54 research outputs found

    Multi-level Facility Location Problems

    Get PDF
    We conduct a comprehensive review on multi-level facility location problems which extend several classical facility location problems and can be regarded as a subclass within the well-established field of hierarchical facility location. We first present the main characteristics of these problems and discuss some similarities and differences with related areas. Based on the types of decisions involved in the optimization process, we identify three different categories of multi-level facility location problems. We present overviews of formulations, algorithms and applications, and we trace the historical development of the field

    Multi-level facility location problems

    Get PDF
    We study of a class of discrete facility location problems, called multi-level facility location problems, that has received major attention in the last decade. These problems arise in several applications such as in production-distribution systems, telecommunication networks, freight transportation, and health care, among others. Moreover, they generalize well-known facility location problems which have been shown to lie at the heart of operations research due to their applicability and mathematical structure. We first present a comprehensive review of multi-level facility location problems where we formally define and categorize them based on the types of decisions involved. We also point out some gaps in the literature and present overviews of related applications, models and algorithms. We then concentrate our efforts on the development of solution methods for a general multi-level uncapacitated facility location problem. In particular, based on an alternative combinatorial representation of the problem whose objective function satisfies the submodularity property, we propose a mixed integer linear programming formulation. Using that same representation, we present approximation algorithms with constant performance guarantees for the problem and analyze some special cases where these worst-case bounds are sharper. Finally, we develop an exact algorithm based on Benders decomposition for a slightly more general problem where the activation of links between level of facilities is also considered part of the decision process. Extensive computational experiments are presented to assess the performance of the various models and algorithms studied. We show that the multi-level extension of some fundamental problems in operations research maintain certain structure that allows us to develop more efficient algorithms in practice

    Stochastic Optimization and Applications with Endogenous Uncertainties Via Discrete Choice Models

    Get PDF
    Stochastic optimization is an optimization method that solves stochastic problems for minimizing or maximizing an objective function when there is randomness in the optimization process. In this dissertation, various stochastic optimization problems from the areas of Manufacturing, Health care, and Information Cascade are investigated in networks systems. These stochastic optimization problems aim to make plan for using existing resources to improve production efficiency, customer satisfaction, and information influence within limitation. Since the strategies are made for future planning, there are environmental uncertainties in the network systems. Sometimes, the environment may be changed due to the action of the decision maker. To handle this decision-dependent situation, the discrete choice model is applied to estimate the dynamic environment in the stochastic programming model. In the manufacturing project, production planning of lot allocation is performed to maximize the expected output within a limited time horizon. In the health care project, physician is allocated to different local clinics to maximize the patient utilization. In the information cascade project, seed selection of the source user helps the information holder to diffuse the message to target users using the independent cascade model to reach influence maximization. The computation complexities of the three projects mentioned above grow exponentially by the network size. To solve the stochastic optimization problems of large-scale networks within a reasonable time, several problem-specific algorithms are designed for each project. In the manufacturing project, the sampling average approximation method is applied to reduce the scenario size. In the health care project, both the guided local search with gradient ascent and large neighborhood search with Tabu search are developed to approach the optimal solution. In the information cascade project, the myopic policy is used to separate stochastic programming by discrete time, and the Markov decision process is implemented in policy evaluation and updating

    Network design under uncertainty and demand elasticity

    Get PDF
    Network design covers a large class of fundamental problems ubiquitous in the fields of transportation and communication. These problems are modelled mathematically using directed graphs and capture the trade-off between initial investment in infrastructure and operational costs. This thesis presents the use of mixed integer programming theory and algorithms to solve network design problems and their extensions. We focus on two types of network design problems, the first is a hub location problem in which the initial investments are in the form of fixed costs for installing infrastructure at nodes for them to be equipped for the transhipment of commodities. The second is a fixed-charge multicommodity network design problem in which investments are in the form of installing infrastructure on arcs so that they may be used to transport commodities. We first present an extension of the hub location problem where both demand and transportation cost uncertainty are considered. We propose mixed integer linear programming formulations and a branch-and-cut algorithm to solve robust counterparts for this problem. Comparing the proposed models' solutions to those obtained from a commensurate stochastic counterpart, we note that their performance is similar in the risk-neutral setting while solutions from the robust counterparts are significantly superior in the risk-averse setting. We next present exact algorithms based on Benders decomposition capable of solving large-scale instances of the classic uncapacitated fixed-charge multicommodity network design problem. The method combines the use of matheuristics, general mixed integer valid inequalities, and a cut-and-solve enumeration scheme. Computational experiments show the proposed approaches to be up to three orders of magnitude faster than the state-of-the-art general purpose mixed integer programming solver. Finally, we extend the classic fixed-charge multicommodity network design problem to a profit-oriented variant that accounts for demand elasticity, commodity selection, and service commitment. An arc-based and a path-based formulation are proposed. The former is a mixed integer non-convex problem solved with a general purpose global optimization solver while the latter is an integer linear formulation with exponentially many variables solved with a hybrid matheuristic. Further analysis shows the impact of considering demand elasticity to be significant in strategic network design

    Hub Network Design and Discrete Location: Economies of Scale, Reliability and Service Level Considerations

    Get PDF
    In this thesis, we study three related decision problems in location theory. The first part of the dissertation presents solution algorithms for the cycle hub location problem (CHLP), which seeks to locate p-hub facilities that are connected by means of a cycle, and to assign non-hub nodes to hubs so as to minimize the total cost of routing flows through the network. This problem is useful in modeling applications in transportation and telecommunications systems, where large setup costs on the links and reliability requirements make cycle topologies a prominent network architecture. We present a branch and-cut algorithm that uses a flow-based formulation and two families of mixed-dicut inequalities as a lower bounding procedure at nodes of the enumeration tree. We also introduce a greedy randomized adaptive search algorithm that is used to obtain initial upper bounds for the exact algorithm and to obtain feasible solutions for large-scale instances of the CHLP. Numerical results on a set of benchmark instances with up to 100 nodes confirm the efficiency of the proposed solution algorithms. In the second part of this dissertation, we study the modular hub location problem, which explicitly models the flow-dependent transportation costs using modular arc costs. It neither assumes a full interconnection between hub nodes nor a particular topological structure, instead it considers link activation decisions as part of the design. We propose a branch-and-bound algorithm that uses a Lagrangean relaxation to obtain lower and upper bounds at the nodes of the enumeration tree. Numerical results are reported for benchmark instances with up to 75 nodes. In the last part of this dissertation we study the dynamic facility location problem with service level constraints (DFLPSL). The DFLPSL seeks to locate a set of facilities with sufficient capacities over a planning horizon to serve customers at minimum cost while a service level requirement is met. This problem captures two important sources of stochasticity in facility location by considering known probability distribution functions associated with processing and routing times. We present a nonlinear mixed integer programming formulation and provide feasible solutions using two heuristic approaches. We present the results of computational experiments to analyze the impact and potential benefits of explicitly considering service level constraints when designing distribution systems

    Integer Bilevel Linear Programming Problems: New Results and Applications

    Get PDF
    Integer Bilevel Linear Programming Problems: New Results and Application
    • …
    corecore