that only valid TV licence holders are able to access content. To this end, a system was developed that draws from the area of group key management. Users are grouped according to their subscription selections and these groups are authorised for each selection's constituent services. Group keys are updated with a key-tree based approach that includes a novel method for growing full trees that outperforms the standard method. The relations that are created between key trees are used to establish a hierarchy of keys which allows exible selection of services whilst maintaining their cryptographic protection. Conditions for security without dependence on smartcards are defined, and the system is expandable to multi-home viewing scenarios. A prototype implementation was used to assess the proposed system. Total memory consumption of the key-server, bandwidth usage for transmission of key updates, and client processing and storage of keys were all demonstrated to be highly scalable with number of subscribers and number of services

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    The Economic Impact of the Regulation of Investigatory Powers Bill

    Get PDF

    Security and Privacy in Wireless Sensor Networks

    Get PDF
    corecore