116,786 research outputs found

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    Get PDF
    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micron thick black low density polyethylene walls and counterflow, water-to-water heat transfer in 2 mm channels was 72%, but multiple low-cost stages could realize the potential of higher effectiveness

    Systems and certification issues for civil transport aircraft flow control systems

    Get PDF
    This article is placed here with permission from the Royal Aeronautical Society - Copyright @ 2009 Royal Aeronautical SocietyThe use of flow control (FC) technology on civil transport aircraft is seen as a potential means of providing a step change in aerodynamic performance in the 2020 time frame. There has been extensive research into the flow physics associated with FC. This paper focuses on developing an understanding of the costs and design drivers associated with the systems needed and certification. The research method adopted is based on three research strands: 1. Study of the historical development of other disruptive technologies for civil transport aircraft, 2. Analysis of the impact of legal and commercial requirements, and 3. Technological foresight based on technology trends for aircraft currently under development. Fly by wire and composite materials are identified as two historical examples of successful implementation of disruptive new technology. Both took decades to develop, and were initially developed for military markets. The most widely studied technology similar to FC is identified as laminar flow control. Despite more than six decades of research and arguably successful operational demonstration in the 1990s this has not been successfully transitioned to commercial products. Significant future challenges are identified in cost effective provision of the additional systems required for environmental protection and in service monitoring of FC systems particularly where multiple distributed actuators are envisaged. FC generated noise is also seen as a significant challenge. Additional complexity introduced by FC systems must also be balanced by the commercial imperative of dispatch reliability, which may impose more stringent constraints than legal (certification) requirements. It is proposed that a key driver for future successful application of FC is the likely availability of significant electrical power generation on 787 aircraft forwards. This increases the competitiveness of electrically driven FC systems compared with those using engine bleed air. At the current rate of progress it is unlikely FC will make a contribution to the next generation of single-aisle aircraft due to enter service in 2015. In the longer term, there needs to be significant movement across a broad range of systems technologies before the aerodynamic benefits of FC can be exploited.This work is supported by the EU FP6 AVERT (AerodynamicValidation of Emissions Reducing Technologies) project

    Prototype of calorimetric flow microsensor

    Full text link
    An analytical model of calorimetric flow sensor has been developed. The results of the application of this model are utilized to develop a calorimetric flow microsensor with optimal functional characteristics. The technology to manufacture the microsensor is described. A prototype of the microsensor suitable to be used in the mass air flow meter has been designed. The basic characteristics of the microsensor are presented. © 2012 American Institute of Physics

    Tactile graphical display for the visually impaired information technology applications

    Get PDF
    This paper presents an interactive tactile graphical display, for the visually impaired information technology access applications. The display consists of a matrix of dots. Each dot is an electro rheological micro actuator. The actuator design and development process is presented in this paper. Prototype size 124x4 dots was manufactured. An advanced software tools and embedded system based on voltage matrix manipulation has been developed, to provide the display near real time control. The experimental tests carried out into the developed prototype showed that each actuator of the matrix was able to provide a vertical movement of 0.7 mm and vertical holding force of 100 to 200 mN. The stroke and dynamic response tests showed the practicability of the developed tactile display, for the visually impaired information technology applications

    A stable and accurate control-volume technique based on integrated radial basis function networks for fluid-flow problems

    Get PDF
    Radial basis function networks (RBFNs) have been widely used in solving partial differential equations as they are able to provide fast convergence. Integrated RBFNs have the ability to avoid the problem of reduced convergence-rate caused by differentiation. This paper is concerned with the use of integrated RBFNs in the context of control-volume discretisations for the simulation of fluid-flow problems. Special attention is given to (i) the development of a stable high-order upwind scheme for the convection term and (ii) the development of a local high-order approximation scheme for the diffusion term. Benchmark problems including the lid-driven triangular-cavity flow are employed to validate the present technique. Accurate results at high values of the Reynolds number are obtained using relatively-coarse grids

    Development of a twin-head infusion pump for micromixing

    Get PDF
    Mixing is a crucial process in most of the industrial technology such as the operation of chemicals and fermentation reactors, combustion engines, polymer blends, and pharmaceutical formulations [1]. For handling a smaller volume of liquid, micromixing is a suitable method that can be applied. Micromixing (micromixer) is one of the microfluidic functions for mixing and blending liquids as precursors for biological process such as cell activation, enzyme reaction, and drug delivery system [2, 3]. There are several advantages of applying microfluidic device (micromixer) in the chemical technological processes such as processing accuracy, efficiency, minimum usage of reagents and ease of disposing of devices and fluids [3]. Basically, micromixers are categorised into passive and active micromixers. Passive micromixer consists of no moving parts and free from additional friction. It does not use external forces, fully dependent on molecular diffusion and chaotic advection for mixing process [4]. In contrast to active micromixers, external forces are applicable to active micromixers by implementing moving elements either within the microchannels, a time-variant, or a pressure field [5]. To create the pressure field differences for moving the liquid within the micromixer, an infusion pump is usually applied
    corecore