5,701 research outputs found

    Joint Downlink Base Station Association and Power Control for Max-Min Fairness: Computation and Complexity

    Get PDF
    In a heterogeneous network (HetNet) with a large number of low power base stations (BSs), proper user-BS association and power control is crucial to achieving desirable system performance. In this paper, we systematically study the joint BS association and power allocation problem for a downlink cellular network under the max-min fairness criterion. First, we show that this problem is NP-hard. Second, we show that the upper bound of the optimal value can be easily computed, and propose a two-stage algorithm to find a high-quality suboptimal solution. Simulation results show that the proposed algorithm is near-optimal in the high-SNR regime. Third, we show that the problem under some additional mild assumptions can be solved to global optima in polynomial time by a semi-distributed algorithm. This result is based on a transformation of the original problem to an assignment problem with gains log(gij)\log(g_{ij}), where {gij}\{g_{ij}\} are the channel gains.Comment: 24 pages, 7 figures, a shorter version submitted to IEEE JSA

    Fair task allocation in transportation

    Get PDF
    Task allocation problems have traditionally focused on cost optimization. However, more and more attention is being given to cases in which cost should not always be the sole or major consideration. In this paper we study a fair task allocation problem in transportation where an optimal allocation not only has low cost but more importantly, it distributes tasks as even as possible among heterogeneous participants who have different capacities and costs to execute tasks. To tackle this fair minimum cost allocation problem we analyze and solve it in two parts using two novel polynomial-time algorithms. We show that despite the new fairness criterion, the proposed algorithms can solve the fair minimum cost allocation problem optimally in polynomial time. In addition, we conduct an extensive set of experiments to investigate the trade-off between cost minimization and fairness. Our experimental results demonstrate the benefit of factoring fairness into task allocation. Among the majority of test instances, fairness comes with a very small price in terms of cost

    Power and Channel Allocation for Non-orthogonal Multiple Access in 5G Systems: Tractability and Computation

    Full text link
    Network capacity calls for significant increase for 5G cellular systems. A promising multi-user access scheme, non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), is currently under consideration. In NOMA, spectrum efficiency is improved by allowing more than one user to simultaneously access the same frequency-time resource and separating multi-user signals by SIC at the receiver. These render resource allocation and optimization in NOMA different from orthogonal multiple access in 4G. In this paper, we provide theoretical insights and algorithmic solutions to jointly optimize power and channel allocation in NOMA. For utility maximization, we mathematically formulate NOMA resource allocation problems. We characterize and analyze the problems' tractability under a range of constraints and utility functions. For tractable cases, we provide polynomial-time solutions for global optimality. For intractable cases, we prove the NP-hardness and propose an algorithmic framework combining Lagrangian duality and dynamic programming (LDDP) to deliver near-optimal solutions. To gauge the performance of the obtained solutions, we also provide optimality bounds on the global optimum. Numerical results demonstrate that the proposed algorithmic solution can significantly improve the system performance in both throughput and fairness over orthogonal multiple access as well as over a previous NOMA resource allocation scheme.Comment: IEEE Transactions on Wireless Communications, revisio

    Robust Monotonic Optimization Framework for Multicell MISO Systems

    Full text link
    The performance of multiuser systems is both difficult to measure fairly and to optimize. Most resource allocation problems are non-convex and NP-hard, even under simplifying assumptions such as perfect channel knowledge, homogeneous channel properties among users, and simple power constraints. We establish a general optimization framework that systematically solves these problems to global optimality. The proposed branch-reduce-and-bound (BRB) algorithm handles general multicell downlink systems with single-antenna users, multiantenna transmitters, arbitrary quadratic power constraints, and robustness to channel uncertainty. A robust fairness-profile optimization (RFO) problem is solved at each iteration, which is a quasi-convex problem and a novel generalization of max-min fairness. The BRB algorithm is computationally costly, but it shows better convergence than the previously proposed outer polyblock approximation algorithm. Our framework is suitable for computing benchmarks in general multicell systems with or without channel uncertainty. We illustrate this by deriving and evaluating a zero-forcing solution to the general problem.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 9 figures, 2 table

    Optimal Joint Routing and Scheduling in Millimeter-Wave Cellular Networks

    Full text link
    Millimeter-wave (mmWave) communication is a promising technology to cope with the expected exponential increase in data traffic in 5G networks. mmWave networks typically require a very dense deployment of mmWave base stations (mmBS). To reduce cost and increase flexibility, wireless backhauling is needed to connect the mmBSs. The characteristics of mmWave communication, and specifically its high directional- ity, imply new requirements for efficient routing and scheduling paradigms. We propose an efficient scheduling method, so-called schedule-oriented optimization, based on matching theory that optimizes QoS metrics jointly with routing. It is capable of solving any scheduling problem that can be formulated as a linear program whose variables are link times and QoS metrics. As an example of the schedule-oriented optimization, we show the optimal solution of the maximum throughput fair scheduling (MTFS). Practically, the optimal scheduling can be obtained even for networks with over 200 mmBSs. To further increase the runtime performance, we propose an efficient edge-coloring based approximation algorithm with provable performance bound. It achieves over 80% of the optimal max-min throughput and runs 5 to 100 times faster than the optimal algorithm in practice. Finally, we extend the optimal and approximation algorithms for the cases of multi-RF-chain mmBSs and integrated backhaul and access networks.Comment: To appear in Proceedings of INFOCOM '1

    Submodular memetic approximation for multiobjective parallel test paper generation

    Get PDF
    Parallel test paper generation is a biobjective distributed resource optimization problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified assessment criteria. Generating high-quality parallel test papers is challenging due to its NP-hardness in both of the collective objective functions. In this paper, we propose a submodular memetic approximation algorithm for solving this problem. The proposed algorithm is an adaptive memetic algorithm (MA), which exploits the submodular property of the collective objective functions to design greedy-based approximation algorithms for enhancing steps of the multiobjective MA. Synergizing the intensification of submodular local search mechanism with the diversification of the population-based submodular crossover operator, our algorithm can jointly optimize the total quality maximization objective and the fairness quality maximization objective. Our MA can achieve provable near-optimal solutions in a huge search space of large datasets in efficient polynomial runtime. Performance results on various datasets have shown that our algorithm has drastically outperformed the current techniques in terms of paper quality and runtime efficiency
    corecore