
Integer Bilevel Linear Programming Prob-
lems: New Results and Applications

Scuola di Dottorato in Scienza e Tecnologia dell’Informazione delle
Comunicazioni

Dottorato di Ricerca in Ricerca Operativa – XXVI Ciclo

Candidate

Renato Mari
ID number 1381561

Thesis Advisor

Prof. Massimiliano Caramia

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Operation Research

Thesis defended on 16th May 2014
in front of a Board of Examiners composed by:

Prof. Luca Zanni (chairman)
Prof. Andrea Lodi
Prof. Maria Grazie Scutellà

Integer Bilevel Linear Programming Problems: New Results and Applications
Ph.D. thesis. Sapienza – University of Rome

© 2014 Renato Mari. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: renato.mari@uniroma1.it

mailto:renato.mari@uniroma1.it

Dedicated to
my family

v

Abstract

Bilevel programming problems have received an increasing attention in the last two decades. Many
papers, surveys and research activities are focused on this topic because, on one side it represents a
novel and interesting approach to model a wide range of real life applications, but on the other side it is
still a very challenging problem for which only a small subclass of instances with particular properties
can be efficiently solved. In literature most of the results are manly theoretical and there is a lack of
efficient algorithms able to solve general instances of these problems.

Bilevel programming problems were historically introduced to model defense problems and opti-
mization problems in multilevel organization. The general framework of a multilevel programming
problem is the presence of multiple decision makers with conflicting objectives in a no cooperative
scenario in which the strategies and the actions of one decision maker strictly depend on the other
decision makers involved and, unlike classical multiobjective optimization problems, there is an explicit
hierarchical relationship among them. Modelling these kind of situations by means of a classical single
level optimization problem has the flaw not to capture the conflicting nature of objectives involved and
may not be realistic. This explains the increasing interest of the scientific community toward this class
of problems.

In this dissertation we focus on bilevel programming problems, multilevel problems in which only
two decision makers are considered. For the sake of clearness, the first player is called leader and the
second player is called follower. The leader is the first decision maker who plays knowing the rational
reaction of the follower and taking it into account. The follower reacts to the leader’s decision trying to
optimize his objective function. The resulting formulation is an optimization problem in which the
leader’s feasible set is defined by both a set of constraints and the follower’s optimization problem.
This nestled structure is typical of bilevel problems and shows why they are inherently hard to solve.
Among bilevel programming problems an interesting subclass is formed by problems in which all the
functions are linear. These kind of problems, which are the most studied in the literature, are known
as Bilevel Linear Problems (BLPs). There are several theoretical results on BLPs in which all the
variables are continuous and many solution methods have been developed and successfully applied to
real applications. Conversely, the integer case has not been sufficiently investigated and there are only
few preliminary results and methods designed to solve special cases.

The main focus of this dissertation are BLPs in which a subset or all the variables are integer.
Despite this class of problem can be potentially used to model a very large number of optimization
problems with a combinatorial structure, very efficient methods to cope with large size problems have
not been developed yet. In this research work we start from some existing results in order to improve
the performance of methods proposed in the literature and we also present novel approaches that
are remarkable improvements in the state of the art of BLPs. In the first part of this dissertation we
introduce the main properties and the existing results on BLPs in general. We present notations, main

vi

definitions, similarities and differences with other existing problems and an overview of applications.
Great attention is dedicated to the state of the art of BLPs solution methods in order to point out whether
and how these approaches can be extended to the integer case. The central part of the dissertation is
composed of two main chapters. In the first, we investigate discrete BLPs in which the leader’s variables
are integer. This class of problems is also known as Discrete–Continuous Bilevel Linear Problems
(DCBLPs). It is known that such problems are equivalent to continuous bilevel linear problems in
which the integrality requirements are relaxed and the leader’s objective function is modified including
a concave penalty function weighted by a parameter. The equivalence holds for a sufficiently large
value of the parameter and a valid lower bound for the latter is known in the literature. We provide an
improvement of this lower bound and assess the impact of the new lower bound in terms of efficiency
on a set of test problems.

Furthermore we propose a valid inequality for a generic DCBLP. The basic idea to compute this
valid inequality is to relax the DCBLP, analyze the geometry of its feasible set, that has well known
properties, and then obtain information on the bilevel–feasible solutions of the DCBLP. By solving an
auxiliary bilevel linear problem it is possible to derive a lower bound on the value of the follower’s
objective function and then reformulate the original problem taking this bound into account. The possi-
ble interpretation of the proposed valid inequality is twofold: it can be considered both like a leader’s
constraint and a follower’s constraint. These two interpretations are discussed and a computational
comparison is provided.

In the second main chapter, we investigates discrete BLPs in which all the variables are integer.
This class of problems is also known as Discrete Bilevel Linear Problems (DBLPs). We explain why
a classical branch and bound method designed for integer programming problems fails to find the
optimal solution of a DBLP. We propose two new exact methods and compare them to an existing
benchmark algorithm. The first method is a branch and cut approach that is based on a similar idea,
properly modified, used to solve DCBLPs. The second method is a cutting plane approach in which it
is computed a new valid inequality eliminating an integer solution every time it is proved not to be
bilevel–feasible. This valid inequality is a non linear constraint which can be linearized introducing a
further follower problem in the original formulation.

Finally two heuristic approaches are proposed which exploit and readapt some geometric properties
of the feasible set of a relaxed DBLP in order to find a good solution in a reasonable time.

In the final section we give a flavour of some possible applications of bilevel programming in the
field of Operation Management. Two interesting applications of bilevel programming with integer
variables are addressed. In the first application we study a specific Grid scheduling problem. A set of
independent tasks is submitted to a Grid External Scheduler (ES) and have to be assigned by the ES
to a set of Grid computing sites, each one controlled by a Local Scheduler (LS), for their execution.
The ES can decide to accept a task and assign it to a LS or to refuse the task: in the first case a penalty
cost is paid only if the completion time exceeds the task due date, i.e. there is a positive tardiness,

vii

while in the second case a rejection cost is paid. While the ES looks for executing the submitted
tasks over the Grid minimizing the total cost for rejecting or delaying tasks, the goal of each LS is
maximizing computational resource usage efficiency. This problem has a clear hierarchical structure in
which the two decision makers have different objectives and their decisions mutually affect to each
other. The decision of the ES to accept or not a task has an impact on the follower’s optimization
problem and, vice-versa, the optimal scheduling of the follower defines the tardiness of a task and
the consequent decision of the leader to accept or refuse a task. We model this problem by means of
bilevel programming with integer variables in the leader’s and follower’s level. After reformulating the
latter as a single level mixed-integer program, we propose a heuristic algorithm to cope with large size
instances happening in practice.

The second application is a capacitated facility location problem formulated as a bilevel linear
problem with a mixed-integer leader’s problem. In the model we propose the leader decides which
facilities to open and the capacity to install in each facility in order to minimize the total cost, while
the follower controls the assignment of a given set of clients to the open facilities with the goal of
maximizing his profit. The basic idea is that the objective of the two decision makers are independent.
The key assumption is that the follower (e.g. a private company) is not obliged to satisfy all the
clients’ demand and the leader (e.g. an Authority) cannot control or apply sanctions on him. The
leader can only open more facilities or install more capacity on the open ones in order to guarantee
that clients’ demand is satisfied beyond a certain threshold, hence it pursues a twofold objective, both
economical and social. Conversely, the follower aims at finding the most profitable assignment of
clients to facilities. The resulting formulation is a DCBLP. Although there exist in the literature exact
methods for this class of bilevel problems, they can not be used to solve large size problems. We
propose a branch and cut framework, in order to cope with the bilevel structure of the problem and the
integrality of a subset of variables under control of the leader. The algorithm is exact in theory but, for
the sake of computation, we introduce suitable stopping criteria and test the algorithm on a set of real
life benchmark instances available in the literature.

ix

Acknowledgments

First of all I have to thank my advisor, Professor M. Caramia. During these long years he always gave
me useful advices, he guided me and represented a constant point of reference for my study and my
research activity.

I am thankful to Professor Y. Fathi because I have known an helpful, interested and inspiring
person, beyond any possible imagination. My experience at the NCSU was profitable and remarkable
not only for my work, but also from a humane perspective and I have especially to thank him and his
generosity.

Many thanks to all people I met during this long experience, both colleagues and friends. Thanks
to all people that always supported me, in any circumstance: first of all my family, my friends Chiara
and Arianna, she is the one who mostly incited, encouraged and helped me and we both know that,
without her, I would have not reached this goal.

Finally, thanks to Giuseppe because during these three (and more) years he was always able to
make me laugh, also in the most critical moments, donating me the peacefulness that I needed.

xi

Contents

1 Introduction 1
1.1 Notation and general assumption . 2

1.2 Stability problem . 4

1.3 Computational complexity . 8

1.4 Related problems . 9

1.4.1 Max-min problems . 9

1.4.2 Game theory . 10

1.4.3 Multiobjective and multicriteria problems 11

1.4.4 Stochastic programming problems . 14

1.4.5 Mathematical programming with equilibrium constraints 15

1.5 Applications . 16

1.6 General framework and our contributions . 17

2 Bilevel Linear Programming 19
2.1 Polyhedral properties . 20

2.1.1 Upper level constraints . 21

2.2 BLP relaxations . 25

2.2.1 Relaxation via removal of constraints . 25

2.2.2 Single level relaxation . 27

2.3 Solution methods . 28

2.4 Continuous and discrete BLPs . 31

2.5 Reformulation techniques . 32

3 Discrete–Continuous Bilevel Linear Programming 37
3.1 Reformulation approaches for binary DCBLP . 37

3.1.1 Preliminary results . 38

3.1.2 Lower bound improvements . 40

3.1.3 Experimental analysis . 44

3.1.4 Conclusion . 49

3.2 A New valid inequality for DBLP . 51

xii Contents

3.2.1 Introduction . 51

3.2.2 The continuous case: BLP . 52

3.2.3 The discrete–continuous case: DCBLP . 54

3.2.4 Computational results . 55

3.2.5 Conclusions . 60

4 Discrete Bilevel Linear Programming 65
4.1 Enhanced exact algorithms for DBLP . 65

4.1.1 Preliminaries . 66

4.1.2 A cutting plane method . 67

4.1.3 Modified cutting plane . 70

4.1.4 An example . 70

4.1.5 A branch and cut algorithm . 71

4.1.6 Hybrid branch and cut . 72

4.1.7 Computational analysis . 73

4.1.8 Cutting plane algorithms . 73

4.1.9 Branch and cut algorithms . 75

4.1.10 Conclusions . 77

4.2 New heuristic methods for DBLP . 81

4.2.1 Introduction . 81

4.2.2 Two inequalities to reformulate DBLPs . 82

4.2.3 Special cases . 84

4.2.4 Two new heuristics for DBLP . 85

4.2.5 Computational comparison . 88

4.2.6 Numerical results . 88

4.2.7 Conclusions . 91

5 New Applications 99
5.1 Grid Scheduling by bilevel programming: a heuristic approach 99

5.1.1 Introduction . 99

5.1.2 The Grid scheduling framework . 100

5.1.3 A mathematical bilevel formulation . 101

5.1.4 The single level reformulation . 104

5.1.5 The heuristic algorithm . 109

5.1.6 Simulated scenarios . 111

5.1.7 Conclusions . 118

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem . 119

5.2.1 Introduction . 119

5.2.2 Bilevel model formulation . 121

Contents xiii

5.2.3 General framework of the branch and cut based heuristic 123
5.2.4 Slave Algorithm for problem SV P (xj) . 126
5.2.5 Computational results . 132
5.2.6 Conclusions . 135

6 Conclusion 137

A Acronyms 141

xv

List of Figures

1.1 Optimistic and pessimistic approach . 7

1.2 Set of solutions dominating point (1, 1) . 12

2.1 Feasible set, reaction set and inducible region . 21

2.2 Role of the upper level constraints . 22

2.3 Upper level constraints may induce infeasibility . 23

2.4 A simple instance for a bilevel hazmat transportation problem 25

2.5 Different effects of removal of constraints . 26

2.6 Single level relaxation with upper level constraints 29

2.7 Continuous and Discrete Bilevel Linear Problems 33

3.1 Comparison between two inducible regions . 53

3.2 An application of the valid cut . 54

3.3 Computational comparison for small size problems 58

3.4 Computational comparison of medium size problems 59

4.1 Set of integer solutions and extreme points of S . 67

4.2 Comparison between two inducible regions . 68

4.3 Set S splitted into S′ and S′′ . 73

4.4 Computational comparison . 76

4.5 Relation between Ωy(x)DBLP and Ωy(x)BLP . 83

4.6 Wrong computation of bound_inequality . 85

4.7 Comparison of algorithms in terms of CPU time . 90

5.1 Two feasible scheduling solutions for the follower problem 103

5.2 Optimal integer solutions for the follower problem 109

5.3 A flow chart of the branch and cut algorithm . 124

5.4 An example . 126

5.5 Partial branch and bound tree . 129

5.6 Auxiliary network associated to solution (2− a), (3− b) and (1− a) 130

5.7 Complete branch and bound tree of the Slave Algorithm 132

xvii

List of Tables

3.1 Classes of problems . 45

3.2 Computational comparison between a very large penalty parameter µ = 100 000 and µ0 47

3.3 Computational comparison among a very large penalty parameter µ = 100 000, µ′ and
µ′′ . 48

3.4 Comparison of average values . 48

3.5 Computational results of all the classes with µ0, µ′ and µ′′ 50

3.6 Average results for all the problems solved . 51

3.7 Classes of small size problems . 56

3.8 Computational results of the three formulations . 57

3.9 Classes of medium size problems . 57

3.10 Computational results of the three formulations . 59

3.11 Computational results in details for each small size instance solved 62

3.12 Computational results in details for each medium size instance solved 63

4.1 Notations . 74

4.2 Comparison of CP, MCP and the benchmark algorithm DR 74

4.3 Comparison of BC, HBC and the benchmark algorithm DR 75

4.4 Computational results in details for DR, CP and MCP 79

4.5 Computational results in details for DR, BC and HBC 81

4.6 Computational results of the three different branch and cut approaches 89

4.7 Computational results of the native algorithm . 93

4.8 Computational results of the root branch and cut . 95

4.9 Computational results of the extended branch and cut 97

5.1 Synthetic workloads with E[Bj] = 50 . 113

5.2 Synthetic workloads with E[Bj] = 100 . 113

5.3 Synthetic workloads with E[Bj] = 150 . 113

5.4 Real workloads with E[Bj] = 50 . 114

5.5 Real workloads with E[Bj] = 100 . 114

5.6 Real workloads with E[Bj] = 150 . 115

xviii List of Tables

5.7 Comparison between the two simulated scenarios 115
5.8 Comparison for synthetic workloads with E[Bj] = 50 116
5.9 Comparison for synthetic workloads with E[Bj] = 100 117
5.10 Comparison for synthetic workloads with E[Bj] = 150 117
5.11 Comparison for real workloads with E[Bj] = 50 117
5.12 Comparison for real workloads with E[Bj] = 100 118
5.13 Comparison for real workloads with E[Bj] = 150 118
5.14 Results for Kuehn and Hamburger problem . 133
5.15 Results for Swain problem . 133
5.16 Results for Daskin problem with 49 facilities . 134
5.17 Results for Daskin problem with 88 facilities . 134
5.18 Results for Daskin problem with 150 facilities . 134

1

Chapter 1

Introduction

Many modern systems are characterized by the presence of multiple decision makers with different
and often conflicting objectives whose decisions, actions and strategies have to coexist within the same
environment. The optimization problems arising in such decision systems, may not be formulated and
solved by means of classical mathematical programming approaches as they clearly show their flaws
and may not provide sufficiently realistic results. The solutions obtained making use of well known
optimization techniques with a single decision maker may be an extreme approximation of the real
behaviour of the system. For this reason, in the last few decades, there has been an increasing attention
toward novel and more sophisticated mathematical programming methods for coping with the presence
of multiple decision makers and multiple stakeholders and obtaining more likely representations of
real complex systems.

Following different research directions, over the last few years several mathematical methods have
been proposed and developed with the goal of overtaking the limits of classical single decision maker
models. Among the others, multiobjectives optimization and game theory significantly developed as
they represent mathematical approaches in which multiple decision makers and their mutual interactions.
Multilevel programming problems are strictly related to the latter and allow to model a particular
situation in which the decision makers have different authorities and a hierarchical relationship among
them is explicitly defined. The main characteristics of multilevel programming are highlighted by
Bialas and Karwan [34]:

– interacting decision makers within the same hierarchical system

– each level takes its decision after the decision of upper levels and taking them into account

– each level optimizes its own objective but it is constrained by the decisions of upper levels and
by the reactions of lower levels

– one level can influence the decision of other levels affecting both its objective functions and its
feasible set of decisions.

2 1. Introduction

Multilevel programming problems were first introduced by Bracken and McGill [37] [38] in the field of
defense problems and defined as mathematical programs that contains an optimization problem in the
constraints. The term multilvel and bilevel were first used by Candler and Norton [42]. Basically this
kind of problems is characterized by a set of decision makers hierarchically related and the decision of
one player is constrained by the decision of the other players, and vice-versa. The first contributions
and theoretical properties were formalized by Bialas and Karwan [32], Bard and Falk [23] and Bard
[20].

Bilevel programming problems are multilevel mathematical programs in which there are only two
decision makers. The restricted number of players makes this class more easy to handle compared
to a generic multilevel problem and for this reason most of the contributions that can be found in the
literature address the bilevel case.

Bilevel programming problems can be defined as optimization problems in which the feasible set is
defined by solving a parameterized problem. In order to explicit the hierarchy between the two players,
the first decision maker is called leader and the second one is called follower. We equivalently refer to
the leader as the upper level decision maker and to the follower as the lower level one.

From a mathematical standpoint, a bilevel programming problem is formed by two problems
included within a single instance. The optimal value of the variables controlled by the follower (we
call them lower level variables) is determined by solving an optimization problem parameterized by
the variables under control of the leader (we call them upper level variables). Similarly, the leader’s
optimal solution is computed knowing the optimal solution of the follower’s problem. Hence the
general structure is made of two nestled problems, an outer and an inner problem. Bilevel problems are
inherently hard to solve since, unlike classical mathematical programming problems, the feasible set is
defined by solving the inner optimization problem.

1.1 Notation and general assumption

The general formulation of a bilevel programming problem is the following.

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0
x ∈ X
y ∈ argmin

y
f(x, y)

s.t. g(x, y) ≤ 0
y ∈ Y

By the formulation it can be clearly noticed the hierarchical structure of the two nestled problems.
The objective functions F (x, y) and f(x, y) are respectively called leader’s and follower’s objective

1.1 Notation and general assumption 3

function. For the sake of clearness within the dissertation we equivalently refer to the leader as the
upper level decision maker and to the follower as the lower level decision maker. Other similar terms
very often used in the literature are outer problem and inner problem to refer to the leader’s and the
follower’s problem respectively. The variables x are defined on set X and are called leader’s variables,
while variables y are defined on set Y and are called follower’s variables. Finally, G(x, y) ≤ 0 are the
leader’s constraints and g(x, y) ≤ 0 are the follower’s constraints.

The set

S = {(x, y) | x ∈ X, y ∈ Y,G(x, y) ≤ 0, g(x, y) ≤ 0}

is the feasible set of the problem. We refer to solutions (x, y) ∈ S as feasible solutions. The set S is
also called semi-feasible set by some authors (see Ben-Ayed [26]). This term clearly expresses the
basic difference between bilevel optimization problems (and multilevel problems in general) and single
level problems: a solution is not only required to satisfy the set of constraints defining S, but it has also
to minimize the follower’s objective function for a given vector x. Unfortunately, this term is not used
in the most relevant references on bilevel problems and for this reason we do not adopt it in the rest of
the dissertation.

For each x̄ ∈ X we define the follower’s feasible set as

Ωy(x̄) = {y | y ∈ Y, g(x̄, y) ≤ 0}

and the reaction set as

Ry(x̄) = argmin
y
{f(x̄, y) s.t. y ∈ Ωy(x̄)}

i.e. the set of all the solutions which minimize the follower’s objective function. We refer to solutions
(x, y) ∈ S such that y ∈ Ry(x) as rational solutions. Notice that a rational solution may not be a
feasible solution for the bilevel problem since it may violate one or more upper level constraints. We
define the set

IR = {(x, y) | x ∈ X,G(x, y) ≤ 0, y ∈ Ry(x)}

that is called inducible region and represents the set of all the feasible solutions that are both optimal
for the follower (i.e rational) and feasible for the leader. Te solutions contained in IR are denoted as
bilevel–feasible solutions. In other words a bilevel programming problem can be generally formulated
as

min
x,y

F (x, y)

s.t. (x, y) ∈ IR

4 1. Introduction

It is clear that the difference between IR and S originates from the optimality requirement of the
follower’s problem.

The main mathematical complexity of bilevel programming stems from the non convexity of the
inducible region on which the leader’s objective function is computed. Even in the very simple case in
which all the functions are linear and the variables continuous, the inducible region is a non convex set.
Despite this, some remarkable geometric properties hold which are fundamental to develop efficient
solution methods. We provide a description and some examples of them in the next chapter focusing
our attention on a special case in which all the functions of the model are linear.

In the rest of the dissertation we assume the feasible set S compact and non empty.

Proposition 1. If the feasible set S is compact and non empty, there exists at least a x̄ ∈ X such that
the follower’s feasible set Ωy(x̄) is non empty, but it may also be unbounded.

By construction S ⊆ {X × Ωy(x)} and since S is non empty, there exists at least a solution (x̄, ȳ)
such that (x̄, ȳ) ∈ S with x̄ ∈ X and ȳ ∈ Ωy(x̄), that is Ωy(x̄) 6= ∅. Thus, the non emptiness property
is preserved from S to Ωy(x) for at least a x ∈ X . The same results does not hold for the property of
compactness. Due to the lack of constraints G(x, y), the set {X × Ωy(x)} may be unbounded below
or above and the follower’s problem may not be finite. Consider the following case:

Ωy(x) = {y | y ∈ R,−2x+ y ≤ 1, x+ y ≤ 4}

for each x ∈ R+ the set is non empty and unbounded below. If the leader’s constraint x− 5y ≤ −4
is added, the feasible set S is compact and non empty. If −∇yf(x, y) ≤ 0 the reaction set Ry(x) is
unbounded below and the bilevel problem is unbounded, too, although the feasible set S is a polytope.
From this simple example it is clear that the upper level constraints G(x, y) ≤ 0 play a fundamental
role in defining the existence of optimal solutions as pointed out in Vicente et al. [147], Audet et al.
[11] and Marcotte and Savard [109]. We investigate these properties in the next chapter for the linear
case.

1.2 Stability problem

One of the main features of bilevel programming problems is the possibility that for a given value of x
the follower’s problem is not well posed and, without further assumptions, the bilevel formulation is
meaningless. A generic bilevel–feasible solution is required to be the best response for the follower
according to the leader’s solution. The reaction set Ry(x) is in general a multi-valued mapping of the
leader’s variable x. For a given vector x̄ it may happen that Ry(x̄) is not uniquely defined and there
are two (or more) rational solutions, for instance (x̄, y1) and (x̄, y2). Assuming that both satisfy the
upper level constraints, the follower is indifferent between them, but they may yield different values
for the leader’s objective function, that is F (x̄, y1) 6= F (x̄, y2). In such case the solutions are called
non stable. This happens every time there are multiple optimal solutions in the follower’s feasible set

1.2 Stability problem 5

Ωy(x) for a given x, i.e. Ry(x) is not a singleton.

In the literature two different modelling approaches are studied based on a different initial assump-
tion. The first approach is called optimistic or weak approach. The general assumption is that, if the
reaction set is not a singleton, the leader can choose the solution that suits him best. More formally, the
optimistic or weak problem is:

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0
x ∈ X
y ∈ Ry(x)

Notice that the latter is equivalent to the general formulation we presented in the previous section. The
second approach is called pessimistic or strong approach. In this case the leader can not choose among
the follower’s multiple rational solutions. For this reason the worst follower’s reaction from the leader’s
perspective is taken into account. The corresponding formulation is:

min
x
F (x, y)

s.t. G(x, y) ≤ 0
x ∈ X
y ∈ argmax

y∈Ry(x)
F (x, y)

This two approaches are deeply different from a mathematical point of view, but also in terms of
practical applications. Let us consider this simple linear bilevel problem (the optimistic formulation is
used):

min
x,y
−x− 100y1 − y2

s.t. 0 ≤ x ≤ 1
y ∈ argmin

y
−y1 − y2

s.t. y1 + y2 = x

y1, y2 ≥ 0

When x = 1, the reaction set Ry(x) = {y1, y2 ≥ 0 | y1 + y2 = 1} which is not a singleton. Any
bilevel–feasible solution for x = 1 is non stable since the optimal value for the leader significantly
changes according to the best response of the follower. The optimistic solution is (1, 1, 0) with
F (1, 1, 0) = −101 and the pessimistic solution is (1, 0, 1) with F (1, 0, 1) = −2. Solving this problem
without a general assumption on the approach used to cope with instability, implies that the problem is
not well posed. Moreover, that may happen that the optimal solution of a bilevel problem exists only
under the optimistic approach.

6 1. Introduction

Theorem 1. (Dempe [54]) Consider a bilevel programming problem with positive variables, x ≥ 0
and y ≥ 0. Let the feasible set S be non empty and compact, if there exists a solution (x, y) such
that G(x, y) ≤ 0 with y ∈ Ry(x), x ≥ 0 then the optimistic formulation admits at least one optimal
solution. This is not true for the pessimistic formulation.

The theorem states that, under the same conditions, the existence of an optimal solution is not guaranteed
for both the approaches, but only for the optimistic one. In Bard and Falk [23] this phenomenon is
illustrated with the following example (once again the optimistic formulation is used):

min
x,y

(2y1 + 3y2)x1 + (4y1 + y2)x2

s.t. x1 + x2 = 1
x1, x2 ≥ 0
y ∈ argmin

y
−(x1 + 3x2)y1 − (4x1 + 2x2)y2

s.t. y1 + y2 = 1
y1, y2 ≥ 0

The reaction set is easy to compute:

Ry(x) =

(1, 0) if x1 <

1
4

y1 + y2 = 1 if x1 = 1
4

(0, 1) if x1 >
1
4

Considering the upper level constraints, the leader’s objective function can be restated as:

F (x1) =

−2x1 + 4 if x1 <

1
4

2y1 + 3
2 if x1 = 1

4

2x1 + 1 if x1 >
1
4

There is a step discontinuity for x1 = 1
4 and the optimal solution depends on follower’s reaction (i.e. y1).

In the optimistic approach, given a set of rational solutions, the leader can control both the upper and
lower level variables: in this case he sets y1 = 0, the optimal solution occurs at x1 = 1

4 and the leader’s
objective function is F (x, y) = 3

2 . In the pessimistic formulation it is assumed that the worst solution
for the leader is selected by the follower, thus y1 = 1. If follows that if x1 = 1

4 then F (x1) = 7
2 , but

adding a small ε > 0 to x1, the leader’s objective function is F (x1 + ε) = 3
2 + 2ε < F (x1). Since we

can arbitrarily reduce ε, the problem does not have a finite optimal solution. In Figure 1.1 the plot of
F (x1) is depicted in both the optimistic (a) and pessimistic approach (b).
In general, the optimistic approach models a form of cooperative relation between the decision makers,
because it is assumed that the leader can influence the follower in his reaction. This assumption is

1.2 Stability problem 7

Figure 1.1. Optimistic and pessimistic approach

quite realistic in many applications, for instance when the leader is a public authority that can employ a
form of control on follower’s behaviour. In the pessimistic approach the basic assumption is that, in a
condition of uncertainty and great risk aversion, the leader tries to optimize his objective function taking
into account the worst possible reaction of the follower in every circumstances. The first approach
is typically used when it can be assumed that the follower can somehow participate to the leader’s
benefits, while the second approach is mostly used when the leader has a small risk tolerance.

Many attempts have been made to overcame the stability problem. Bialas and Karwan [34] propose
to modify the follower’s objective function introducing a small contribution of the leader’s objective
function, that is f(x, y) = f(x, y) + εF (x, y) for a suitably small ε > 0. Dempe [54] propose,
whenever a non stable solution (x, y) is found, to perturb the leader’s variables in order to obtain
a reaction set for the follower that is a small neighborhood of y. Different perturbation techniques
are proposed and described. In Bianco et al. [35] a stability test is proposed to assess whether an
optimal solution is stable or not. Let us assume that (x̄, ȳ) is a bilevel– feasible solution. By solving
the following problem:

max
y

F (x̄, y)

s.t. (x̄, y) ∈ S
f(x̄, y) ≤ f(x̄, ȳ)

if the solution is non stable a new bilevel–feasible solution is found which is greater than or equal to
F (x̄, ȳ). If the difference between the two solutions is greater than a given threshold, the leader can
decide to refuse the non stable solution and find a new bilevel-feasible solution that is stable through
an heuristic approach. In Gzara [71] a non stable solution is considered infeasible and is discarded by a
cutting plane method. Other techniques to tackle the stability problem can be found in Parraga [123],
Charnes et al. [48]. The reader is referred to Lignola and Morgan [96] and Loridan and Morgan [99]
for a complete discussion on these issues in the case of Stackelberg games.

8 1. Introduction

In the rest of the dissertation we address the optimistic approach. All the formulations refer to this
mathematical approach and the general assumption behind this is a form of semi-cooperation between
the two decision makers as previously described.

Finally note that the well known class of max-min problems has an interesting property regarding
the stability issue. In the literature max-min problems have been extensively investigated over the
years and there are several applications of these models, see Danskin [52]. Mathematically, max-
min problems are bilevel programming problems where f(x, y) = −F (x, y), thus the two decision
makers optimize the same objective function but in opposite directions: the follower is assumed
to be an external interdictor/attacker who wants to minimize (maximize) the leader’s profit (cost).
These models are typically used for robust optimization problems or worst case analysis (e.g. for
designing and planning protection of the most critical parts of an infrastructure). The main feature
of max-min problems, in terms of bilevel programming properties, is that the stability of solutions is
always guaranteed. Indeed, in case of multiple optima for the follower, these solutions yield the same
objective for the leader and both the decision makers are indifferent among them. In this case it is not
necessary to make further assumption as the stability problem never occurs. An interesting class of
max-min problems, that is rich of applicative examples, is represented by interdiction problems. The
reader is referred to DeNegre [56] for an overview of interdiction problems and their links to bilevel
programming.

1.3 Computational complexity

Bilevel programming problems are NP-hard problems since the nestled structure of leader’s and
follower’s problems makes them very hard to be solved. There are many results on computational
complexity of bilevel programming and several polynomial reductions to standard combinatorial
problems have been proposed. Jeroslow [78] was the first to prove the NP-hardness of bilevel linear
programming problems, Vicente et al. [146] proved that checking both strict local and local optimality
in bilevel linear programming is NP-hard through a reduction to the problem of 3-SAT. A shorter proof
was given by Ben-Ayed and Blair [27] who proved that a binary knapsack problem can always be
reformulated as a bilevel linear problem.

These results were strengthened by Hansen et al. [74] who proved that bilevel linear problems
are strongly NP-hard. The authors proposed a reduction of a bilevel linear problem to the KERNEL
problem. The latter consists of finding a certificate on the existence of a stable subset of nodes K that
is also absorbing (i.e. there is an arc (i, j) such that i ∈ K and j /∈ K,∀j). Given a directed graph
G = (N,V), let us consider the following max-min problem:

1.4 Related problems 9

min
x

max
y

|N |∑
i=1

yi (1.1)

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E (1.2)
xi ≥ 0 ∀i ∈ N (1.3)
xi + yi ≤ 1 ∀i ∈ N (1.4)
xi + yj ≤ 1 ∀(i, j) ∈ E (1.5)
yi ≥ 0 ∀i ∈ N (1.6)

Constraints (1.2) guarantee that subset K is stable, while constraints (1.4) and (1.5) are necessary to
force the leader to choose an absorbing subset for minimizing his objective function. The variables
xi = 1 in the optimal solution correspond to the nodes of the kernel.

Theorem 2. (Hansen et al. [74]) A graph G = (N,V) has a kernel K if and only if the optimal
solution of the max-min problem (1.1)-(1.6) is zero.

The linear max-min problem (1.1)-(1.6) can be easily reformulated as a bilevel problem with linear
constraints and linear objective functions in opposite verse, hence the KERNEL problem can be
polynomially reduced to a bilevel problem. The KERNEL problem is strongly NP-hard (Garey and
Johnson [67]), thus bilevel programming problems are strongly NP-hard, too.

1.4 Related problems

Although in the last few years bilevel programming has received an increasing interest by the scientific
community as a stand alone problem, in the first studies it was strictly associated to multiobjective
problems and was tackled using well known techniques of multiobjective optimization. Actually, there
are several problems that can be considered related to bilevel programming problems. We present a
description of the most remarkable ones in the perspective of this dissertation.

1.4.1 Max-min problems

In general max-min problems can be considered as noncooperative zero sum game with perfect
information of both players. As we previously pointed out, a max-min problem can be reformulated
as a bilevel problem with objective functions of opposite verse. Falk [60] was the first to show the
equivalence between a two stage max-min problem, where the decisions are taken in sequential order,
and nonconvex problems. The author investigates the following Linear Max-Min problem (LMM):

(LMM) max
x

min
y
cT1 x+ cT2 y

s.t. (x, y) ∈ S

defined on the compact set S = {(x, y) | x ∈ Rn+, y ∈ Rm+ , Ax+By ≥ b}.

10 1. Introduction

Theorem 3. (Falk [60]) Problem LMM is equivalent to a nonconvex program with a piecewise linear
and convex objective function and defined on the linear polyhedron S(x), that is the projection of S
onto the variable x space.

Theorem 4. (Falk [60]) Problem LMM always has an optimal solution (x∗, y∗). Moreover there is an
optimal solution such that x∗ is a vertex of S(x).

Theorem 5. (Falk [60]) There is an optimal solution (x∗, y∗) of LMM which is a vertex of S.

Bard and Falk [23] show that these results can not be extended to a general bilevel problem since they
are based on the assumption f(x, y) = −F (x, y), but the same results of Theorems 4 and 5 are proved
by Bialas and Karwan [33] for the linear case. In the next chapter the main geometric properties of
bilevel linear problems are presented and commented.

The same max-min problem is addressed by Gallo and Ülkücü [65], Konno [89], Alarie et al. [9],
Audet et al. [14] and Marcotte and Savard [109] as a possible reformulation of a disjoint bilinear
programming problem. Under the assumptions of separability and boundedness of the feasible set, the
latter can be reformulated as two nested problems with opposite objective functions defined on the
same feasible set.

All the wide class of problems denoted as bottleneck problems, where the objective is to maximize
the performance of the most critical element of a system in order to affect the global efficiency,
are basically max-min or min-max problems and can be considered like special cases of bilevel
programming problems. One of the best known class of bottleneck problems is represented by the
centre and median problems on graphs introduced by Hakimi [72] [73]. In the centre problem it is
required to choose the location of a facility in order to minimize the maximum distance of clients from
it, while in the median problem the objective is the minimization of the total distance. Note that, once a
facility is located on a node of the graph, the distance from a client to the facility is computed solving a
shortest path problem that represents the follower problem of the bilevel model.

1.4.2 Game theory

Bilevel programming has a natural game theoretic interpretation in terms of Stackelberg games. These
games were introduced by Stackelberg [139] as noncooperative dynamic games with perfect and
complete information: the players move in sequential order, they know the payoff function and the set
of feasible strategies of all the others opponents and in every stage of the game the player who moves
exactly knows all the strategies implemented by the previous players. Unlike classical static games,
there is a clear order of play that defines which player is the leader (who moves first) and who is the
follower (who moves after). Although Stackelberg game is a dynamic game, in the literature it is often
defined as static to distinguish the single round game from the repeated one. If the number of players
is two, this framework clearly represents a bilevel programming problem. Vicente and Calai [145]

1.4 Related problems 11

highlight that when the reaction set is not a singleton and stability problem may occur, a solution of the
Stackelberg game may not be also a solution of the bilevel problem and the equivalence between the
two problems has to be treated carefully.

Stackelberg games have been widely used to model different market scenarios and multilevel
economic systems and their main feature is the hierarchical and sequential structure. Bard and Falk [23]
highlight the relation between bilevel programs and bimatrix games; indeed, the latter are not dynamic
games and the two players are assumed to move simultaneously. The authors show how the result of a
bilevel problem instance changes in the bimatrix game and in the two Stackelberg game in which the or-
der of play is inverted. Under a suitable assumption of sequential rationality, Selten [130] introduced the
concept of subgame perfect equilibrium. This definition extends the concept of Nash equilibrium (Nash
[116]) adding the requirements that the strategy of each player is optimal in every stage of the game and
can be viewed as an application of the Bellman’s optimality principle of dynamic programming to game
theory. Even if computing Nash equilibrium is still a very challenging task and efficient methods in
the general case do not exist, algorithm game theory is a developing subfield of game theory and aims
at computing equilibrium points in efficient way. The reader is referred to the book of Nisan et al. [118].

Finally Bialas and Chew [33] and Bialas [30] investigate the mathematical properties of coalition
games in order to show the effect of coalition formation in n−Stackelberg games in terms of overall
inefficiencies reduction.

1.4.3 Multiobjective and multicriteria problems

The presence of multiple decision makers is one of the main characteristics of modern systems in
which the optimal solution is often the best trade off among different alternatives. In these problems the
concept of optimal solution can not be applied in a straightforward manner unlike single decision maker
optimization problems. The definition of optimal solution needs to be revised and extended to introduce
the notion of efficient solution, as it was defined by Pareto [122]. Here is a general formulation of a
multiobjective problem

min
x

[f1(x), f2(x), . . . , fk(x)]T

s.t. x ∈ F

and a solution x∗ is defined Pareto optimal if it does not exist a solution x ∈ F such that

fi(x∗) ≤ fi(x) ∀i = 1, . . . , k

fj(x∗) < fj(x) for at least a j ∈ {1, . . . , k}

There have been many attempts to study bilevel programming problems as biobjective problems,
especially in the first theoretical studies. Bard [20] noticed that for bilevel linear problems the first

12 1. Introduction

Figure 1.2. Set of solutions dominating point (1, 1)

order optimality necessary conditions coincide with the optimality conditions of a single level problem
defined on the same feasible set and whose objective function is αF (x, y) + (1 − α)f(x, y). He
proposed to optimally solve a bilevel problem treating it as a single level biobjective problem and
iteratively increasing the value of α until the solution computed lies on the reaction set. A similar
approach, based on solving the weighted sum of the two objective functions, was proposed by Ünlü
[143]. It is a well know result (Geoffrion [69]) that this method, known as scalarization method, is able
to compute a Pareto efficient solution. Nevertheless, the optimal solution of a bilevel problem is not
necessarily Pareto efficient, thus these methods are not exact. Let us consider the following example:

min
x,y
−x− 5y

s.t. x ≥ 0
y ∈ argmin

y
y

s.t. x− y ≥ 0
x+ y ≤ 4
x+ 3y ≥ 4
y ≥ 0

The bilevel optimal solution is (1, 1) with leader’s and follower’s objectives equal -6 and 1, respectively.
It is simple to note that (1, 1) is not a Pareto optimal solution as it is dominated, for instance, by (3, 1).
In Figure 1.2 the shadowed area represents the set of solutions dominating (1, 1).

This result is coherent with the game theoretical interpretation of bilevel problems: in fact, the equilib-
rium point of a Stackelberg game is not required to be Pareto optimal. In multiobjective programming,
unlike bilevel problems, the objective functions are controlled by the same decision maker on a common
feasible set. Haurie et al. [75] formally explain why the Bard’s result is not always true, but highlight
that the solution computed has the interesting properties of being both rational and Pareto efficient. Wen
and Hsu [148] tried to define a sufficient condition under which the correspondence between the bilevel
and the biobjective problems holds, that is ∇yF (x, y)T∇yf(x, y) ≤ 0. Marcotte and Savard [107]

1.4 Related problems 13

showed that this result is false and the only case in which an equivalence between the two problems
holds is when ∇yF (x, y) = λ∇yf(x, y) with λ ≥ 0: it means that there ia a form of cooperation
between the leader and the follower and the optimal solution must be Pareto optimal.

The first author who correctly proved the existence of a relationship between bilevel linear and
multiobjective problems was Fülöp [64]. The author understood that this link is valid if a multiobjective
problem with more than two objectives is taking into account. He addressed the following bilevel linear
problem:

min
x,y

cT1 x+ cT2 y (1.7)

s.t. x ∈ Rn+ (1.8)
y ∈ argmin

y
dT1 x+ dT2 y (1.9)

s.t. Ax+By ≥ b (1.10)
y ∈ Rm+ (1.11)

with (n+m) variables, c1, d1 ∈ Rn, c2, d2 ∈ Rm, A ∈ Rq×n, B ∈ Rq×m and b ∈ Rq. Let us consider
the matrix

A′ =
[
A

I

]

where I is the identity matrix n× n, thus A′ ∈ R(q+n)×n. Let Ā be a r × n submatrix of A′ and let
r = rank Ā. Moreover, let the criterion matrix C be defined as

C =

Ā O

−1T Ā 0T2
0T1 dT2

where 0T1 and 0T2 are zero row vectors of dimension n and m, respectively, and O is a r ×m zero
matrix. The criterion matrix C has dimension (r + 2)× (n+m). It is now possible to define a new
multiobjectives problem with (r + 2) objective functions as

min
x,y
C

[
x

y

]
(1.12)

s.t. Ax+By ≥ b (1.13)
x ∈ Rn+ (1.14)
y ∈ Rm+ (1.15)

Theorem 6. (Fülöp [64]) A solution (x∗, y∗) is bilevel–feasible for problem (1.7)− (1.11) if and only
if it is a Pareto optimal solution of the problem (1.12)− (1.15).

14 1. Introduction

Corollary 1. (Fülöp [64]) Bilevel problem (1.7) − (1.11) is equivalent to minimizing the objective
function cT1 x+ cT2 y over the efficient set of the multiobjective problem (1.12)− (1.15).

Finally the author shows that the relationship between bilevel and multiobjective problems is biunique
in the linear case. Hence, it always possible to construct a bilevel linear problem starting from a
multiobjective problem such that a solution is feasible for the first if and if it is a Pareto optimal
solution for the second and vice-versa. This represents the strongest result for the bilevel linear case
and proves that a link between these two class of problems exists, but it is necessary to take into account
multiobjective problems with more than two objectives. Fliege and Vicente [61] also investigated the
relationship between multiobjective and bilevel problems in the non linear case.

To conclude this section, it is interesting to observe how bilevel programming can be used for
multicriteria optimization. These problems are very close to multiobjective ones and in the literature
they are often referred indistinctly. In multicriteria problems the feasible set is made of a limited
number of alternatives and the objective functions represent the criteria used to consider one alternative
better than another. Methods ELECTRE (Roy [125]) are some of the most famous techniques used
to tackle these kinds of problems. The rationale behind these methods is to define a domination
relationship between each pair of alternatives and then build a graph with a node for each alternative
and an edge for each domination relationship. The final step is to detect the kernel of this graph which
constitutes the subset of alternatives not dominating each other and dominating all the other alternatives.
As we previously pointed out, finding the kernel of a graph can be formulated as a bilevel programming
problem.

1.4.4 Stochastic programming problems

Stochastic problems are generally used to model optimization problems under uncertainty conditions.
In this kind of problems a subset of variables are assumed to be stochastic. The main challenge of
the decision makers is to cope with uncertainty and take a decision now that involves uncertain future
scenarios. The most used mathematical approach to model these problems is called two stage stochastic
optimization. The main idea is to partition the set of variables into two subsets, a group of variables
regarding decisions that must be taken before the random occurrences (first stage) and a group of
variables regarding decisions that must be taken in the future once the uncertainty is revealed (second
stage). Here is the general implicit formulation of a linear two stage stochastic problem:

min
x,ξ

cTx+ EξQξ(x, ξ(ω))

s.t. Ax = b

x ≥ 0

where c ∈ Rn, A ∈ Rq×n, b ∈ Rq. The vector x ∈ Rn+ represents the first stage variables and the
function Qξ(x, ξ(ω) is defined as

1.4 Related problems 15

Qξ(x, ξ(ω)) = min
y
{q(ω)T y(ω) | y(ω) ≥ 0,W (ω)y(ω) = h(ω)− T (ω)x}

where y(ω) ∈ Rm+ are the second stage variables, ω ∈ Ω is a random event and T (ω) ∈ Rq×n and
W (ω) ∈ Rq×m are known as the technology matrix and the recourse matrix, respectively. As the
second stage parameters and variables depend on the outcome of random events ω, we can define a
stochastic variable ξ(ω). Note that the set of constraints on the stochastic variables are defined for
each possible outcome ω, hence the feasibility of solution is always guaranteed no matter the random
occurrences. The objective function of the model is the sum of a deterministic cost vector and the
expected value of a random variable taking into account the future outcomes of random event ω. The
explicit formulation of the problem is

min
x
cTx+ Eξ[min

y
q(ω)T y(ω)]

s.t. Ax = b

T (ω)x+W (ω)y(ω) = h(ω)
x, y(ω) ≥ 0

From the explicit formulation the link between bilevel and stochastic problems can be noted in a
straightforward manner. In the simplest case the stochastic variables ξ(ω) is assumed to be discrete and
a small number of scenarios is considered. In this case the stochastic model is easy to handle, but in
general the nestled structure of the problem makes it hard to be solved as well as bilevel problems. The
reader is referred to monographs of Birge and Louveaux [36] and Kall and Wallace [81] for a more
detailed overview of stochastic programming.

1.4.5 Mathematical programming with equilibrium constraints

One of the first and most immediate relationships of bilevel programming problems with other problems
concerns Mathematical Programming with Equilibrium Constraints (MPECs). Colson et al. [49] show
that bilevel problems are a special subclass of MPECs, since the first problem can always be formulated
as the second with proper precaution. Bilevel problems can be easily considered as MPECs in which
the equilibrium constraints are the optimality conditions of the follower’s problem. MPECs can be
viewed as bilevel problems with a variational inequality in the upper level problem. Let us consider the
general formulation of an MPEC

min
x,y

F (x, y)

s.t. (x, y) ∈ S
y ∈ C(x)

where S ⊆ Rn+m is closed and non empty and C(x) is the set of y ∈ Ωy(x) such that y is the solution
of the variational inequality VI (ψ,Ωy) defined by the function ψ : Rn+m → Rm and the closed
convex set Ωy(x) ⊂ Rm:

16 1. Introduction

(v − y)Tψ(x, y) ≥ 0 ∀v ∈ Ωy(x)

If ψ(x, y) = ∇yf(x, y) and Ωy(x) = {y | y ∈ Y, g(x, y) ≤ 0}, the variational inequality VI (ψ,Ωy)
defines the stationarity conditions of the minimization problem:

min
y
f(x, y)

s.t. y ∈ Ωy(x)

thus the resulting formulation is equivalent to a bilevel problem. The reader is referred to the Luo et al.
[103] for a comprehensive investigation of MPECs and their possible applications.

1.5 Applications

There are several examples of applications of bilevel programming models to a wide range of real
problems, especially for bilevel linear programs that are the problems we mainly address in this
dissertation. This is due to the great capacity of bilevel programming of representing the hierarchical
nature of several decision making processes. A general framework that is common to all applications is
the presence of a system that is controlled, designed and managed by one decision maker, but it is used
by another. Hence the interests of the two decision makers are usually different and often conflicting.

Interesting surveys on applications of bilevel programming to real life problems are proposed,
among the others, by Colson et al. [49], Brotcorne [39] and Bard [21]. Bilevel programming has been
used to model and solve problems of many different fields. Migdalas [113] highlights the bilevel and
hierarchical nature of transportation planning problems: the social interest of the leader, who seeks to
maximize the global efficiency of the network, is different from the objectives of the users who choose
how to move inside the network with regard to travel time and cost. A similar problem is encountered
in highway toll pricing presented by Labbe et al. [94]. Ben-Ayed et al. [28] apply bilevel programming
for solving a highway network design problem with real data coming from the Tunisian highways
system. Further applications in the transportation field can be found in Marcotte [106] and Gao et al.
[66]. The same framework with two decision makers, one managing a system and the other using it, is
proposed by Hobbs and Nelson [76] in the energy sector.

Another problem that is addressed in terms of bilevel optimizations is the hazardous material
transportation. In this kind of problem, that is still a network design problem, the aim of the leader is to
minimize the risk coming from the circulation of hazardous materials on a network. The leader can
prohibit the circulation on a link of the network, as in Gzara [71], or can impose a restriction on the
amount of traffic over the link, as in Bianco et al [35]. Other examples can be found in Kara and Verter
[83].

1.6 General framework and our contributions 17

In Bard [21] two interesting applications of linear bilevel problems can be found in the field of
production planning on different levels. The first addresses a production planning problem in which
a manufacturer (the ledaer) has to cope with a stochastic demand that varies according to the level
of advertising investment. In the second application the leader is the French government that seeks
to define the optimal amount of incentives to encourage farmers to produce nonfood crops used for
biofuel production. An improved version of the latter model is presented in Bard [25]. In the manage-
ment field Cassidy et al. [46] propose a bilevel model for the problem of allocating resources from
a central government to regional ones for financing local projects. Other examples can be found in
Anandalingam [2] and Bard [18].

As we previously mentioned, there is a wide literature on interdiction problems to solve worst
case problems and robustness analysis. Scaparra and Church [128] and [129] address the problem
of ensuring the best protection of a system with critical infrastructures against possible attacks and
disruptions. The model is a bilevel formulation in which the leader decides which facility fortify in
order to reduce the impact of disruptive events. Other applications of bilevel programming used to
model interdiction problems are in Aksen et al. [7] and [6] and Liberatore et al. [95], while Arroyo and
Galiana [10] propose a similar bilevel approach for the terroristic threat problem. Economic models
based on the Stackelberg equilibrium problem exploit the theoretical results of bilevel programming. In
Smith et al. [137] the authors address the problem of defining the best price strategy for the introduction
of a new product on a market in a scenario with a predator competitor. A typical Stackelberg game in
an oligopolistic situations is also investigated by Sherali et al. [131] and Kochetov et al. [88].

There is an arising area of research that exploits the theoretical properties of bilevel programming
in order to solve other hard mathematical problems, especially in the combinatorial area. In this case
bilevel programming problems are used as a subroutine and their efficient solutions may positively
impact on other problems. In Lodi and Ralphs [98] the problem of finding the maximally violated valid
inequality for a given convex hull is naturally formulated as a bilevel problem. A similar separation
problem is addressed by Mattia [111] for the network loading problem. Finally Sahin et al. [126]
present a survey on the applications of bilevel programming in civil engineering (traffic management)
and chemical engineering (process synthesis).

1.6 General framework and our contributions

In this dissertation our main focus is addressed to bilevel linear problems with a subset or all the
variables discrete. As we mentioned, there is a wide literature on the possible applications of bilevel
programming to real life problems and in the last few decades a great effort has been made to investigate
properties and develop efficient solution methods. Notwithstanding, the research area of discrete bilevel
problems is still poorly studied and there is a lack of efficient methods for general instances of such
problems. We believe that discrete bilevel programming has not been exploited in all its potentiality,

18 1. Introduction

especially for modelling integer and combinatorial problems, despite it represents a natural and
immediate framework for hierarchical and multi decision makers problems. This is mainly due to the
computational difficulties of integer bilevel problems, even in the linear case.

In the remainder of the dissertation we investigate potentiality and criticality of this promising area
of research as follows. In Chapter 2 we present the most remarkable results of bilevel linear problems.
A series of theoretical results are introduce along with an overview of the best performing solution
methods existing in the literature. We point out how the problem changes if a set or all the variables are
discrete and we introduce a classification of discrete bilevel liner problems. In Chapter 3 we investigate
the case in which the upper level variables are discrete and the lower level variables are continuous.
An improvement of an existing reformulation technique is presented. Furthermore, we propose a new
valid inequality for this class of problems. In Chapter 4 we address the case in which all variables are
discrete. We highlight the limits of classical methods for integer problems and propose two new exact
methods and two heuristics based on some geometrical properties of bilevel problems. In Chapter 5 we
present two applications of discrete bilevel linear problems to a Grid scheduling problem and a facility
location problem.

Summing up, these are the main contributions we provide in this dissertation:

– an improvement of an existing reformulation method for bilevel problem with discrete leader’s
and continuous follower’s variables;

– a new valid inequality for the same class of problem

– two new exact methods for bilevel problem with all integer variables

– two new heuristic methods for the same class of problem

– two new applications of discrete bilevel linear programming in the field of industrial engineering.

Finally, in Chapter 6 we provide our final remarks, open research points and possible directions for
future research.

19

Chapter 2

Bilevel Linear Programming

In this chapter we address a particular class of bilevel programming problems that is one of the most
studied in the literature. We assume that all the variables are continuous and all the functions are
linear, both the constraints and the objective functions. Let us define these problems as Bilevel Linear
Problems (BLP). For BLPs many properties and solution methods have been proposed and in the rest
of this chapter we provide a description of the state of the art of the best performing algorithms.

The general formulation of the problem we address is the following:

min
x,y

F (x, y) = cT1 x+ cT2 y

s.t. Cx+Dy ≤ e
x ∈ Rn+
y ∈ argmin

y
f(x, y) = dT1 x+ dT2 y

s.t. Ax+By ≤ b
y ∈ Rm+

where c1, d1 ∈ Rn are the leader’s cost vectors in the upper level and lower level objective functions,
respectively, c2, d2 ∈ Rm are the follower’s cost vectors in the upper and lower level objective functions,
respectively, A ∈ Rq×n, B ∈ Rq×m and b ∈ Rq define the set of lower level constraints and C ∈ Rp×n,
D ∈ Rp×m and e ∈ Rp define the set of upper level constraints. The size of a generic BLP is defined
by parameters n, m, p and q. Notice that the follower’s problem is parameterized for each value of the
leader’s variables x. Thus, according to a given x̄ ∈ Rn+, both the follower’s feasible set Ωy(x̄) and the
follower’s objective function f(x̄, y) change. Let us write the follower’s problem as

min
y
f(x̄, y) = dT1 x̄+ dT2 y

s.t. By ≤ b−Ax̄
y ∈ Rm+

As a simple matter of fact, once x̄ is set by the leader and Ωy(x̄) is defined, the follower’s best solution
does not depend on variable x as dT1 x̄ is only a constant and does not impact on the follower’s reaction.

20 2. Bilevel Linear Programming

Thus, for ease of presentation and for saving notation, in the rest of this dissertation we omit the
cost vector d1 and we assume, without loss of generality, that the follower’s objective function does
not depend on the x variables, i.e. f(x, y) is replaced with f(y). Recall that the follower problem
represents a constraint in the leader’s view point, thus roughly speaking we are interested in the
follower’s best solution and not in the numerical value of its objective function.

2.1 Polyhedral properties

In the introduction we provided the general definitions of feasible set S, reaction set Ωy(x) and
inducible region IR. Now we characterize them in the linear case. In the following some remarkable
results about the geometrical properties of the solutions space of BLPs are reported and commented.

Theorem 7. (Bard [20]) The inducible region can be written equivalently as a piecewise linear
inequality constraint comprised of supporting hyperplanes of S.

This result implies that, even if the feasible set S is compact and non empty, the inducible region IR
is in general a non convex set. Recall that a bilevel problem is equivalent to minimize the leader’s
objective function over its inducible region. Hence, even in the linear case, BLPs are optimization
problems defined over non convex feasible regions and this explains their computational complexity.
Notwithstanding, it is still possible to define a weak convexity property for IR.

Theorem 8. (Bialas and Karwan [33]) If a solution (x, y) ∈ IR can be written as convex combination
of k solutions (xi, yi) ∈ S, then (xi, yi) ∈ IR ∀i = 1, . . . , k.

The latter implies the following two results.

Corollary 2. (Bialas and Karwan [33]) An extreme point of IR is also an extreme point of S.

Note that, due to the linearity of F (x, y), in theory a BLP may be reformulated replacing IR with
its convex combination and defining a new convex set that is contained in S. Unfortunately this
reformulation can not be realized in practice as it requires an explicit description of IR and all its
vertexes. Let us consider the following example for illustrating all the previous results.

min
x,y

x− 5y

s.t. x ≥ 1
y ∈ argmin

y
y

s.t. −x+ 3y ≤ 6
x+ y ≤ 6
x+ 2y ≥ 4
x− 2y ≤ 3
y ≥ 0

2.1 Polyhedral properties 21

Figure 2.1. Feasible set, reaction set and inducible region

In Figure 2.1 it is easy to observe a graphic representation of the regions associated to the example.
The feasible set S is the polytope defined by the white and the shadowed areas. The projection of S
onto the leader’s space is the set [1, 5]. For a given x̄ ∈ [1, 5], the set of follower’s solutions contained
between points yD and yE forms the follower’s feasible set Ωy(x̄). The point yD is the follower’s
reaction set Ry(x̄) which is a singleton in this case, thus point D is a rational solution. The inducible
region IR, represented by the bold lines, is only a small portion of feasible set S and it is fully
defined by two supporting hyperplanes of it. The shadowed area is the convex hull of vertexes A,
B and C of IR: as expected the latter is contained in S and all the vertexes of IR are vertexes of
S according to Corollary 2. The optimal solution occurs at vertexA which is both a vertex of S and IR.

2.1.1 Upper level constraints

One of the main characteristics of bilevel programming problems is the presence of two different set of
constraints, the upper level ones and the lower level ones, which impact differently on the definition of
the solutions space. In this section we highlight some theoretical results concerning the role of upper
level constraints as in the applications we describe in Chapter 5 the presence of these constraints is
shown to be not negligible. Moreover, in our opinion, in the literature the effect of the upper level
constraints does not seem to be sufficiently investigated and a large number of resolution methods,
more or less implicitly, assume they are not present in the formulation.

According to the previous definitions, it is a matter of fact that whenever there are no upper level
constraints, that is p = 0, a rational solution is also bilevel-feasible. The same result can be extended
to the case in which the upper level constraints do not involve the follower’s variables: in the previous
example x ≥ 1 is an upper level constraint in which there are no follower’s variables and, indeed, every
rational solution is also bilevel-feasible. In the same example, if the constraint x+ 2y ≥ 4 is moved to
the upper level, the inducible region deeply changes, as it can be observed in Figure 2.2.

The projection of S onto the x space is the interval [1, 5] and ∀x ∈ [1, 5] the follower’s feasible set

22 2. Bilevel Linear Programming

Figure 2.2. Role of the upper level constraints

Ωy(x) ⊆ [0, yD] and the reaction set Ry(x) ⊆ [0, yC]. The interval [yB, yA] represents the projection
of the upper level constraint 2y ≥ 4− x onto the y space: all the rational solutions out of this interval
are not bilevel-feasible. Hence, all the rational solutions in [0, yB) are not feasible in the leader’s
perspective. Let us consider point E, with yE = 0. Point E is a rational solution, as yE ∈ Ry(xE), but
it is not bilevel-feasible. The bold segment B − C is the new inducible region that is still piecewise
linear and is a supporting hyperplane of S. The optimal solution is vertex C.

From a geometrical point of view, the difference between the latter two examples occurs because in
the second there is an upper level constraint whose projection onto the y space intersects the follower’s
feasible set for a given x, and cut off some rational solutions. The shadowed area in Figure 2.2
represents the subset of solutions not satisfying the leader’s requirements but feasible for the follower.
Notice that, if in the example the upper level constraint is replaced with x+ 2y ≥ 7, the only bilevel–
feasible solution is vertex C, while for higher value of the right-hand-side the BLP is an empty problem
despite S is compact and non empty. This results can be generalized as follows.

Theorem 9. Given a bilevel linear problem P ′ with p 6= 0, if at least one leader’s constraint is moved
to the follower problem, the new bilevel linear problem P ′′ is a relaxation of P ′.

Proof. Let us assume that, for a given x′ such that (x′, y) ∈ S, the solution (x′, y′) is rational. Let
us consider the upper level constraint cTj x + dTj y ≤ ej . If (x′, y′) satisfies this constraint, moving
cTj x+ dTj y ≤ ej to the follower’s problem does not change the rationality of the solution. Conversely,
if the upper level constraint is violated, it follows that solution (x′, y′) is not bilevel–feasible for the
original problem. If constraint cTj x + dTj y ≤ dj is moved to the follower’s problem, (x′, y′) is not
longer a rational solution for problem P ′ since y′ does not belong to the new set Ωy(x′). Let (x′, y′′)
be the new rational solution (note that it must exist since we chose an x′ such that (x′, y) ∈ S). Two
cases may happen: if (x′, y′′) violates another upper level constraint it is not bilevel-feasible for P ′′,
otherwise P ′′ admits a bilevel-feasible solution at x′ unlike P ′. The same rationale can be repeated if
the follower does not admit a finite optimal solution, i.e. Ry(x′) is not a finite set. This completes the
proof. 2

2.1 Polyhedral properties 23

Figure 2.3. Upper level constraints may induce infeasibility

In the proof of Theorem 9 it is interesting to note that, in some particular cases, the upper level
constraints play a fundamental role in defining feasibility of BLP. Let us consider this simple example:

(P ′) min
x,y

y

s.t. y ≤ 1
x ≥ 0
y ∈ argmin

y
−y

s.t. x+ y ≥ 1
x− y ≤ 1
y ≥ 0

(P ′′) min
x,y

y

s.t. x ≥ 0
y ∈ argmin

y
−y

s.t. y ≤ 1
x+ y ≥ 1
x− y ≤ 1
y ≥ 0

In Figure 2.3 we can see exactly what is stated in the proof of Theorem 9: at x = x̄ in P ′ the follower’s
feasible set Ωy(x̄) is unbounded and Ry(x̄) is not a finite set, while in P ′′ the set Ωy(x̄) is bounded
and a bilevel-feasible solution exists. While problem P ′ is infeasible, problem P ′′ has a set of multiple
optimal solutions (x, 1) with x ∈ [0, 2].

Shi et al. [135][132][133][134] propose a new definition of bilevel linear problems and state that
the formulation they introduce is able to solve instances that the classical model fails to solve. The
model they propose is obtained placing the upper level constraints in the follower’s problem, thus
for Theorem 9 they relax the original formulation of the problem. The authors start from the wrong
observation that if S is non empty and compact and Ωy(x) 6= ∅ ∀x such that (x, y) ∈ S, a Pareto
optimal solution must exist. In fact, as we showed in the previous chapter, a bilevel–feasible solution
is not necessarily a Pareto optimal solution and the two properties are distinct concepts. Finally, as
observed by Audet et al. [11] and Mersha and Dempe [112], the authors propose a weaker formulation
of the problem because they ignore the different role played by the upper and lower level constraints
and solve a relaxation of the original BLP.

Finally, in order to understand the meaning of upper level constraints in terms of application on
real problems, let us consider the following hazardous material transportation problem. Given a graph

24 2. Bilevel Linear Programming

G = (V,E) that represents the road network of a geographical area, the leader wants to minimize the
risk associated to the hazmat transportation, while the follower has the objective of minimizing the
transportation costs for carrying hazmat materials from an origin s to a destination t. The leader can
allow or forbid the transit on a given arc (i, j) and the follower, once the network has been designed by
the leader, chooses the shortest path for realizing the transportation. The bilevel model that formulates
this problem is:

min
x,y

∑
(i,j)∈E

ρij yij

s.t. xij ∈ {0, 1}
y ∈ argmin

y

∑
(i,j)∈E

cij yij

s.t.
∑

j|(i,j)∈E
yij −

∑
j|(j,i)∈E

yji =

1 i = s

0 i 6= s, t

−1 i = t

yij ≤M · xij
yij ∈ {0, 1}

Variable xij is equal to 1 if the leader allows the follower to transport hazmat materials on arc (i, j) and
0 otherwise. Variable yij is equal to 1 if the follower uses the arc (i, j) in the s− t path and 0 otherwise.
A risk ρij and a cost cij are associated to every arc (i, j): the cost is associated to the arc’s length,
while the risk is due to the presence of critical infrastructures that may be damaged in case of accident.
Let us think to a road passing in the city center of a small city, it may have a small transportation cost,
but a high risk because of impact and damages that a possible accident may cause. The objective of the
follower is to find the least expensive path, while the objective of the leader is to minimize the total risk.
The follower problem is a shortest path problem in which constraints yij ≤M · xij are added: if the
transit on an arc (i, j) is forbidden, i.e. xij = 0, the follower can not choose arc (i, j) in his shortest
path problem.

Let us consider the instance in Figure 2.4 with s = 1 and t = 4.

The optimal solution for the leader has x∗14 = 0 as this is the only way to forbid follower to transit
on arc (1, 4) that represents both the shortest path and the path with the highest risk. The follower’s
shortest path is 1− 3− 4 of cost 22 and risk 3 and this is the optimal solution of the model. If we move
the set of constraints yij ≤M · xij from the lower to the upper level, the problem does not apparently
change very much. Actually, regardless the choice of the leader, the follower will always select path
1 − 4 of cost 1 and risk 100. Thus, if the leader sets x14 = 0, the follower’s best response is not
bilevel-feasible because of the upper level constraints yij ≤M · xij . It follows that all bilevel-feasible
solutions allow transit on arc (1, 4) and the optimal solution of the problem has risk equal to 100.
This result shows that, just modifying the position of a set of constraints, their role in the formulation
changes and the solutions space may be completely different.

2.2 BLP relaxations 25

Figure 2.4. A simple instance for a bilevel hazmat transportation problem

2.2 BLP relaxations

2.2.1 Relaxation via removal of constraints

The different impact of upper level and lower level constraints on the bilevel formulation has to be
taken into account when we want to relax a BLP by dropping a subset of constraints. Unlike classical
mathematical programming models, the new formulation obtained removing one or more constraints
does not necessarily provide a valid relaxation. Indeed, this depends on the choice of the constraints
we remove. Let us consider the following problem:

min
x,y
−x+ 3y

s.t. y ≥ 1
y ∈ argmin

y
y

s.t. x+ y ≤ 4
x+ y ≥ 2
x− y ≥ −1
x− y ≤ 1

The optimal solution of the BLP is (2, 1), which is vertex C of S, and the optimal value is 1, see Figure
2.5(a). If the upper level constraints y ≥ 1 is dropped, as depicted in Figure 2.5(b), the inducible
region is wider, and the new optimal solution is vertex E, (1.5, 0.5), and the objective function’s value
is 0. Finally, if the follower’s constraint x− y ≤ 1 is removed, the follower’s feasible set is larger, but
the new rational solutions of the follower violate the upper level constraint. The inducible region is
reduced to segment A–B and the optimal solution is vertex B, (1, 1), which gains an objective func-
tion equals 2. Hence, in the second reformulation represented in Figure 2.5(c), dropping a follower’s
constraint we do not obtain a valid relaxation and the optimal solution is the worst out of the three cases.

26 2. Bilevel Linear Programming

(a) Inducible region of the original problem (b) Removal of an upper level constraint

(c) Removal of a lower level constraint

Figure 2.5. Different effects of removal of constraints

2.2 BLP relaxations 27

This result, which is apparently unclear, can be easily understood if we think to the inherent meaning
of bilevel programming problems. The general framework of bilevel programming is the presence of
two non cooperating decision makers. Dropping a lower level constraint means that the set of possible
choices for the follower is increased and thus he acquires more contractual power towards the leader.
This implies that the solutions space of the leader may reduce and the value of the optimal solution
may get worse. On the contrary, if an upper level constraint is removed, the solutions space of the
follower does not change, but a larger set of rational solutions may be considered acceptable by the
leader. Thus the value of the optimal solution can not be worse and this represent a valid relaxation.

The following proposition sums up the above mentioned results.

Proposition 2. A BLP can be correctly relaxed dropping a subset of constraints, if and only if these
are constraints under control of the leader.

2.2.2 Single level relaxation

One of the most used and immediate relaxation of a BLP is the so called single level relaxation. It
consists of dropping the follower’s objective function, turning the bilevel structure into a single level
one and assuming that only one decision maker is involved; from a mathematical point of view the
leader’s feasible set is fully defined by a set of constraints and it is not necessary to solve an inner
problem to check feasibility of a solution. The feasible set S does not change and the problem consists
of solving the leader’s objective function on S.

It is immediate to understand that the single level version of a BLP is a valid relaxation, as a
solution that is bilevel–feasible for the BLP is also feasible for the single level problem, but the contrary
may not be true.

There is a special case in which the optimal solution of a BLP and of the optimal solution of its
single level version coincides. For the sake of simplicity, let us assume that there are no upper level
constraints. If the following holds

∇yF (x, y) = ∇f(y)

it means that the leader’s and the follower’s objective function have the same verse, thus minimizing
(or maximizing) F (x, y), f(y) is minimized (or maximized) as well. In this case, the optimal solution
found solving the single level formulation is also optimal for the BLP.

This result may not hold if we introduce an upper level constraint which depends on the upper
level variables x. We now prove the following two theorems, which are necessary and sufficient
conditions under which the optimal solution of the single level relaxation of a BLP is also optimal for
the original problem. According to these conditions, it is easy to know whether the optimal solution of
the relaxation is bilevel–feasible, without solving the inner problem. We assume that S is compact and
non empty.

28 2. Bilevel Linear Programming

Theorem 10. If the optimal solution (x̄, ȳ) of the single level relaxation of a BLP is optimal for the
original BLP, then ∇yF (x, y) = ∇f(y) and among the active constraints at (x̄, ȳ) there is at least
one constraint under control of the follower.

Proof. Let us assume that (x̄, ȳ) is a vertex of S in which the only active constraints are under control
of the leader. Let us define S′ = S \ {Cx + Dy ≤ e}. From the previous sections we know that
S ⊆ S′ and that solving the single level relaxation of BLP on S′ two cases may occur: a) we found a
solution (x′, y′) on the boundary of S′, b) the single level relaxation does not admit a finite solution,
i.e. S′ is unbounded. In case a), if (x′, y′) ≡ (x̄, ȳ), it means that there is at least an active constraint at
(x̄, ȳ) which is not under control of the leader and this contradicts our initial assumption. It follows that
(x̄, ȳ) is an internal point of S′, thus there exists a rational solution (x̄, y∗) such that f(y∗) < f(ȳ). In
case b), once again, (x̄, ȳ) is an internal point of S′ and ȳ is not a rational solution at x̄. In both cases
(x̄, ȳ) is not bilevel–feasible, hence the proof. 2

Theorem 11. Given the optimal solution (x̄, ȳ) of the single level relaxation of a BLP, if∇yF (x, y) =
∇f(y) and among the active constraints at (x̄, ȳ) there are no upper level constraints, (x̄, ȳ) is also
the optimal solution of BLP.

Proof. If there are no upper level constraints active at (x̄, ȳ), it means that if we solve the single level
relaxation on S′, defined as above, the optimal solution found is always (x̄, ȳ). Thus (x̄, ȳ) is a rational
solution and satisfies the upper level constraints, hence it is bilevel–feasible and optimal for the BLP,
which completes the proof. 2

In Figures 2.6(a)-(d) there is a graphic explanation of Theorems 10 and 11. In each figure we reported
both the feasible set S and some additional upper level constraints.
In Figure 2.6(a) an upper level constraint intersects the inducible region and solution A is a vertex of
S in which a lower level constraint is active; A is bilevel–feasible and is the optimal solution of the
BLP. In Figure 2.6(b), although a lower level constraint is active at A, unlike the previous case the
solution is not bilevel–feasible and the optimal solution of the BLP is vertex B: this shows that the
condition stated in Theorem 10 is only necessary and not sufficient. In Figure 2.6(c) an upper level
constraint intersects the inducible region but this does not change the optimal solution of the single
level relaxation problem and Theorem 11 holds. Finally, in Figure 2.6(d) all the constraints active at
vertex A are upper level constraints and by Theorem 11 the solution is not optimal for the BLP.

2.3 Solution methods

Bilevel Linear Problems have been widely investigated over the last two decades and there is a consistent
number of contributions in terms of solution methods. Many interesting surveys can be found in the
literature, for instance Ben-Ayed [26], Wen and Hsu [149], Bard [21]. In our opinion one of the most
comprehensive classification of methods for BLP is presented in Colson et al. [49]. According to the
authors, the majority of methods proposed for BLP are based on the following techniques:

2.3 Solution methods 29

(a) (b)

(c) (d)

Figure 2.6. Single level relaxation with upper level constraints

30 2. Bilevel Linear Programming

• extreme points search

• reformulation

• complementary pivoting

• penalty function

• metaheuristics.

The methods based on extreme points search follows the same rationale of the classical simplex method
exploiting the weak convex property of the inducible region. The basic framework of the simplex
algorithm is properly modified to cope with the rationality requirement of a bilevel–feasible solution.
One of the first method is the Kth-best proposed by Bialas and Karwan [34], other similar methods
were proposed by Candler and Townsley [43] and Papavassilopoulos [121].

The reformulation methods is one of the most used due to its easy implementation. The idea is to
replace the inner problem with its Karush–Kuhn–Tucker (KKT) conditions and then solve a single level
problem. This approach, that was first introduced by Fortuny-Amat and McCarl [62] will be widely
used in the rest of this dissertation: we refer to such reformulation as the single level reformulation of
a BLP. Note that this approach is valid under the following assumption: a) the follower problem has
objective function f(x, y) and constraints g(x, y) which are continuously differentiable and convex
functions, b) set Ωx(y) is regular ∀x such that (x, y) ∈ S, c) the follower’s global optimal solution is
taken into account (Dempe and Dutta [55]). If the inner problem is a continuous linear problem and
the optimistic approach is implemented, all the requirements are satisfied and the follower problem
can be replaced by its KKT optimality conditions. The way in which the complementary slackness
conditions are treated changes from one method to another, see for instance Bard and Falk [23] and
Bard and Moore [24] or the branch and bound methods proposed by Hansen et al. [74] which is one of
the best performing.

Complementary pivoting methods are closely related to the reformulation approaches, since the
inner problem is replaced by its KKT conditions and the single level reformulation is treated as a
complementarity problem. The method finds a solution which satisfies the complementary slackness
conditions and gains a value of the upper level objective function less then or equal a parameter α; by
iteratively reducing the value of α the algorithm finds a bilevel–feasible solution. The first method
of this kind was proposed by Bialas and Karwan [34], but Ben-Ayed and Blair [27] showed that the
algorithm may fail to converge to an optimal solution. A modified and convergent version of this
algorithm was proposed by Jùdice and Faustino [79].

Penalty function methods tries to circumvent the bilevel structure of the problem solving a penalized
single level version in which the duality gap of the inner problem is penalized in the leader’s objective

2.4 Continuous and discrete BLPs 31

function. Anandalingam and White [4] propose a penalty function method able to find a local optimal
solution that was later improved to compute an optimal solution, see White and Anandalingam [152].

Finally, several metaheuristic approaches are proposed in the literature, for instance methods
based on scalarization of leader’s and follower’s objective functions (Bard [18]), simulated annealing
(Anandalingam et al. [3]), genetic algorithm (Mathieu et al. [110]) and tabu search (Gendreau et al.
[68]).

2.4 Continuous and discrete BLPs

The general BLP framework presented so far features continuous upper level and lower level variables.
For this class of bilevel problems there is a wide knowledge about geometrical properties and solution
methods. We now address discrete bilevel linear problems that represents the main focus of the
dissertation. A general classification of discrete bilevel problems is based on the nature of the leader’s
and follower’s variables. Given variables x ∈ X and y ∈ Y , we can define three different classes:

• Discrete–Continuous Bilevel Linear Problems (DCBLP), when X = Zn and Y = Rm

• Discrete Bilevel Linear Problems (DBLP), when X = Zn and Y = Zm

• Continuous–Discrete Bilevel Linear Problems (CDBLP), when X = Rn and Y = Zm.

In the following chapters we study characteristics and solution methods for the first two classes. Indeed,
DCBLPs are the most closely related to continuous BLPs and most of their polyhedral properties above
described can be extended to the discrete–continuous case. In Chapter 3 we investigate two different
solution approaches and in Chapter 5 we provide an application of a DCBLP model in the field of
facility location. DBLPs represent pure discrete bilevel problems and their study is interesting in an
applicative perspective as might allow to model a wide class of real integer problems joining their
combinatorial nature and the bilevel structure. Despite the high potentiality and the great interest for
DBLP, there is a lack of efficient methods, exact algorithms or fast heuristics, and this is certainly a
promising direction of research. In Chapter 4 we investigate the geometrical properties of DBLPs both
in a combinatorial and bilevel perspective, provide new theoretical results and solution algorithms
and in Chapter 5 we describe an application for the Grid scheduling problem. Finally, CDBLPs are
the less studied bilevel problems and are considered the hardest one. It is easy to understand that the
complexity of bilevel problems strictly depends on the structure of the inner problem. Nevertheless,
unlike DBLPs in which both the outer and the inner problems are integer, in CDBLPs the upper level
variables are continuous and this hampers to use well known solution methods based on branch and
bound and branch and cut. This class is out of the scope of this dissertation and will be object of future
research activity.

Some preliminary theoretical results for discrete BLPs are the following.

32 2. Bilevel Linear Programming

Proposition 3. (Vicente et al. [147]) Given a BLP and considering the three different classes of
associated discrete problems:

• the inducible region of BLP contains the inducible region of DCBLP, i.e. IRDCLP ⊆ IRBLP

• the inducible region of CDBLP contains the inducible region of DBLP, i.e. IRDBLP ⊆
IRCDBLP .

Proposition 4. (Vicente et al. [147]) If S is bounded and non empty and there are no upper level
constraints, BLP, DCBLP and DBLP admit an optimal solution if {X × Y } ∩ S 6= ∅, i.e. the inducible
region is non empty. This is not true for CDBLP.

From Proposition 3 it follows that all the polyhedral properties described for BLP, are also valid for
DCBLP and that the optimal solution of BLP is a valid lower bound for the DCBLP. Otherwise, there
is no any relationship between BLP and DBLP as the discrete nature of the inner problem deeply
changes the reaction set and the inducible region of the problem. Proposition 4 states that under suitable
conditions (S is bounded and p = 0), if the inducible region is non empty all problems but CDBLP
has an optimal solution: this confirms that the latter is the hardest discrete bilevel problem from a
computational standpoint. We show this phenomenon in the following example.

min
x,y

x− 10y

s.t. x ∈ X
y ∈ argmin

y
y

s.t. −x+ 3y ≤ 6
x+ y ≤ 6
x− 3y ≤ 0
y ≥ 1
x ≥ 1
y ∈ Y

We can notice that, comparing Figures 2.7(a) and (b), the optimal solution of BLP is a lower bound
of the optimal solution of DCBLP, while the optimal solution of DBLP is better than the previous
two, despite the variables integrality. We describe more in detail these relationships in the following
chapters. Finally, in Figure 2.7(d) we observe that, even if the inducible region is non empty, the
CDBLP does not admit an optimal solution since point A is not rational.

2.5 Reformulation techniques

The relationship between continuous and discrete BLP arises more clearly when the integer variables
are assumed to be binary. Starting from the results showed by Vicente et al. [147] and extended by

2.5 Reformulation techniques 33

(a) (b)

(c) (d)

Figure 2.7. Continuous and Discrete Bilevel Linear Problems

34 2. Bilevel Linear Programming

Audet et al. [13], we describe some interesting reformulation techniques that prove the equivalence
between 0-1 mixed-integer problems and BLPs.

Let us consider the following problems:

(DCBLP) min
x,y

cT1 x+ cT2 y

s.t. Cx+Dy ≤ e
x ∈ {0, 1}
y ∈ argmin

y
dT y

s.t. Ax+By ≤ d
y ≥ 0

(DCBLPz) min
x,y,z

cT1 x+ cT2 y

s.t. Cx+Dy ≤ e
z = 0
0 ≤ x ≤ 1
(z, y) ∈ argmin

z,y
dT y − 1T z

s.t. Ax+By ≤ d
z ≤ x
z ≤ 1− x
y ≥ 0

Theorem 12. (Audet et al. [13]) (x∗, y∗) is an optimal solution of DCBLP if and only if (x∗, y∗, z∗)
is an optimal solution of DCBLPz with z∗ = 0.

In problem DCBLPz we introduce an auxiliary variable z that is defines as z = min{x, 1− x}. The
upper level constraint z = 0 forces variable x to be binary. This suggests that an upper level binary
variable x can be always relaxed by introducing an auxiliary follower variable z, a set of lower level
constraints and a set of upper level equality constraints. The resulting formulation is still a bilevel prob-
lem with all continuous variables. As we previously noted, the presence of upper level constraints can
induce infeasibility or discontinuity in the inducible region. For these reasons, especially when p = 0,
may be convenient to use another reformulation approach. In Chapter 3 we describe a reformulation
of a DCBLP with binary upper level constraints to a BLP without introducing additional upper level
constraints, but modifying the leader’s function through a suitable penalty function.

Let us address a bilevel problem with binary lower level variables.

(CDBLP) min
x,y

cT1 x+ cT2 y

s.t. Cx+Dy ≤ e
x ≥ 0
y ∈ argmin

y
dT y

s.t. Ax+By ≤ d
y ∈ {0, 1}

(CDBLPz) min
x,y,z

cT1 x+ cT2 y

s.t. Cx+Dy ≤ e
x ≥ 0
y ∈ argmin

y,z
dT y

s.t. Ax+By ≤ d
z = 0
0 ≤ y ≤ 1
z ∈ argmin

z
−1T z

s.t. z ≤ y
z ≤ 1− y

2.5 Reformulation techniques 35

Theorem 13. (Audet et al. [13]) (x∗, y∗) is an optimal solution of CDBLP if and only if (x∗, y∗, z∗)
is an optimal solution of CDBLPz with z∗ = 0.

Theorem 13 states the equivalence between a continuous discrete bilevel problem and a three level
problem in which the integrality requirements are relaxed. Clearly, this is only a theoretical result, but
it shows the inherent link between binary linear problems and multilevel programming. We can now
generalize the previous results.

Proposition 5. Given an n−level problem with binary variables in the innermost level, it is possible
to define an equivalent (n+ 1)−level problem with all continuous variables. If the binary variables do
not belong to the innermost level, the equivalent continuous problem is still an n−level problem.

This reformulation can be always applied to relax a binary variables, but the integrality relaxation
requires the addition of an auxiliary lower level variable to the original formulation. Moreover, it is
relevant to consider the level in which the binary variables are contained. If the bilevel problem has
upper level binary variables, in the reformulated problem the auxiliary variables can be added to the
existing lower level and it does not require a new level; if the binary variables are under control of
the follower a new level has to be defined to contain the auxiliary variables. This explains why this
reformulation approach is not used for binary DBLP and CDBLP: due to the integer nature of the lower
level problem, the reformulation is a three level model for which efficient solution methods have not
been developed yet.

37

Chapter 3

Discrete–Continuous Bilevel Linear
Programming

Unlike continuous BLP, if at least one among the leader and follower variables are assumed to be
integer, the resulting problem is much harder to tackle. Moore and Bard [114] are the first authors to
point out the computational difficulties of integer bilevel linear problems and propose a branch and
bound method for the more general mixed-integer case. In this chapter we address the first class of
integer bilevel linear problems. We start from the discrete–continuous case in which the upper level
variables are integer and the lower level variables are continuous, since this problem is the most closely
related to continuous BLP. The main results we present in this chapter have been obtained following
two different research direction: a) reformulation techniques, b) valid inequalities for DCBLP. In the
following, these two area of research are treated separately to ease presentation.

3.1 Reformulation approaches for binary DCBLP

As we mentioned in the previous chapters, theoretical properties and possible reformulations are
described in the literature in order to cope with the discrete nature of variables and exploit well known
solution approaches for BLP.

In particular, in this section we focus on Discrete–Continuous Bilevel Linear Programs in which
the upper level variables are discrete and the lower level variables are continuous. This problem is
addressed, among others, by Wen and Yang [151], where a branch and bound approach and an heuristic
are proposed, and by Wen and Huang [150], where the authors implement a tabu-search scheme to
solve the problem.

One of the solution methods for this class of problems was proposed by Vicente et al. [147]
and is based on the reformulation of the DCBLP as a continuous BLP. The authors generalize a
result of Kalantary and Rosen [80] about 0-1 integer problems and extend the result to DCBLP. This

38 3. Discrete–Continuous Bilevel Linear Programming

reformulation is based on the same rationale of the reformulation techniques presented in Chapter
2. Nevertheless, unlike the above mentioned, in this approach there are no additional upper level
constraints, but the leader’s objective function is modified by adding a concave penalty function
weighted by a parameter µ.

The two problems have the same optimal solution for a sufficiently large value of µ. Vicente et al.
in their paper proposed a lower bound for µ such that any value greater than this bound guarantees
that the solution to the reformulated problem is integer. The effectiveness of the authors’ proposal was
not experimentally tested, and, therefore, the advantage of using a relatively small µ instead of a large
one is not known. In the rest of this section this reformulation technique is investigated. We show the
main criticality of this approach and then we try to improve the existing result by reducing the lower
bound for parameter µ and proposing two new lower bounds. This represents a preliminary study to
understand and assess whether the reduction of the penalty parameter may be considered a valuable
line of research in order to develop a new efficient reformulation technique for DCBLP. Experiments
on these new proposals are provided along with a comparison of the results obtained with the known
bound.

3.1.1 Preliminary results

We address the following generic formulation P of a binary DCBLP:

(P) min
x,y

F (x, y) = −cT1 x− cT2 y

s.t. Cx+Dy ≤ e
x ∈ {0, 1}
y ∈ argmin

y
f(y) = dT y

s.t. Ax+By ≤ b
y ≥ 0

We can assume, without loss of generality, that c1 ≥ 0 and c2 ≥ 0. Now consider the continuous
relaxation P0 of problem P

(P0) min
x,y

F (x, y) = −cT1 x− cT2 y

s.t. Cx+Dy ≤ e
0 ≤ x ≤ 1
y ∈ argmin

y
f(y) = dT y

s.t. Ax+By ≤ b
y ≥ 0

in which the integrality constraints on variables x were relaxed. Let (x0, y0) be an optimal solution of
the relaxed problem P0. The inducible region IR0 of P0 is

3.1 Reformulation approaches for binary DCBLP 39

IR0 = {(x, y) | 0 ≤ x ≤ 1, Cx+Dy ≤ e, y ∈ argmin
y
{dT y s.t. By ≤ b−Ax, y ≥ 0}}.

It is known that for a sufficiently large value of a positive parameter µ problem P has the same optimal
solution of the following parameterized problem:

(Pµ) min
x,y

F (x, y) = −cT1 x− cT2 y + µ g(x)

s.t. Cx+Dy ≤ e
0 ≤ x ≤ 1
y ∈ argmin

y
f(y) = dT y

s.t. Ax+By ≤ b
y ≥ 0

where g(x) is a continuous and concave function defined as follows:

g(x): Rn → R

g(x):

{
> 0 if 0 < x < 1
= 0 if x ∈ {0, 1}

Note that the set of feasible solutions of problem Pµ is the same of problem P0, that is IR0, because
the two problems have different objective functions but are defined on the same set of constraints.

There are different functions g(x) which satisfy the above requirements, but the one proposed in
Vicente et al. is

g(x) =
n∑
i=1

min[xi ; (1− xi)]

which is a piecewise linear function for 0 ≤ x ≤ 1. The advantage of such a function is that, exploiting
its piecewise linearity, Pµ can be formulated as a linear bilevel problem as explained in Chapter 2. Let
us introduce a vector z of auxiliary variables zi with

zi = min[xi ; (1− xi)] ∀i = 1...n

We can reformulate problem Pµ as follows:

40 3. Discrete–Continuous Bilevel Linear Programming

(Pµ) min
x,y

F (x, y) = −cT1 x− cT2 y + µ1T z

s.t. Cx+Dy ≤ e
0 ≤ x ≤ 1
y ∈ argmin

y
f(y) = dT y − 1T z

s.t. Ax+By ≤ b
z ≤ x
z ≤ 1− x
y ≥ 0

and the problem obtained is a continuous BLP. This reformulation shows that it is possible to relax
the integrality requirements of the DCBLP modifying the problem but preserving the linearity of the
objective function.

Vicente et al. proved that there exists a finite value µ0 which is a lower bound for parameter µ. It
means that for every µ > µ0, an optimal solution to problem Pµ is also an optimal solution to problem
P . Now we show how this lower bound µ0 can be computed. Let us define the set of solutions of
problem P0 in which the x variables are not binary, that is

IR = IR0 \ {xi = 0 ∨ xi = 1, i = 1...n}.

Let x̄ be an optimal solution to the problem

min
x
g(x)

s.t. x ∈ IR

Note that solving this problem on the feasible set IR0 is trivial because the optimal solution would
have x̄i = 0 or x̄i = 1 ∀i = 1...n, hence g(x̄) = 0. Therefore, as x̄ ∈ IR, g(x̄) > 0 by definition of
function g(x). The lower bound µ0 is

µ0 = cT1 x0 + cT2 y0
g(x̄)

which is a positive constant. From the latter formula, it is clear that the parameter is defined only if the
denominator is not zero, that is the reason why the function g(x) is minimized over IR.

In the following section we show that µ0 is a valid lower bound of µ providing an alternative proof
than the one proposed in Vicente et al. The computation of µ0 requires the solution of two problems,
the bilevel linear problem P0 and the minimization of the concave function g(x).

3.1.2 Lower bound improvements

In order to present our first lower bound, we need to introduce another problem strictly related to the
continuous relaxation P0. Let problem Pmax0 be defined as follows

3.1 Reformulation approaches for binary DCBLP 41

(Pmax0) max
x,y

F (x, y) = −cT1 x− cT2 y

s.t. Cx+Dy ≤ e
0 ≤ x ≤ 1
y ∈ argmin

y
f(y) = dT y

s.t. Ax+By ≤ b
y ≥ 0

which differs from problem P0 because is a maximization problem defined on the same feasible set
IR0. Let (xmax0 , ymax0) be an optimal solution of problem Pmax0 . It is possible to define a better lower
bound for parameter µ as follows

µ′ = cT1 x0 + cT2 y0 − cT1 xmax0 − cT2 ymax0
g(x̄)

Proposition 6. Parameter µ′ ≤ µ0.

Proof. P0 and Pmax0 are defined on the same feasible set IR0 and a generic solution (x, y) ∈ IR0 is
such that (x, y) ≥ 0. Since c1 ≥ 0 and c2 ≥ 0, then

−cT1 x− cT2 y ≤ −cT1 xmax0 − cT2 ymax0 ≤ 0 ∀(x, y) ∈ IR0

Hence, we have

µ′ − µ0 = −c
T
1 x

max
0 − cT2 ymax0
g(x̄) ≤ 0

Note that if 0 ∈ IR0, then (xmax0 , ymax0) = 0 and µ′ = µ0. In this case the lower bound we define is
not strictly less than the one proposed in by Vicente et al. 2

We now provide a constructive proof of the validity of parameter µ′.

Theorem 14. For any positive parameter µ > µ′ BLP problem Pµ and DCBLP problem P have the
same optimal solution.

Proof. Let (x̃, ỹ) be an optimal solution of problem Pµ. If (x̃, ỹ) ∈ IR, then g(x̃) = 0, (x̃, ỹ) is an
optimal solution of problem P and the theorem is trivially demonstrated.

Now assume that (x̃, ỹ) /∈ IR, i.e. x̃ /∈ {0, 1}n. Let (x, y) be a generic solution of P with variables
x having binary components.

F (x, y)− F (x̃, ỹ) = −cT1 x− cT2 y + cT1 x̃+ cT2 ỹ − µ g(x̃)

Since µ > cT1 x0+cT2 y0−cT1 x
max
0 −cT2 y

max
0

g(x̄) , we have

42 3. Discrete–Continuous Bilevel Linear Programming

F (x, y)− F (x̃, ỹ) = −cT1 x− cT2 y + cT1 x̃+ cT2 ỹ − µ g(x̃)

≤ −cT1 x− cT2 y + cT1 x̃+ cT2 ỹ − µ g(x̄)

< cT1 (x̃− x0) + cT2 (ỹ − y0) + cT1 (xmax0 − x) + cT2 (ymax0 − y)

Recall that Pµ and P0 are defined on the same feasible set IR0 and that the feasible set of P is such
that IR ⊆ IR0, thus the following relationships hold

−cT1 x0 − cT2 y0 ≤ −cT1 x̃− cT2 ỹ as (x̃, ỹ) is a feasible solution of P0

−cT1 x− cT2 y ≤ −cT1 xmax0 − cT2 ymax0 as (x, y) is a feasible solution of Pmax0

It follows that

F (x, y)− F (x̃, ỹ) < cT1 (x̃− x0) + cT2 (ỹ − y0) + cT1 (xmax0 − x) + cT2 (ymax0 − y) ≤ 0

hence

F (x, y)− F (x̃, ỹ) < 0

which contradicts the assumption that (x̃, ỹ) is an optimal solution of Pµ. Thus, (x̃, ỹ) ∈ IR, i.e.
x̃ ∈ {0, 1}n, and we have

F (x̃, ỹ) ≤ F (x, y) ∀(x, y) ∈ IR

which concludes the proof. 2

In the proof of Theorem 14 we compute a sufficiently large value for the penalty parameter to
assure that the best non integer solution (x̃, ỹ) of Pµ is such that F (x, y) < F (x̃, ỹ) for any feasible
integer solution (x, y) of P . The same result may be obtained using a tighter bound.

In fact, it is enough to guarantee that (x̃, ỹ) gains a worse objective value than any optimal solution
of P . This allows us to define a new valid lower bound for µ,

µ′′ = cT1 x0 + cT2 y0 − cT1 xP − cT2 yP
g(x̄)

where (xP , yP) is any feasible solution of P .

Proposition 7. Parameter µ′′ ≤ µ′ ≤ µ0.

Proof. The second inequality was already shown, while for the first one note that IR ⊆ IR0, hence
must hold

−cT1 xP − cT2 yP ≤ −cT1 xmax0 − cT2 ymax0

3.1 Reformulation approaches for binary DCBLP 43

Thus

µ′′ − µ′ = −c
T
1 xP − cT2 yP + cT1 x

max
0 + cT2 y

max
0

g(x̄) ≤ 0

which completes the proof. 2

Note that the difference among µ′′ and the other two parameters depends on the quality of (xP , yP):
if F (xP , yP) is far from the optimum, µ′′ is almost the same of µ′ and µ0. On the contrary, if F (xP , yP)
is close to the optimum, µ′′ may be much smaller. Furthermore, for the computation of µ′′ it is not
necessary to solve to optimality problem P , but only a feasible solution is required. Hence, the
computation of µ′′ is not more time consuming than the computation of µ0 and only depends on the
algorithm used to compute a feasible solution of P .

Now we can formulate a modified version of Theorem 14.

Theorem 15. For any positive parameter µ > µ′′, the BLP problem Pµ and the DCBLP problem P

have the same optimal solution.

Proof. Let (x̃, ỹ) be an optimal solution of problem Pµ and let (x∗, y∗) be an optimal solution of
P . Following the same arguments of Theorem 14, if (x̃, ỹ) ∈ IR, the theorem is trivially proved.
Otherwise, if (x̃, ỹ) /∈ IR, we have

F (x∗, y∗)− F (x̃, ỹ) = −cT1 x∗ − cT2 y∗ + cT1 x̃+ cT2 ỹ − µ g(x̃)

and by the definition of µ′′

F (x∗, y∗)− F (x̃, ỹ) < cT1 (x̃− x0) + cT2 (ỹ − y0) + cT1 (xP − x∗) + cT2 (yP − y∗)

But now we have

−cT1 x∗ − cT2 y∗ ≤ −cT1 xP − cT2 yP

It follows that

F (x∗, y∗)− F (x̃, ỹ) < 0

i.e. there exists a feasible solution (x∗, y∗) for Pµ that is better than the optimal solution (x̃, ỹ), which
is a contradiction. Therefore, (x̃, ỹ) ∈ IR, and we have

F (x̃, ỹ) ≤ F (x∗, y∗)

with (x∗, y∗) optimal solution of P , hence the proof is complete. 2

This result implies that it is possible to reformulate the problem using tighter lower bounds for the
penalty parameter, in order to reduce approximation errors and undesirable behaviors that may occur
when commercial solvers are used to compute an optimal solution of the original binary DCBLP.

44 3. Discrete–Continuous Bilevel Linear Programming

3.1.3 Experimental analysis

Implementation details

In this section we analyze the behavior of the lower bounds for µ proposed and compare them to the
lower bound proposed by Vicente et al. We also experimented with a very large value for µ in order
to underline the effectiveness of this penalty parameter in terms of CPU time reduction. Our main
goal is to realize a preliminary study on this reformulation approach and to understand whether the
reduction of the penalty parameter is a promising direction of research. Our intention is to assess
the computational burden required to solve the bilevel problem according to the reduction of the
penalty parameter µ: if the new lower bound provides a remarkable time reduction, it means that the
computation of tighter lower bounds for µ may represent a possible area of future research in order to
solve bigger size problems.

To this end we considered 17 different classes of problems, distinguished by the number of upper
and lower level variables. For every class of problems we randomly generated 5 instances, yielding
an overall number of 85 test problems. The values chosen for the leader and follower variables were
(n,m) ∈ {5, 10, 15, 20}, and, among all the possible combinations of n and m, we solved a subset of
the most significant ones. We set a fixed number q = 2/5 · (n+m) of lower level constraints and two
possible values for the upper level constraints, i.e., p = 0 and p = 1/5 · (n + m). This choice was
made in order to analyze the effect of the upper level constraints on the computational burden.

Following the experimental approach used in Bard [21], Wen and Huang [150] and Wen and Yang
[151], the coefficients of matrices A1, A2, B1, B2 were randomly chosen in the range [-25,25], the
coefficients of vectors b1 and b2 were randomly chosen between 0.4 and 0.8 times the sum of the
row coefficients of the corresponding matrices, the (negative) coefficients of vectors c1 and c2 were
randomly chosen in the range [-10,-1], and the coefficients of vector d2 were randomly chosen between
-5 and 5.

Table 3.1 shows the 17 classes of problems. All the problems were implemented in the AMPL
language and optimally solved by means of the CPLEX 12.3 solver on a PC with a 2Ghz Pentium Core
2 Duo processor and 1GB of RAM.

For every class, we solved problems Pµ setting parameter µ to different values. The first comparison
was made between the parameter µ0 proposed by Vicente et al. and a very large value µ = 100 000. A
further comparison was made among the previous parameters and the parameters we propose, µ′ and
µ′′.

To compute all the lower bounds for µ, the denominator g(x̄) was calculated solving the following
mathematical program

3.1 Reformulation approaches for binary DCBLP 45

class (n,m) (p, q)
1 (5,5) (0,4)
2 (5,5) (2,4)
3 (5,10) (0,6)
4 (5,10) (3,6)
5 (10,5) (0,6)
6 (10,5) (3,6)
7 (10,10) (0,8)
8 (10,10) (4,8)
9 (10,15) (5,10)

10 (15,5) (0,8)
11 (15,5) (4,4)
12 (15,10) (0,10)
13 (15,10) (5,10)
14 (20,10) (0,12)
15 (20,10) (6,12)
16 (20,15) (0,14)
17 (20,15) (7,14)

Table 3.1. Classes of problems

min
x,y,z

1T z

s.t. Cx+Dy ≤ e
0 ≤ x ≤ 1
(y, z) ∈ argmin

y,z
dT y − 1T z

s.t. Ax+By ≤ b
z ≤ x
z ≤ 1− x
y ≥ 0
x ≥ ε−Mδ1 (1)
x ≤M(1− δ1) (2)
(1− x) ≥ ε−Mδ2 (3)
(1− x) ≤M(1− δ2) (4)
δ ≤ δ1 + δ2 (5)

δ ≥ δ1 + δ2

2 (6)

∆ ≥
n∑
i=1

δi − (n− 1) (7)

∆ ≤
∑n
i=1 δi
n

(8)

∆ ≤ 0 (9)

46 3. Discrete–Continuous Bilevel Linear Programming

Note that, unless the original problem P has not any integer solution, it is necessary to introduce
suitable constraints to avoid that the optimal solution x̄ has binary components. Constraints (1) and (2)
model the following logical relation:

x ≤ 0⇔ δ1 = 1

where M and ε are a sufficiently big and small constant respectively. Similarly, constraints (3) and (4)
represent the following relation:

x ≥ 1⇔ δ2 = 1

Variable δ is defined as δ = δ1 ∨ δ2, thus it is equal to 0 if and only if both δ1 and δ2 are 0, i.e. x is
fractional. Variable ∆ is defined as ∆ = ∧ni=1δi, thus it is equal to 0 if at least one δi is 0. Constraints
(5)-(8) express the previous relations by means of well known linear constraints, and constraint (9)
makes a non fractional solution infeasible.

The latter is a very time consuming problem to solve. The computational complexity does not
depend on the penalty parameter we compute and for this reason it represents the most important
deficiency for this reformulation pattern so far. It is clear that solving this problem efficiently is an
obliged direction for future research in order to make this approach applicable to real life instances. As
far as the computational analysis is concerned we set a time limit of 5000 seconds to compute x̄. The
time limit was reached only for 13 instances out of the 95 (13.7%). Note that this computational time
is the same regardless of the penalty parameter used and it is often much more than the time required
to solve problem Pµ. For this reason, in order to ease the comparison among the different parameters,
the time required to compute x̄ is not comprised in the CPU times recorded in the following. The same
time limit of 5000 seconds was set for the solution of Pµ.

Problems P0 and Pµ were solved replacing the follower problem by its KKT conditions according
to the well known method of Fortuny-Amat and McCarl [62]. To compute µ′′, a feasible solution was
obtained using the following heuristic procedure. We first solved the single level version of P removing
the lower level objective function (single level relaxation). Next, according to the solution found,
we fixed the values of the upper level variables and found a bilevel–feasible solution. If the single
level relaxation was unbounded or its solution did not satisfy the upper level constraints, we randomly
generated a vector of upper level variables and then a bilevel–feasible solution was calculated.

Finally we note that only instances for which problem P0 did not have any integer optimal solution
have been considered. Such an instance may be trivially computed solving problem Pµ with µ = 0,
and, therefore, it is meaningless comparing computational results obtained for different values of µ.

3.1 Reformulation approaches for binary DCBLP 47

class
µ = 100 000 µ0

CPU CPU ∆T
1 0.09 0.08 -0.02
2 0.09 0.07 -0.02
3 0.28 0.18 -0.10
4 0.15 0.15 0.00
5 0.52 0.55 0.03
6 0.43 0.22 -0.21
7 11.23 4.86 -6.37
8 2.76 3.10 0.34
9 18.38 12.63 -5.75

10 62.42 53.92 -8.50
11 2.75 2.54 -0.21
12 7.95 7.33 -0.62
13 89.30 72.04 -17.26
14 1455.86 1236.61 -219.25
15 1656.64 1637.05 -19.59
16 3152.16 3058.62 -93.54
17 2346.58 1908.61 -437.98

Table 3.2. Computational comparison between a very large penalty parameter µ = 100 000 and µ0

Computational comparison

We compared the CPU time obtained with µ0 and µ = 100 000 to quantify the connection between the
value of the penalty parameter µ and the required computational effort. This very large value of µ was
chosen to guarantee the integrality of the solution computed by solving problem Pµ. The average CPU
time for every class of instances are shown in Table 3.2.

We note that for the largest instances, from class 13 to 17, the computational burden required with
parameter µ0 is significantly less. In general, we can observe a clear and constant result because µ0

outperforms a large penalty parameter µ = 100 000 with exception for some classes of small size
problems in which the two CPU times consumed are almost the same (see, e.g., classes 4, 5 or 8).

If we make the same comparison for µ′ and µ′′ we obtain the results summarized in Table 3.3.

Now it is possible to observe that the major differences in computational time occur when the problem
size grows. The general performance obtained with parameters µ′ and µ′′ are quite similar to the one
obtained with µ0: the CPU time consumed, compared to the case with µ = 100 000, is quite similar
for small and medium size problems and significantly less for large size problems. We note the largest
improvement with µ′′ for class 17. The average values of the above mentioned comparison are showed
in Table 3.4.

48 3. Discrete–Continuous Bilevel Linear Programming

class
µ = 100 000 µ′ µ′′

CPU CPU ∆T CPU ∆T
1 0.09 0.07 -0.02 0.07 -0.03
2 0.09 0.06 -0.03 0.06 -0.02
3 0.28 0.16 -0.11 0.16 -0.12
4 0.15 0.14 -0.01 0.13 -0.02
5 0.52 0.56 0.04 0.52 0.01
6 0.43 0.23 -0.20 0.23 -0.20
7 11.23 4.86 -6.37 4.90 -6.33
8 2.76 3.59 0.83 2.78 0.02
9 18.38 12.44 -5,94 10.48 -7.90
10 62.42 59.19 -3.23 48.32 -14.10
11 2.75 3.15 0.40 3.03 0.28
12 7.95 5.47 -2.48 4.45 -3.50
13 89.30 71.83 -17.48 49.75 -39.56
14 1455.86 1226.37 -229.49 1216.30 -239.56
15 1656.64 1641.45 -15.19 1189.00 -467.64
16 3152.16 2628.25 -523.91 3046.11 -106.05
17 2346.58 1803.55 -543.04 969.37 -1377.21

Table 3.3. Computational comparison among a very large penalty parameter µ = 100 000, µ′ and µ′′

µ = 100 000 µ0 µ′ µ′′

CPU CPU ∆T CPU ∆T CPU ∆T
518.09 470.50 -47.59 438.90 -79.19 385.04 -133.05

Table 3.4. Comparison of average values

3.1 Reformulation approaches for binary DCBLP 49

In order to make a more complete comparison among the parameter proposed by Vicente et al. and
the proposed ones, in the following, we report a series of detailed data computed for all the instances
solved.

The main features we recorded for every run are:

• ∆µ, the percentage difference among parameters µ0 and µ′ or µ′′

• CPU, the CPU time (in seconds) spent to solve the problem

• ∆T , the difference between the CPU time spent to solve Pµ0 and Pµ′ or Pµ′′

• no better, the number of times the time spent to solve Pµ′ or Pµ′′was less than or equal to the
time spent to solve Pµ0

• iter, the number of MIP simplex iterations to solve the problem.

In Table 3.5 we report the computational results.

First of all we note that the numerical difference between µ0 and µ′ ranges from -5.40% to -41.84%
and it is equal to -20.39% on average and the difference between µ0 and µ′′ ranges from -13.70%
to -86.84%, with an average value of -66.38%. Recall that the value of µ′′ strongly depends on the
heuristic algorithm used to determine a good feasible solution. Table 3.5 shows that the reduction of
parameter µ produces a time reduction for the solution of the problems.

If we compare parameters µ0 and µ′′ we can observe a clear and constant behavior as µ′′ always
allows to obtain a lower CPU time or a quite similar one. The overall comparison shows that µ′′ ensures
the best computational performance in 13 out of the 17 classes. The average values for CPU, no better
and simplex are reported in Table 3.6.

In Table 3.6 we can see that the computational time obtained by using parameter µ′ is not worse
than the one obtained with µ0 in 65% of the instances and this percentage grows to 80% using µ′′.
The parameters we propose ensure an average CPU time reduction of 6.72% and 18.16 % despite a
slight increase in simplex iterations that occurs for µ′. Parameter µ′′ is clearly the best performing
one. All these results confirm and extend what was already pointed out comparing the parameters to
µ = 100 000.

3.1.4 Conclusion

We proposed two improved lower bounds for parameter µ used to reformulate a binary DCBLP as
a BLP. This approach was described in the literature, but only from a theoretical point of view. Our
main purpose was to investigate the main criticalities of this reformulation scheme and to provide a
preliminary insight on the effectiveness of the reduction of such penalty parameters. In fact, even if the
method has been theoretically described in the literature, its practical implementation is omitted and

50 3. Discrete–Continuous Bilevel Linear Programming

class
µ

0
µ

′
µ

′′

C
P

U
iter

∆
µ

C
P

U
∆
T

n
o

better
iter

∆
µ

C
P

U
∆
T

n
o

better
iter

1
0,08

768
-19,41

%
0,07

-0,01
100

%
769

-63,54
%

0,07
-0,01

100
%

748
2

0,07
421

-40,89
%

0,06
-0,01

100
%

441
-62,72

%
0,06

0,00
80

%
507

3
0,18

3168
-32,80

%
0,16

-0,02
80

%
3056

-67,71
%

0,16
-0,02

100
%

2866
4

0,15
2560

-41,84
%

0,14
-0,01

80
%

2460
-63,55

%
0,13

-0,02
100

%
2268

5
0.55

10
924

-18.88
%

0.56
0.01

60
%

10
966

-69.01
%

0.52
-0.03

80
%

10
685

6
0.22

3647
-13.92

%
0.23

0.01
60

%
3743

-64.85
%

0.23
0.01

60
%

3759
7

4.86
106

849
-14.11

%
4.86

0.00
80

%
109

470
-64.95

%
4.90

0.04
40

%
118

832
8

3.10
67

413
-33.09

%
3.59

0.49
20

%
78

557
-72.14

%
2.78

-0.32
80

%
60

291
9

12.63
335

323
-24.90

%
12.44

-0.19
40

%
329

310
-86.84

%
10.48

-2.16
80

%
254

638
10

53.92
1

126
371

-8.77
%

59.19
5.27

20
%

1
410

454
-65.24

%
48.32

-5.60
60

%
1

093
042

11
2.54

54
134

-14.42
%

3.15
0.61

80
%

65
435

-76.93
%

3.03
0.49

60
%

64
119

12
7.33

159
883

-19.52
%

5.47
-1.85

80
%

114
971

-69.68
%

4.45
-2.87

60
%

87
737

13
72.04

2
042

327
-16.91

%
71.83

-0.21
60

%
1

877
718

-67.92
%

49.75
-22.29

60
%

1
154

466
14

1
236,61

32
050

869
-7.20

%
1226.37

-10.24
60

%
32

005
678

-65.77
%

1216.30
-20.31

100
%

32
691

768
15

1637.05
38

685
697

-13.82
%

1641.45
4.40

60
%

36
249

418
-74.52

%
1189.00

-448.05
100

%
25

980
097

16
3058.62

84
659

188
-5.40

%
2628.25

-430.37
100

%
77

524
263

-13.70
%

3046.11
-12.52

100
%

79
143

806
17

1908.61
24

714
769

-20.80
%

1803.55
-105.06

25
%

38
426

480
-79.35

%
969.37

-939.23
100

%
20

950
294

Table
3.5.C

om
putationalresults

ofallthe
classes

w
ith

µ
0 ,
µ
′and

µ
′′

3.2 A New valid inequality for DBLP 51

µ0 µ′ µ′′

CPU iter CPU no better iter CPU no better iter
470.50 10 824 960 438.90 65 % 11 071 364 385.40 80 % 9 507 054

vs µ0 -6.72% - 2.28 % -18.16 % - -12.17%

Table 3.6. Average results for all the problems solved

the potential advantage of using a smaller penalty parameter is not investigated. Our first contribution
was to provide a preliminary experimental test on this reformulation approach comparing the existing
penalty parameter to a sufficiently large one. The results clearly show that the computational burden is
affected by the size of the parameter used. The second contribution was to propose a new theoretical
result providing two reduced lower bounds for penalty parameter and comparing them to the existing
one. Hence, the reformulation approach was investigated from both a theoretical and a computational
perspective.

More in detail, computational results show that the bounds proposed are effective, with an average
CPU time reduction of 6% and 18%. This result is also strengthened if we compare the CPU time
gained by all the parameters and the one obtained with a very large µ = 100 000. In this case the
average time reduction is −9% for µ0, −15% for µ′ and −25% for µ′′. This implies that it may be
possible to solve bigger instances of the problem and increase the applicability of integer bilevel
programming to real problems.

Actually, the major deficiency of this reformulation approach, which still limits its applicability,
is the computation of g(x̄) which represents also the main drawback of our experimental analysis.
This suggests that it is necessary to focus on g(x) to compute x̄ more easily. Future research work
may be addressed following two different directions. On one side, it may be useful to provide other
functions g(x), always piecewise linear, whose computation is less hard, for example defining the same
function on a larger number of subsets of the [0, 1] interval. On the other side, further investigation
will be focused on the definition of new penalty parameters in which the optimal solution g(x̄) may
be replaced by an upper bound of it in order to provide a tighter lower bound for µ with a smaller
computational effort.

3.2 A New valid inequality for DBLP

3.2.1 Introduction

In this section we extend the study of DBLP assuming that the upper level variables are not binary, but
integer in general. Starting from the computational difficulties previously mentioned, we propose a
new valid inequality for DCBLPs. This valid inequality exploits the bilevel nature of the problem and

52 3. Discrete–Continuous Bilevel Linear Programming

the geometry of the solutions space, trying to remove from the feasible region those solutions which
are not bilevel–feasible. One idea stems from well known results for BLPs present in the literature.

This inequality can be used to reformulate the original problem in order to reduce the feasible
region and speed up the resolution. The proposed valid inequality is added to the original problem.
The optimal solution of the resulting DCBLP is computed by solving its single level reformulation.

We address the following generic formulation of a DCBLP:

min
x,y

F (x, y) = cT1 x+ cT2 y

s.t. Cx+Dy ≤ e
x ∈ Z+

y ∈ argmin
y

f(y) = dT y

s.t. Ax+By ≤ b
y ≥ 0

Recall the geometric properties 7 and 3 we presented in Chapter 2: a) the inducible region of a BLP
can be written as a piecewise linear equality constraint and the latter is comprised of the supporting
hyperplanes of S (Bard [20]), b) the inducible region of a DBLP is contained in the inducible region of
the corresponding BLP obtained relaxing the integrality requirements on the leader’s variables ([147]).
These geometric properties are fundamental for the generation of the valid inequality described in the
next section that is able to significantly reduce the size of feasible region S.

3.2.2 The continuous case: BLP

It is possible to obtain a relaxation of the inducible region of a DCBLP just considering the inducible
region of a corresponding BLP in which the integrality requirements are dropped. For the sake of
clearness, let us consider the following example. Let DCBLP be the original problem and BLP the
associated continuous relaxation in which the integrality requirements are removed::

(DCBLP) min
x,y

F (x, y) = x− 10y

s.t. 5x− 14y ≤ −1
x ∈ Z+

y ∈ argmin
y

f(y) = 3y

s.t. 3x+ 2y ≤ 20
5x− 2y ≥ 2
x− 3y ≥ −9
2x− y ≥ 16
x+ 8y ≥ 11
y ≥ 0

(BLP) min
x,y

F (x, y) = x− 10y

s.t. 5x− 14y ≤ −1
x ≥ 0
y ∈ argmin

y
f(y) = 3y

s.t. 3x+ 2y ≤ 20
5x− 2y ≥ 2
x− 3y ≥ −9
2x− y ≥ 16
x+ 8y ≥ 11
y ≥ 0

3.2 A New valid inequality for DBLP 53

In Figure 3.1 the two inducible regions are shown. Let us denote with IRDCBLP and IRBLP the
inducible region for problems DCBLP and BLP respectively. IRDCBLP is comprised of the black
points, while the white points are rational solutions that violate the upper level constraints. IRBLP is
represented by the bold line and note that it is comprised of two supporting hyperplanes of S.

Figure 3.1. Comparison between two inducible regions

It holds that IRDCBLP ⊆ IRBLP . The optimal solution of DCBLP is (x∗, y∗) = (5, 2) with
F (x∗, y∗) = −15, while the optimal solution of BLP is (x, y) ≈ (5.1, 2.3) with F (x, y) ≈ −17.7 <
F (x∗, y∗).

A BLP is more tractable than a DCBLP since the number of discrete variables is reduced and it is
easy to define a halfspace containing all the bilevel–feasible solutions. The main objective is to cut
off the part of the feasible region S comprised of solutions which are not bilevel–feasible and can
be discarded without a bilevel–feasibility check. Let us define the following bilevel linear problem
BLPmaxmin

(BLPmaxmin) max
x,y

f(y) = dT y

s.t. Cx+Dy ≤ e
x ≥ 0
y ∈ argmin

y
f(y) = dT y

s.t. Ax+By ≤ b
y ≥ 0

Let (x̂, ŷ) be the optimal solution. Note that the leader’s and the follower’s objective functions are
the same, but the first is maximized and the second is minimized. Hence, (x̂, ŷ) represents the worst
bilevel solution from the follower’s perspective. The following proposition is verified.

Proposition 8. Let (x̂, ŷ) be the optimal solution of BLPmaxmin . For a generic BLP the inequality
dT y ≤ dT ŷ is a valid cut.

54 3. Discrete–Continuous Bilevel Linear Programming

Proof. If there exists a bilevel–feasible solution (x̄, ȳ) such that dT ȳ > dT ŷ, it follows that there is a
bilevel–feasible solution which is worse than (x̂, ŷ) for the follower, which contradicts the formulation
of problem BLPmaxmin . It implies that (x̄, ȳ) /∈ Ry(x̄), thus (x̄, ȳ) /∈ IR, hence the proof. 2

Note that Proposition 8 holds regardless the presence of upper level constraints. The cut presented in
Proposition 8 is only a theoretical result for BLPs. Even if it represents a valid inequality for a BLP, it
requires the solution of BLPmaxmin which is another BLP: it means that the computation of a valid cut
for a problem is as difficult as the problem itself. Notwithstanding, Proposition 8 suggests an idea that
can be somehow preserved in the discrete–continuous case. Since a DCBLP is harder than BLPmaxmin ,
the computational burden required to solve BLPmaxmin may be counterbalanced by a time reduction in
solving DCBLP once the valid inequality is added.

3.2.3 The discrete–continuous case: DCBLP

It is easy to show the following result:

Proposition 9. Let (x̂, ŷ) be the optimal solution of BLPmaxmin . For the DCBLP obtained by the BLP
in which the leader’s variables are required to be integer, the inequality dT y ≤ dT ŷ is a valid cut.

Proof. Recall that IRDCBLP ⊆ IRBLP . This trivially implies that if an inequality is satisfied by all
solutions in IRBLP , the same holds for solutions in IRDCBLP , hence the proof. 2

The valid inequality described provides an upper bound on the value of the lower level objective
function: all the solutions which yield a higher value, can not belong to the follower’s reaction set nor
to the inducible region and can be discarded. See Figure 3.2 for a graphic explanation of the valid
inequality applied to the previous example.

Figure 3.2. An application of the valid cut

It is important to note that the valid inequality can be used both like an upper and lower level constraint.
Let us consider the two interpretations separately. If the valid inequality is treated like a lower level
constraint, for each value of x the size of the reaction set Ry(x) is reduced, but, on the other hand,

3.2 A New valid inequality for DBLP 55

we increase the number of constraints of the follower problem hence its hardness. Let us consider
the reformulation technique proposed by Fortuny-Amat and McCarl. Given a vector x of upper level
variables the follower problem is replaced by its KKT conditions and the resulting set of constraints is
the following:

Ax+By − b+ t = 0 y ≤M · β

d+BTµ− s = 0 s ≤M · (1− β)

µ ≤M · α µ, t ∈ Rq+, α ∈ Bq

t ≤M · (1− α) y, s ∈ Rm+ , β ∈ Bm

Binary variables α and β are necessary for linearizing the bilinear complementary slackness constraints
by using a big-M approach. In this case, adding a constraint to the follower, we need also to increase
the number of binary variables and duality variables. The resulting reformulation changes as follows:

Ax+By − b+ t = 0 s ≤M · (1− β)

dT y − dT ŷ + v = 0 ϕ ≤M · γ

d+BTµ+ dϕ− s = 0 v ≤M · (1− γ)

µ ≤M · α µ, t ∈ Rq+, α ∈ Bq

t ≤M · (1− α) y, s ∈ Rm+ , β ∈ Bm

y ≤M · β ϕ, v ∈ R+, γ ∈ B

If the valid inequality is considered as an upper level constraint, the follower problem’s size does not
change, but we introduce a leader’s constraint which intersects the reaction set in a small subset of
points by construction. In other words, the resulting formulation is less hard to tackle, but the valid
inequality may be less effective.

3.2.4 Computational results

In this section we assess the effect of the proposed valid inequality in terms of computational perfor-
mance. Starting from an instance of a DCBLP, three different formulations of the problem are taken into
account: the first is the original instance, the second is the reformulation in which the valid inequality
is considered and added like an upper level constraint, denoted R1, and the third is the reformulation in

56 3. Discrete–Continuous Bilevel Linear Programming

class (n,m) (p, q)
1 (10,5) (5,10)
2 (15,5) (5,15)
3 (15,10) (5,20)
4 (20,5) (5,20)
5 (20,10) (5,25)

Table 3.7. Classes of small size problems

which the valid inequality is treated like a lower level constraint, denoted R2. As previously explained,
the three formulations were solved using the method proposed by Fortuny-Amat and McCarl. The
computational environment is made of a Pentium Core 2 Duo with a 2 GHz processor and 1 GB RAM.
The AMPL language and the solver CPLEX 12.3 were used to solve each mathematical formulation.
Time limit was fixed to 600 seconds.

The test bed used was randomly generated. We defined two different set of instances, small size
and medium size problems. The test problems were generated choosing randomly each parameter in
the range [−50, 50].

The small size set is divided into 5 different classes of increasing size problems, each one comprised
of 10 instances, combining the number of upper and lower level variables and the number of upper and
lower constraints, for a total of 50 instances solved (see Table 3.7).

All these instances were solved to the optimum. The comparison was made taking into account the
following features:

– iter, the number of MIP simplex iterations

– CPU, the CPU time in seconds spent to solve an instance.

We indicated with original the DCBLP instance without valid inequality and with R1 and R2 the two
formulations above described. The column cut indicates the computational time necessary to solve
problem BLPmaxmin and compute the valid inequality. In Table 3.8 all the results presented are the
average values for each class.

The first relevant result is that the computational time required to compute the valid inequality can
be considered negligible compared to the time needed to solve the original formulation. This means
that the time required to compute the cut does not effect the total time, hence it is always possible to
compute the cut and include it in the formulation of a given DCBLP instance without a negative effect
on the computational effort. Another remarkable result is that the two formulations which include the
valid inequality, outperform the original one in all the classes of instances with respect to MIP simplex
iterations and CPU time. Except for class 2, the impact of the valid inequality is remarkable in terms of

3.2 A New valid inequality for DBLP 57

class
original cut R1 R2

iter CPU CPU iter CPU iter CPU
(×103) (sec) (sec) (×103) (sec) (×103) (sec)

1 210 8.15 0.06 5 0.44 5 0.40
2 114 4.26 0.04 94 3.78 75 3.51
3 915 33.29 0.12 618 19.19 631 23.84
4 1206 72.81 0.08 565 45.85 486 40.11
5 2464 77.67 0.12 1604 40.30 1504 52.04

average 982 39.24 0.08 577 25.05 540 23.98

Table 3.8. Computational results of the three formulations

class (n,m) (p, q)
1 (30,10) (15,15)
2 (30,15) (10,20)
3 (40,15) (15,40)
4 (50,10) (15,20)
5 (50,15) (15,25)

Table 3.9. Classes of medium size problems

effectiveness: the number of iterations reduction ranges from 17% to 98%, and the CPU time reduction
ranges from 11% to 95%. The behaviour of the two formulations is slightly different, and there is not
one which clearly dominates the other. Notwithstanding, comparing the average values, formulation
R2 seems to perform slightly better than R1, suggesting that may be preferable to consider the valid
inequality like a lower level constraint. Indeed, the test bed is still too limited and the difference
too small, for considering the second formulation definitely better than the first. In general, both the
interpretation of the valid cut, as an upper and as lower level constraint, can be implemented obtaining
a reduction in the size of the feasible set with a consequent reduction of iterations, thus computational
time as shown in Figure 3.3.

A similar analysis was made for the second set of instances of medium size. This set, like the first one,
is comprised of 50 instances, divided into 5 different classes of increasing size (see Table 3.9).

In this second computational analysis, we did not compare the three formulations in terms of CPU
time, since the time limit of 600 seconds was reached for all the instances solved but one (an instance
of class 2 for formulation R1). Conversely, we introduced other two indicators:

– ∆, the percentage difference between the solution found by solving original and R1 or R2;

– n_inst, the number of instances for which a feasible solution was found within the time limit.

58 3. Discrete–Continuous Bilevel Linear Programming

(a) Computational time

(b) Number of iterations

Figure 3.3. Computational comparison for small size problems

All the average results are reported in Table 3.10.

Similarly to the first set of tests, the CPU time required to compute the valid inequality is negligible and
does not effect the general performance of the solution method used. The formulation R2 is the only
one for which in all the instances a feasible solutions is computed within the time limit. Moreover, the
quality of solution found is slightly better than the solution computed solving the original formulation,
especially for classes 2 and 3. A similar result can be observed for the formulationR1. The NP-hardness
of the problem does not allow to make a deeper analysis of the three formulations and imposing a
time limit seems to damp the main differences among their computational behaviour. Notwithstanding,
the results of formulation R2 may show a promising impact of the valid inequality both in terms of
solution quality and number of iterations, see Figure 3.4.

Finally, in Tables 3.11 and 3.12 we listed in detail the results for all the instances solved.

3.2 A New valid inequality for DBLP 59

class
original cut R1 R2

iter
n_inst

CPU iter ∆
n_inst

iter ∆
n_inst

(×105) (sec) (×105) (%) (×105) (%)
1 147 10 0.20 137 -0.21 10 134 -0.28 10
2 161 9 0.21 155 -1.54 10 157 -1.56 10
3 142 8 0.22 136 -0.70 9 134 -1.85 10
4 133 10 0.15 128 -1.05 10 129 -0.98 10
5 157 10 0.38 156 -0.28 10 154 -0.27 10

average 148 - 0.23 142 -0.76 - 142 -0.99 -

Table 3.10. Computational results of the three formulations

Figure 3.4. Computational comparison of medium size problems

60 3. Discrete–Continuous Bilevel Linear Programming

3.2.5 Conclusions

We proposed a valid inequality for a generic DCBLP. The basic idea to compute this valid inequality is
to relax the DCBLP, analyze the geometry of its inducible region, that has well known properties, and
then obtain information on the bilevel-feasible solutions of the DCBLP. By solving an auxiliary bilevel
linear problem it is possible to derive a lower bound on the value of the follower’s objective function
and then reformulate the original problem taking into account this bound. The rationale behind this
approach is to eliminate a subset of solutions that can not be bilevel–feasible exploiting the polyhedral
properties of bilevel linear problems.

The proposed inequality is valid both for a BLP and a DCBLP. Notwithstanding, its computation
requires to solve another BLP. For this reason it is not convenient to use it for solving a BLP, but it has
been proved to be extremely effective if used to solve a DCBLP of small and medium size.

Computational results show that the application of this valid inequality to small size problems not
only reduces the number of iterations, but also produces a remarkable computational time reduction
of 42% on average. Moreover, the computational effort necessary to compute the inequality (the
solution of an auxiliary BLP) is entirely negligible and does not effect the overall performance. These
results are obtained if the valid inequality is treated like both an upper and a lower level constraint.
Encouraging results can be noticed also for medium size problems solved within a time limit: in this
case the valid inequality has a positive impact on the quality of the solution and on the reduction of
iterations especially when it is treated as a lower level constraint. Future work may be focused on one
side to extend the computational analysis to big size problems in order to make a more comprehensive
comparison between the two interpretations of the valid inequality like a leader’s or a follower’s
constraint, and, on the other side, to develop new branch and cut approaches which use the proposed
inequalities and exploit the polyhedral properties of bilevel linear problems.

3.2 A New valid inequality for DBLP 61

instance
original cut R1 R2

iter CPU CPU iter CPU iter CPU
(×103) (sec) (sec) (×103) (sec) (×103) (sec)

10,5,5,10_1 2 0.16 0.03 2 0.13 2 0.14
10,5,5,10_2 3 0.30 0.06 3 0.44 4 0.42
10,5,5,10_3 11 0.81 0.06 12 0.94 5 0.41
10,5,5,10_4 2 0.26 0.05 2 0.30 1 0.19
10,5,5,10_5 19 0.97 0.09 19 0.89 27 1.11
10,5,5,10_6 2052 78.00 0.03 1 0.20 1 0.19
10,5,5,10_7 2 0.14 0.09 2 0.19 1 0.22
10,5,5,10_8 1 0.22 0.05 1 0.19 1 0.13
10,5,5,10_9 4 0.36 0.08 3 0.25 3 0.28
10,5,5,10_10 2 0.28 0.06 2 0.25 2 0.27
15,5,5,15_1 54 4.49 0.03 54 4.42 42 3.26
15,5,5,15_2 40 1.16 0.05 40 1.19 52 1.47
15,5,5,15_3 16 1.01 0.03 16 1.00 21 1.23
15,5,5,15_4 105 4.17 0.03 105 4.18 117 4.76
15,5,5,15_5 5 0.28 0.03 5 0.28 6 0.32
15,5,5,15_6 48 1.70 0.05 48 1.29 8 0.48
15,5,5,15_7 426 14.24 0.03 234 9.39 275 12.59
15,5,5,15_8 26 1.05 0.03 22 1.01 22 1.00
15,5,5,15_9 375 11.98 0.06 375 12.03 164 6.90
15,5,5,15_10 41 2.54 0.05 41 2.59 41 2.67
15,10,5,20_1 620 23.98 0.14 453 17.74 304 12.25
15,10,5,20_2 2406 92.77 0.11 1212 45.61 1610 69.75
15,10,5,20_3 262 13.12 0.09 262 12.98 144 8.47
15,10,5,20_4 766 16.85 0.11 516 11.83 585 13.15
15,10,5,20_5 94 4.93 0.09 94 4.76 42 2.45
15,10,5,20_6 407 11.97 0.16 442 12.50 368 9.81
15,10,5,20_7 2882 119.33 0.16 1584 72.68 2064 82.90
15,10,5,20_8 231 6.91 0.09 231 6.93 84 2.82
15,10,5,20_9 643 16.85 0.09 643 16.69 226 7.49

15,10,5,20_10 836 26.18 0.11 741 23.88 880 28.31
20,5,5,20_1 252 11.06 0.05 76 5.30 76 5.33
20,5,5,20_2 3109 287.54 0.08 2659 250.61 2542 259.48
20,5,5,20_3 46 3.81 0.05 46 3.78 46 3.99
20,5,5,20_4 388 18.80 0.06 388 18.56 388 18.47
20,5,5,20_5 71 5.24 0.11 71 5.10 56 3.64
20,5,5,20_6 4677 202.19 0.14 1447 70.11 455 29.56
20,5,5,20_7 119 8.19 0.08 123 8.28 107 7.96
20,5,5,20_8 73 3.12 0.13 37 1.87 43 2.22
20,5,5,20_9 3052 169.23 0.05 524 86.89 943 54.91
20,5,5,20_10 275 18.89 0.06 275 18.79 202 14.74
20,10,5,25_1 569 25.52 0.11 413 15.68 653 28.25

62 3. Discrete–Continuous Bilevel Linear Programming

instance
original cut R1 R2

iter CPU CPU iter CPU iter CPU
(×103) (sec) (sec) (×103) (sec) (×103) (sec)

20,10,5,25_2 4791 165.20 0.08 2820 97.64 1164 61.12
20,10,5,25_3 374 18.19 0.13 374 12.09 95 3.84
20,10,5,25_4 2199 85.54 0.08 3075 107.31 2617 116.08
20,10,5,25_5 3272 88.61 0.06 1335 43.34 1605 55.60
20,10,5,25_6 1630 72.17 0.53 970 35.51 1426 47.08
20,10,5,25_7 426 11.19 0.08 196 6.12 235 7.53
20,10,5,25_8 275 12.64 0.05 114 6.19 580 17.41
20,10,5,25_9 7552 187.65 0.06 2899 73.88 4536 108.98

20,10,5,25_10 3550 110.01 0.06 3838 114.75 2133 73.24

Table 3.11. Computational results in details for each small size instance solved

instance
original cut R1 R2

iter
solution

CPU iter ∆ iter ∆
(×105) (sec) (×105) (%) (×105) (%)

30,10,15,15_1 243 -3765.91 0.16 152 -0.26 141 -0.14
30,10,15,15_2 145 -2826.13 0.08 134 0.23 147 0.31
30,10,15,15_3 147 -1466.74 0.09 150 -2.26 147 -2.50
30,10,15,15_4 99 -2447.78 0.06 95 0.00 82 -0.16
30,10,15,15_5 148 -3141.03 0.09 167 0.55 145 0.03
30,10,15,15_6 137 -2213.47 1.12 122 -0.27 100 -0.33
30,10,15,15_7 124 -4558.59 0.11 126 0.00 165 -0.01
30,10,15,15_8 140 -3933.31 0.06 140 0.00 148 0.23
30,10,15,15_9 176 -2472.47 0.11 171 0.00 158 -0.01
30,10,15,15_10 116 -2376.17 0.06 114 -0.03 112 -0.22
30,15,10,20_1 200 -2890.05 0.28 159 0.72 158 0.78
30,15,10,20_2 155 -1851.53 0.20 157 -15.72 131 -15.72
30,15,10,20_3 145 -2628.96 0.13 176 0.98 160 0.66
30,15,10,20_4 129 -2597.15 0.09 115 -0.33 114 -0.33
30,15,10,20_5 204 -4050.66 0.19 201 0.00 211 0.28
30,15,10,20_6 186 -5170.45 0.52 88 -0.13 175 -0.05
30,15,10,20_7 162 - 0.19 209 - 211 -
30,15,10,20_8 177 -3128.19 0.17 199 0.66 161 0.04
30,15,10,20_9 126 -3098.92 0.05 124 0.00 123 0.09
30,15,10,20_10 127 -3983.52 0.25 124 -0.07 131 0.16
40,15,15,40_1 145 -4246.53 0.11 150 0.35 145 0.44
40,15,15,40_2 151 -3131.70 0.62 137 -3.44 134 -3.96
40,15,15,40_3 152 -3466.01 0.08 152 -0.61 143 0.22
40,15,15,40_4 125 -3232.03 0.13 127 - 125 -3.80
40,15,15,40_5 137 - 0.16 137 - 101 -

3.2 A New valid inequality for DBLP 63

instance
original cut R1 R2

iter
solution

CPU iter ∆ iter ∆
(×105) (sec) (×105) (%) (×105) (%)

40,15,15,40_6 121 - 0.09 127 - 131 -
40,15,15,40_7 120 -4090.18 0.59 121 0.00 163 -5.90
40,15,15,40_8 157 -3781.86 0.11 149 -0.86 108 -1.59
40,15,15,40_9 147 -4141.10 0.16 146 0.29 126 -0.11
40,15,15,40_10 164 -3422.21 0.17 111 -0.64 166 -0.11
50,10,15,20_1 159 -4954.07 0.19 149 -0.09 176 0.05
50,10,15,20_2 146 -5457.03 0.27 125 -9.43 138 -9.68
50,10,15,20_3 79 -6306.29 0.08 97 0.07 105 0.30
50,10,15,20_4 131 -6679.57 0.09 121 -0.43 122 -0.37
50,10,15,20_5 127 -7106.76 0.31 127 0.00 121 -0.26
50,10,15,20_6 88 -7103.65 0.14 115 0.02 126 -0.01
50,10,15,20_7 149 -5209.96 0.13 150 0.03 115 0.20
50,10,15,20_8 194 -6639.24 0.08 139 -0.62 139 0.31
50,10,15,20_9 125 -4883.42 0.09 123 0.00 123 0.00
50,10,15,20_10 133 -5042.59 0.13 133 0.00 125 -0.30
50,15,15,25_1 144 -6227.10 0.30 148 0.00 145 -0.37
50,15,15,25_2 184 -6907.57 1.30 179 -0.06 173 -0.14
50,15,15,25_3 145 -4607.55 0.09 143 -1.95 139 -1.71
50,15,15,25_4 149 -8101.07 0.42 156 0.34 136 -0.11
50,15,15,25_5 133 -5881.63 0.25 131 0.22 146 0.23
50,15,15,25_6 151 -5404.41 0.34 151 0.03 125 -0.52
50,15,15,25_7 104 -6697.39 0.37 108 0.06 104 1.41
50,15,15,25_8 181 -6971.47 0.23 177 -0.09 177 -0.06
50,15,15,25_9 198 -6908.01 0.38 201 -1.25 203 -1.25
50,15,15,25_10 180 -7900.03 0.09 167 -0.11 193 -0.17

Table 3.12. Computational results in details for each medium size instance solved

65

Chapter 4

Discrete Bilevel Linear Programming

In this chapter we focus on the study of bilevel linear programming problems in which all the variables are
discrete. The main computational complexities are analyzed and two different lines of research are followed: the
development of new exact methods and new fast heuristics. Despite an increasing interest of scientific community
towards bilevel optimization problems, the class of Discrete Bilevel Linear Problems (DBLPs) has not been been
sufficiently investigated in our opinion. In this chapter we describe new theoretical results for DBLP that are
used to design two new exact algorithms and two new heuristic algorithms. Some of these results directly stem
from similar properties investigated for the discrete–continuous case and are properly readapted for DCBLP. The
main challenge originates from the integer nature of the follower problem. For this reason the majority of results
available for BLP are not still valid for this class of problems and new solution approaches are pursued.

4.1 Enhanced exact algorithms for DBLP

Let us recall the general formulation of a Discrete Bilevel Linear Problem (DBLP):

(DBLP) min
x,y

F (x, y) = cT1 x+ cT2 y

s.t. Cx+Dy ≤ e
x ∈ Z+

y ∈ argmin
y

f(y) = dT y

s.t. Ax+By ≤ b
y ∈ Z+

For the sake of simplicity, in the rest of this chapter we assume there are not upper level constraints. In the
literature there are very few references on DBLPs. Some results have been shown by Bard and Moore [24] for
the binary case and by Dempe [54] for problems in which the follower’s feasible set is not parameterized by x
and the follower’s objective function is bilinear. Mansi et al. [105] propose an exact method for a DBLP with a
follower binary knapsack problem. DeNegre and Ralphs [57] propose a branch and cut scheme for DBLPs based
on a simple valid inequality that eliminates an integer solution after checking it is not bilevel–feasible. In the
following, this algorithm is used like benchmark for a computational comparison to the exact methods we propose.

66 4. Discrete Bilevel Linear Programming

In this section we present two novel exact algorithms for the resolution of a generic DBLP. The first algorithm
is a cutting plane approach. The second algorithm is based on an existing branch and cut properly modified to
exploit some geometric properties of bilevel linear problems. The main goal of this section is to present two new
exact algorithms and to compare their computational performances. The new algorithms, that are proved to be
very efficient, represent a clear contribution to the state of the art of solution methods for DBLPs.

4.1.1 Preliminaries

In Chapter 2 we showed the relation between the general formulation of a bilevel linear problem and its single
level relaxation. For the sake of clearness, let us recall the same definition for the discrete case. The single level
relaxation (SLR) of a DBLP without upper level constraints is

(SLR) min
x,y

F (x, y) = cT1 x+ cT2 y

s.t. Ax+By ≤ b
x ∈ Z+

y ∈ Z+

In other words, in SLR the follower’s objective function is dropped, thus the reaction set Ry(x) and the inducible
region IR are not defined and the problem is solved on the feasible region S. Note that in SLR the variables
are required to be integer. Let us define with (x1, y1) and (x2, y2) the optimal solutions of DBLP and SLR,
respectively. Moreover we define with (x3, y3) the optimal solution of the continuous relaxation of SLR. We
have:

F (x3, y3) ≤ F (x2, y2) ≤ F (x1, y1)

Consider the following problem P1:

(P1) min
x,y

F (x, y) = 2x+ 7y

s.t. x ∈ Z+

y ∈ min
y

f(y) = −y

s.t. 2x− 8y ≥ −25
7x+ 10y ≤ 60
2x+ y ≥ 6
11x− 4y ≤ 31
y ∈ Z+

In Figure 4.1 all the integer solutions of P1 are represented. In this case (x1, y1) ≡ A, (x2, y2) ≡ E and
(x3, y3) ≡ F , thus we obtain F (x1, y1) = 25, F (x2, y2) = 13, F (x3, y3) ≈ 7.3.

Let us drop the integrality requirements of problem DBLP preserving its bilevel structure and let us denote
with (x4, y4) the optimal solution of this problem. It is not possible to define any relation between F (x1, y1) and
F (x4, y4) (see Moore and Bard [114] for more details). In order to clarify this issue, let us consider the linear
relaxation of problem P1, denoted as P2:

4.1 Enhanced exact algorithms for DBLP 67

Figure 4.1. Set of integer solutions and extreme points of S

(P2) min
x,y

F (x, y) = 2x+ 7y

x ≥ 0
y ∈ argmin

y
f(y) = −y

s.t. 2x− 8y ≥ −25
7x+ 10y ≤ 60
2x+ y ≥ 6
11x− 4y ≤ 31
y ≥ 0

In Figure 4.2 the two inducible regions are shown. Let us call them IRP1 and IRP2 for problems P1 and
P2 respectively. IRP1 is represented by the bold line (note that it is comprised of two support hyperplanes
of the feasible region) and IRP2 is comprised of the black points (while the white points are the integer not
bilevel–feasible solutions).

It is easy to see that IRP1 * IRP2 : therefore, it is not surprising that the optimal solution of the relaxed problem
P2 is (x4, y4) ≡ G with F (x4, y4) ≈ 26.7 > F (x1, y1).

Summing up, the linear relaxation of a DBLP does not provide a valid lower bound in general.

4.1.2 A cutting plane method

We now introduce the first exact algorithm based on a cutting plane approach. In the previous section we showed
that a valid lower bound for DBLP can be computed solving SLR which is a single level discrete problem.
The optimal solution of SLR, denoted as (x̄, ȳ), is integer, but may not be bilevel–feasible: it means that in
the follower’s feasible region Ωy(x̄) there may exist a solution y∗ such that f(y∗) < f(ȳ), that is ȳ is not the
best response for the follower. The rationale behind our algorithm is to solve SLR and compute a lower bound
F (x̄, ȳ). If the solution is bilevel–feasible it provides also an upper bound, hence, it is optimal; otherwise, there
exists a bilevel–feasible solution (x̄, y∗) and we introduce a cut to eliminate all the solutions which are not
bilevel–feasible at x = x̄ and then iterate. The valid inequality is the following:

68 4. Discrete Bilevel Linear Programming

Figure 4.2. Comparison between two inducible regions

f(y) ≤ f(y∗) + L · |x− x̄|

where L is a parameter greater than the maximum value that function f(y) can achieve and that can be easily
computed. Basically, the idea is that the cut works only when x = x̄ and it is inactive otherwise. This formulation
of the cut is not linear but can be reformulated as follows:

f(y) ≤ f(y∗) + L · z(x̄)

where z(x̄) is defined as the optimal solution of this auxiliary problem Pz(x̄)

(Pz(x̄)) min
z
z

s.t. z ≥ x− x̄
z ≥ x̄− x

Thus, every time a not bilevel–feasible solution is found, we introduce in the SLR a follower problem comprised
of one free auxiliary variable z and 2n constraints. The main advantage is that the resulting proble can be treated
and solved like a bilevel linear problem with continuous lower level variables. Indeed, as pointed out in the
literature, the main difficulty of a DBLP is the discrete nature of the follower problem. In this cutting plane
approach the follower problem Pz(x̄) is a continuous problem and incorporating it within the SLR the resulting
problem is a bilevel problem in which all the discrete variables are under control of the leader.

Given a not bilevel–feasible solution (x̄, ȳ) and its corresponding bilevel–feasible one (x̄, y∗), the resulting
SLR formulation after the cut generation is:

4.1 Enhanced exact algorithms for DBLP 69

min
x,y

F (x, y) = cT1 x+ cT2 y

s.t. x ∈ Z+

y ∈ Z+

f(y) = dT y

f(y) ≤ f(y∗) + L · z(x̄)
z(x̄) ∈ argmin

z
z

s.t. z ≥ x− x̄
z ≥ x̄− x

Here is the detail of the cutting plane algorithm:

Step 1 Solve problem SLR and compute a lower bound LB = F (x̄, ȳ).

Step 2 (Bilevel-feasibility check) Solve the follower problem. If the solution is bilevel–feasible, (x̄, ȳ) is optimal
then STOP, else go to Step 3.

Step 3 (Cutting plane) Modify problem SLR with an additional follower problem Pz(x̄) and go to Step 1.

Note that this algorithm can be used even if the set of leader’s constraints is non empty, that is p 6= 0, or if we
remove the semi-cooperative assumption between the two decision makers. In this case, every time a solution is
checked not to be stable through a stability check, it can be removed with the same cutting procedure. A stability
test, as showed in Chapter 1, is described in Bianco et al. [35]: assuming that solution (x̄, y∗) is bilevel–feasible,
by solving the following

max
y

F (x̄, y)

s.t. (x̄, y) ∈ S
f(y) ≤ f(y∗)

if the solution is non stable a new bilevel–feasible solution is found which is worse for the leader.

Similarly to the previous chapter, the method we use for solving bilevel linear problem with continuous
lower level variables is the one proposed by Fortuny-Amat and McCarl. In this case, the follower Pz(x̄) is
replaced by the following set of constraints

z − x+ x̄ = t 1− µ ≤M · β

z − x̄+ x = s s ≤M · (1− β)

µ ≤M · α µ, t, s ∈ Rn+
t ≤M · (1− α) α, β ∈ Bn

70 4. Discrete Bilevel Linear Programming

This reformulation can not be used for DBLP, since the KKT conditions are not necessary and sufficient optimality
conditions for the follower problem. This method is widely used to solve common bilevel linear problems as
it is easily implementable and provides a mixed-integer single level problem. The main drawback is that the
complexity of the MIP grows proportionally to the size of the follower problem and for big size problems many
approximation errors, due to the presence of big-M , may occur. In our algorithm, the follower problem Pz(x̄) is
of fixed size (one variable and 2n constraints), but a new follower problem is added in every iteration. In order to
avoid a large number of follower problems that are difficult to handle, we propose a slight modification of the
cutting plane algorithm.

4.1.3 Modified cutting plane

In this modified version we try to reduce the number of cutting planes added to the SLR. The basic idea stems
from an observation. Let us assume that a solution (x̄, ȳ) is found which is not bilevel–feasible. According to
the algorithm, we introduce the follower problem Pz(x̄) and cut off the solution.

Let (x′, y′) be the new not bilevel–feasible solution providing a new lower bound. If solution (x′, y′) is far
from (x̄, ȳ) in the feasible region S, it is reasonable to suppose that the descent direction of function F (x, y)
may lead to solutions far from (x̄, ȳ). It implies that it may be possible to drop the cutting plane we introduced,
i.e. remove the follower problems Pz(x̄), and replace it with the inequality F (x, y) ≥ F (x′, y′), which is
violated by (x̄, ȳ). Notwithstanding, if in a subsequent iteration a new solution (x̄, ŷ) is found, it means that
the algorithm computes another not bilevel–feasible solution for x = x̄: for avoiding this cycling effect, in this
case the follower problem Pz(x̄) is reintroduced and it is no longer dropped. This modified version, on the one
hand, may lead to an increased number of iterations, but on the other hand, reduces the number of unnecessary
follower problems which can be extremely effective when large size instances are solved.

4.1.4 An example

Let us recall the previous example

min
x,y

F (x, y) = 2x+ 7y

s.t. x ∈ Z+

y ∈ min
y

f(y) = −y

s.t. 2x− 8y ≥ −25
7x+ 10y ≤ 60
2x+ y ≥ 6
11x− 4y ≤ 31
y ∈ Z+

The set of feasible solutions is depicted in Figure 4.1. Solutions A and B are bilevel–feasible, while C, D
and E are not. Applying the first version of the algorithm, the initial solution is E = (3, 1). E is not bilevel–
feasible since the optimal follower’s reaction for x = 3 is solution B = (3, 3) with f(3) = −3. The cut
f(y) ≤ −3 + L · |x − 3| is applied, thus if x = 3 the only feasible solution is B. The second solution is
C = (2, 2) and it is not bilevel–feasible too. The algorithm computes the optimal solution A = (2, 3) at the third
iteration. Solving the same instance through the modified version, after solutionC, the cut f(y) ≤ −3+L·|x−3|
is removed and it is replaced by the inequality F (x, y) ≥ 18, where F (C) = 18. At the third iteration the

4.1 Enhanced exact algorithms for DBLP 71

algorithm computes solution D = (3, 2) that would have not been found if the cut had not been dropped. To
avoid cycling on already found solutions, cut f(y) ≤ −3 + L · |x− 3| is restored and the optimal solution A is
computed at the fourth iteration.

Let us modify leader’s objective function as F (x, y) = 8x+ 7y. Now the first solution is C, then solution
E is found with both algorithms. In this case, if the modified version is used, the valid inequality added to make
solution C infeasible is dropped and the optimal solution A is found at the second iteration with the advantage of
solving a less constrained problem.

4.1.5 A branch and cut algorithm

One of the main differences between DBLPs and integer linear programming problems is that a solution (x, y) is
required to be in the feasible set S, but also to be bilevel–feasible, that is y ∈ Ry(x). It follows that an integer
solution does not necessarily provide a valid upper bound unless it belongs to the inducible region IR.

As stated above, SLR represents a valid relaxation of DBLP. If a branch and bound approach is used to solve
SLR, every time an integer solution (x, y) is computed at a given node problem, F (x, y) is a lower bound. The
node can be pruned if the solution provides also a valid upper bound, i.e. is bilevel–feasible. In the literature a
method proposed by DeNegre and Ralphs features the application of a valid inequality to eliminate a solution
(x, y) ∈ S such that y 6= Ry(x). This method, that will be described more in detail in the following section, is
the only existing branch and cut approach to solve a generic DBLP to our knowledge and it will be used as a
benchmark in the computational analysis reported below.

The main idea of our new branch and cut method originates from the geometrical properties of bilevel linear
problems highlighted in Chapter 3: IR is piecewise linear and is comprised of supporting hyperplanes of S.
As a consequence, IR is a non convex set, but it is a small subset of S. Our idea is to exploit this property to
reformulate S defining a smaller size feasible region S′ and solve DBLP on S′. This idea is an adaptation of the
valid inequality provided for DCBLP in Chapter 3. Recall the max-min auxiliary problem, denoted as BLPmaxmin :

(BLPmaxmin) max
x,y

f(y) = dT y

s.t. x ∈ Rn+
y ∈ argmin

y
f(y) = dT y

s.t. Ax+By ≤ b
y ∈ Rm+

Let (x̂, ŷ) be the optimal solution. We have already proved that, for a BLP and a DCBLP f(ŷ) is an upper bound
on the value of the follower’s objective function. Let us consider the following inequality

f(y) ≤ df(ŷ)e

This is a valid inequality for BLP and DCBLP. In the previous example, the optimal solution of BLPmaxmin is
(x̂, ŷ) ≈ (4, 3.2). Note that adding the inequality to the original formulation of S, the new feasible set, denoted
as S′, comprises only the two bilevel–feasible solutions A and B.

Unfortunately the validity of this inequality does not always hold for DBLP and it may happen that S′ does
not contain the optimal solution. In this section we show how to readapt this inequality in order to provide a new

72 4. Discrete Bilevel Linear Programming

exact method for DBLP. In the following section we explain from a theoretical point of view why this is not a
valid inequality for DBLP, we use it to design a heuristic approach and present two special cases in which the
validity for DBLP holds.

Preliminary tests show that the new feasible set S′ is very likely to contain the optimal solution. For this
reason, we propose to use this inequality as a branching rule. The original feasible set S is splitted in two subset,
S′ and S′′ adding inequalities f(y) ≤ df(ŷ)e and f(y) ≥ df(ŷ)e + 1 respectively. Thus from the original
problem two subproblems DBLP′ and DBLP′′ are generated.

The general framework of our branch and cut algorithm is described below.

Step 1 Solve problem BLPmaxmin and compute the optimal solution (x̂, ŷ). Define sets S′ and S′′ as:

S′ = S ∩ {f(y) ≤ df(ŷ)e}

S′′ = S ∩ {f(y) ≥ df(ŷ)e+ 1}

and problems DBLP′ and DBLP′′, then go to Step 2.

Step 2 Solve problem DBLP′ and compute an incumbent solution UB′. Go to Step 3.

Step 3 Solve SLR′′, that is the single level relaxation of DBLP′′, to compute a lower boundLB′′. IfLB′′ ≥ UB′

close DBLP′′ and STOP, else got to Step 4.

Step 4 Solve problem DBLP′′. Every time a new LB′′ is computed check if DBLP′′ can be closed, otherwise
continue.

Problems DBLP′ and DBLP′′ are solved by means of the above mentioned branch and cut algorithm existing in
the literature that is described more in detail in the following sections. The crucial step of our algorithm is Step
3: if the relaxation of problem DBLP′′ provides a lower bound worse than the incumbent, this certificates that
the optimal solution has already been found in S′ and the algorithm halts.

4.1.6 Hybrid branch and cut

Even if the optimal solution is contained in S′, some preliminary tests show that many lower bounds have to
be computed in Step 4 before DBLP′′ can be closed and this represents a waste of time in terms of efficiency.
Note that a lower bound is computed solving the relaxed version of SLR which is a linear programming problem.
With the goal of reducing the computational time in Step 4, we propose to solve DBLP′′ using the first version
of the cutting plane algorithm described in Section 4.1.2. In this case, in order to compute a lower bound, it is
necessary to solve SLR which is an integer linear programming problem. Thus, there is a trade off between the
two methods in terms of number of iterations and computational time per iteration.

Summing up, in this hybrid version of the algorithm, DBLP′ is solved by the branch and cut algorithm
existing in the literature and DBLP′′ is solved by our cutting plane algorithm.

Let us consider the same example above mentioned. The feasible sets S′ and S′′ defined after Step 1 are
depicted in Figure 4.3.

4.1 Enhanced exact algorithms for DBLP 73

Figure 4.3. Set S splitted into S′ and S′′

The optimal solution is in S′ and UB′ = 25. Solving a relaxation of DBLP′′ we obtain LB′′ ≈ 7.3 < 25 thus
the algorithm can not stop. If we apply the first version of the algorithm at least 8 iterations have to be done
before certificating that S′′ has not bilevel–feasible solutions. The same result is obtained applying the cutting
plane algorithm of Section 3 in only 3 iterations.

4.1.7 Computational analysis

In this section, we report and analyze the computational performance of the methods above proposed: the cutting
plane algorithm (CP) and its modified version (MCP), the branch and cut algorithm (BC) and its hybrid version
(HBC). The branch and cut method developed by DeNegre and Ralphs (DR) is used like a benchmark as it
represents one of the best performing algorithm existing in the literature to solve a generic instance of DBLP.

The test bed used for the our computational results is formed by randomly generated problems of different
size following the same rationale used for the computational analysis described in Chapter 3. As the complexity
strictly depends on the number of upper and lower level variables, we set n ∈ {5, 10, 15} and m ∈ {5, 10, 15}
and we defined 7 different problems combining the value of n and m and setting the number of constraints
q = n + m. 10 instances were generated for each problem choosing randomly each parameter in the range
[−50, 50]. All the algorithms were implemented in the C language and the test was performed on a PC Pentium
Core 2 Duo with a 2 GHz processor and 1 GB RAM. Solver CPLEX 12.3 was used within the algorithms to
solve test problems.

In Table 4.1, all the notations used in this section are summarized.

4.1.8 Cutting plane algorithms

We compared CP and MCP to the benchmark algorithm DR. The results are listed in Table 4.2 and have to be
considered as average values out of 10 instances. The best results are reported in bold.

The comparison was made with regards to number of iterations and computational times. The number of

74 4. Discrete Bilevel Linear Programming

DR benchmark branch and cut algorithm proposed by DeNegre and Ralphs
BC branch and cut algorithm described in Section 4.1.5

HBC hybrid branch and cut algorithm described in Section 4.1.6
CP cutting plane algorithm described in Section 4.1.2

MCP modified cutting plane algorithm described in Section 4.1.3
iter total number of iterations

ott/iter percentage ratio between the iteration in which the optimum is found and iter
CPU CPU time spent in seconds

Table 4.1. Notations

(n,m)
DR CP MCP

iter CPU iter CPU iter CPU
(10,5) 2007 218.03 25 80.90 35 39.91
(5,10) 1568 284.32 17 23.67 27 30.14
(10,10) 2264 362.99 23 40.98 31 38.95
(15,5) 1704 181.28 21 31.58 23 28.04
(5,15) 2399 267.33 10 14.42 16 18.21

(15,10) 4190 452.09 29 60.06 43 71.96
(10,15) 2640 314.87 16 25.43 25 28.90
average 2396 297.27 20 39.58 28 36.45

Table 4.2. Comparison of CP, MCP and the benchmark algorithm DR

4.1 Enhanced exact algorithms for DBLP 75

iterations of CP and MCP are two orders of magnitude smaller than the iterations of DR, while the CPU time is
one order of magnitude smaller. Both CP and MCP are extremely faster than DR: CP solves all instances in an
average time smaller than 45 seconds but two cases (80.90 and 60.06 seconds) and MCP performs even better
with all instances but one (71.96 seconds) solved within 40 seconds. As expected the number of iterations made
by MCP is greater than the iterations of CP, but this is counterbalanced by a computational time that is smaller
for problems (10, 5), (10, 10) and (15, 5) and almost comparable for problems (5, 15) and (10, 15). Even if
the average value of CPU time seems to show that MCP should be preferred to CP, there is not a clear best
performing result of one algorithm compared to the other. Note that iterations and CPU time of CP and MCP
always decrease as n and m are swapped and this happens mainly because the follower problems we add in the
cutting procedure have a size that strictly depends of n. This phenomenon does not happen for DR.

4.1.9 Branch and cut algorithms

Branch and cut algorithms were compared to each other and to the benchmark algorithm in terms of iterations
and CPU time. In HBC we set a time limit of 120 second for solving DBLP′′. Moreover we introduce an
additional indicator, i.e. the ratio between the instance in which the optimal solution is computed and the total
number of iterations. The latter is an efficiency indicator for an algorithm: a low percentage ratio means that an
optimal solution is found early, but is not certified as optimal until a large number of iterations is performed,
on the contrary, a high percentage ratio implies that the algorithm does not waste too much computational time
and it is more efficient. This indicator is particularly useful to compare BC and HBC. As we pointed out in the
previous section, the main disadvantage of BC occurs if the optimal solution is contained in DBLP′, but it is
necessary to solve DBLP′′, too. Speeding up the resolution of the latter problem with HBC, we may expect
an increased percentage ratio. Finally note that this indicator is meaningless for the CP and MCP since they
stop once an optimal solution is found, hence the percentage ratio is always 100%. All the average results are
reported in Table 4.3.

(n,m)
DR BC HBC

iter ott/iter CPU iter ott/iter CPU iter ott/iter CPU
(10,5) 2007 83.76% 218.03 1904 70.70% 210.27 1739 79.72% 205.59
(5,10) 1568 61.91% 284.32 1742 43.22% 200.63 1114 58.81% 109.04

(10,10) 2264 73.61% 362.99 2263 66.60% 259.56 1524 81.67% 196.87
(15,5) 1704 69.06% 181.28 1541 49.43% 169.69 1276 59.82% 147.14
(5,15) 2399 71.06% 267.33 2045 44.50% 227.98 1684 50.65% 78.51

(15,10) 4190 83.59% 452.09 3957 62.51% 445.00 3504 63.62% 402.17
(10,15) 2640 78.89% 314.87 2493 76.22% 277.47 2286 79.23% 262.58
average 2396 74.55% 297.27 2278 59.03% 255.80 1875 67.65% 200.27

Table 4.3. Comparison of BC, HBC and the benchmark algorithm DR

A CPU time reduction of BC and HBC compared to DR is always achieved for all the problems even if it
less remarkable than the previous comparison. BC requires less computational time than DR with a difference
ranging from −1.57% to −29.44%, while the difference for HBC ranges from −5.71% to −70.63%. Unlike the
previous case, computational results clearly show that HBC is the best performing algorithm for each problem

76 4. Discrete Bilevel Linear Programming

solved. There is no correlation between number of iterations and CPU time: see, for instance, problem with
(n,m) = (10, 10) in which DR and BC make almost the same number of iterations, but the CPU time required by
BC is significantly smaller. Finally consider the percentage ratio ott/iter: as expected HBC achieves a better ratio
because it makes less iterations for solving problem DBLP′′ especially when the optimal solution is contained in
DBLP′. In other words HBC is able to halt before BC and this yields a positive impact in terms of efficiency.

A comprehensive comparison among all the algorithms considered is depicted in Figure 4.4. In Tables 4.4
and 4.5 we reported the detail of all the instances solved: note that for HBC there are some instances in which the
time limit for solving DBLP′′ was reached and for the latter the CPU time is omitted and replaced with notation
TL. All the algorithms are faster and more efficient than the benchmark and the two cutting plane versions are
significantly the best performing ones.

(a) Computational time

(b) Number of iterations

Figure 4.4. Computational comparison

4.1 Enhanced exact algorithms for DBLP 77

4.1.10 Conclusions

In this section we studied a class of extremely hard problems, Discrete Bilevel Linear Problems (DBLPs). The
main features of DBLPs are the bilevel structure, on the one hand, and the discrete nature of the problem, on the
other hand. Unlike continuous bilevel linear problems, well known techniques based on polyhedric properties,
optimality conditions and reformulations can not be used. Furthermore, the most efficient methods used to solve
integer and mixed-integer problems can not be extended in a straightforward manner to DBLPs, since a solution
is required not only to be feasible, but also to be bilevel–feasible, that is contained in the follower’s reaction
set. Starting from these computational difficulties, we developed and presented two new exact algorithms for
DBLPs. The first algorithm is based on a cutting plane approach. The rationale behind the algorithm is to solve a
relaxation of DBLP in order to compute a lower bound, make a bilevel–feasibility test and then halt if the solution
is bilevel–feasible or cut it otherwise. The cut proposed is not a linear function and can be reformulated as a
bilevel linear problem in the size of the upper level variables. The resulting problem is a bilevel linear problem
with discrete leader’s variables and continuous follower’s variables. At each iteration, when a cut is added, a
new follower problem is included within the original problem, thus the complexity of the problem increases.
A modified version of the algorithm tries to remove unnecessary cuts: a positive effect is that the number of
follower problems reduces but a negative effect is that a bilevel–feasible solution for a given vector of leader’s
variables, that has been previously computed, can be found again. Computational tests on a randomly generated
set of problems clearly show that both algorithms are faster than a branch and cut existing in the literature used
like benchmark. The proposed cutting plane methods are one order of magnitude faster than the benchmark and
make a number of iterations two orders of magnitude smaller than the benchmark.

The second algorithm proposed is a branch and cut algorithm that exploits part of the rationale of the
benchmark algorithm. The main idea stems from a geometrical property of bilevel problems. Starting from
this property we introduce an inequality with the goal of cutting off the largest possible set of integer not
bilevel–feasible solutions. We propose a branch and cut algorithm in which the latter inequality is used in the
root node as a branching rule for defining two subproblems DBLP′ and DBLP′′ on which the branch and cut is
applied separately. While experimenting with our algorithms, we noted that DBLP′ is more likely to contain
the optimal solution and for this reason it is solved first. Nevertheless, even if the optimal solution is found in
DBLP′, many iterations of branch and cut on DBLP′′ have to be performed before certificating the optimality of
the solution. In order to reduce the computational time, we propose a hybrid version of the branch and cut in
which DBLP′′ is solved through the cutting plane algorithm above described. A computational comparison on
the same test bed previously used indicates a CPU time reduction and a smaller number of iterations for both
the algorithms compared to the benchmark. This difference is more notable for the hybrid algorithm. Future
research directions may be focused on defining other valid inequalities for DBLPs to incorporate in the proposed
cutting plane algorithms which are the most promising exact methods for this class of hard problems.

78 4. Discrete Bilevel Linear Programming

instance
DR CP MCP

iter CPU iter CPU iter CPU
10_5_1 2341 239.02 30 44.34 42 46.91
10_5_2 368 35.60 1 1.26 1 1.20
10_5_3 6292 706.49 52 230.68 59 75.54
10_5_4 3117 334.37 28 37.94 44 48.17
10_5_5 1164 126.83 15 19.30 28 31.09
10_5_6 644 64.65 12 15.10 11 13.99
10_5_7 3544 371.13 53 364.73 77 85.32
10_5_8 1708 208.21 48 81.59 71 81.71
10_5_9 244 26.29 3 3.85 4 4.56

10_5_10 646 67.67 8 10.17 9 10.65
5_10_1 738 83.48 15 21.75 18 21.36
5_10_2 2340 529.11 20 26.71 38 41.43
5_10_3 1695 189.09 13 16.91 19 20.69
5_10_4 1491 163.74 29 42.98 49 53.93
5_10_5 4172 994.47 38 58.61 67 75.46
5_10_6 2148 479.19 16 21.37 23 25.05
5_10_7 139 15.87 4 5.09 3 3.70
5_10_8 755 78.03 11 14.04 21 23.60
5_10_9 911 177.68 4 5.54 4 5.54

5_10_10 1286 132.60 18 23.76 28 30.64
10_10_1 1308 300.88 18 24.91 21 25.32
10_10_2 550 104.40 4 5.07 4 5.02
10_10_3 6311 683.75 98 225.73 152 198.64
10_10_4 2908 321.00 32 45.27 38 45.86
10_10_5 1008 199.79 11 14.48 13 16.22
10_10_6 2052 401.93 13 19.22 13 16.74
10_10_7 2812 350.28 18 23.49 19 23.26
10_10_8 1024 220.16 14 18.35 15 19.14
10_10_9 3615 842.87 10 12.64 11 13.18

10_10_10 1050 204.80 16 20.62 25 26.16
15_5_1 938 105.21 8 11.72 8 10.37
15_5_2 1331 135.69 1 1.25 1 1.23
15_5_3 1669 170.31 37 52.90 39 49.22
15_5_4 1439 151.18 20 29.72 22 26.75
15_5_5 2608 267.31 42 64.29 46 54.80
15_5_6 1780 185.98 29 49.80 32 39.62
15_5_7 1872 186.76 8 10.50 9 10.76
15_5_8 801 80.15 10 13.15 9 10.42
15_5_9 1347 161.77 5 6.26 5 6.43

15_5_10 3256 368.49 52 76.19 59 70.81
5_15_1 256 27.67 2 2.28 2 1.95
5_15_2 7365 862.23 16 21.76 24 25.57

4.1 Enhanced exact algorithms for DBLP 79

instance
DR CP MCP

iter CPU iter CPU iter CPU
5_15_3 1087 117.19 8 10.55 12 13.07
5_15_4 1443 160.24 4 5.18 5 5.93
5_15_5 300 32.59 3 4.15 3 3.29
5_15_6 3345 360.59 13 18.58 21 23.68
5_15_7 1029 110.34 17 22.26 23 25.94
5_15_8 1247 133.44 7 8.94 9 9.64
5_15_9 7485 823.59 29 46.66 54 68.55

5_15_10 436 45.40 3 3.84 4 4.48
15_10_1 8868 931.27 93 265.28 135 367.90
15_10_2 1177 243.70 7 9.09 9 11.12
15_10_3 45 4.51 1 1.25 1 1.20
15_10_4 5144 549.35 71 137.62 94 112.65
15_10_5 3142 325.31 12 16.91 13 15.57
15_10_6 7548 818.11 43 67.08 75 88.03
15_10_7 4467 469.95 2 2.98 2 2.53
15_10_8 3595 366.68 14 18.49 26 26.41
15_10_9 4997 513.08 44 77.78 67 78.24

15_10_10 2914 298.90 3 4.12 5 5.99
10_15_1 946 97.95 3 3.95 4 5.18
10_15_2 4536 490.64 23 34.38 37 42.46
10_15_3 7172 806.23 48 84.07 71 84.02
10_15_4 1504 195.03 29 48.58 48 54.68
10_15_5 1902 271.52 3 3.96 3 3.81
10_15_6 968 148.17 6 8.16 9 10.41
10_15_7 837 89.22 3 3.99 3 3.85
10_15_8 2361 268.35 15 20.86 18 21.84
10_15_9 5204 573.18 27 42.40 51 58.89

10_15_10 968 208.39 3 3.98 3 3.82

Table 4.4. Computational results in details for DR, CP and MCP

instance
DR BC HBC

iter ott/iter CPU iter ott/iter CPU iter ott/iter CPU
10_5_1 2341 96.63% 239.02 2094 74.93% 234.30 1670 93.95% 219.74
10_5_2 368 98.91% 35.60 369 86.45% 40.25 341 93.55% 36.60
10_5_3 6292 99.14% 706.49 6293 99.13% 711.50 6293 99.13% 714.57
10_5_4 3117 93.52% 334.37 2938 75.73% 330.36 2474 89.94% 320.38
10_5_5 1164 75.77% 126.83 1193 71.58% 130.73 1121 76.18% 119.64
10_5_6 644 76.09% 64.65 783 68.20% 81.43 669 79.82% 75.58
10_5_7 3544 83.04% 371.13 2533 69.40% 259.99 2332 75.39% 275.48
10_5_8 1708 94.96% 208.21 1179 38.93% 135.24 1121 40.95% 129.89

80 4. Discrete Bilevel Linear Programming

instance
DR BC HBC

iter ott/iter CPU iter ott/iter CPU iter ott/iter CPU
10_5_9 244 53.28% 26.29 295 43.39% 32.65 247 51.82% 39.39
10_5_10 646 66.25% 67.67 1360 79.26% 146.27 1117 96.51% 124.60
5_10_1 738 46.48% 83.48 810 78.15% 91.88 782 80.95% 90.53
5_10_2 2340 0.47% 529.11 3382 5.00% 371.89 1324 12.76% TL
5_10_3 1695 86.08% 189.09 2097 87.98% 244.02 1979 93.23% 225.67
5_10_4 1491 22.87% 163.74 1941 18.65% 218.68 1489 24.31% 182.18
5_10_5 4172 54.60% 994.47 4623 34.59% 584.03 2549 62.73% TL
5_10_6 2148 98.74% 479.19 1476 29.54% 162.04 967 45.09% TL
5_10_7 139 63.31% 15.87 234 52.99% 26.72 156 79.49% 19.77
5_10_8 755 95.36% 78.03 802 39.15% 85.44 414 75.85% 55.50
5_10_9 911 93.96% 177.68 528 53.22% 57.74 428 65.65% 58.30
5_10_10 1286 57.23% 132.60 1529 32.96% 163.89 1049 48.05% 131.37
10_10_1 1308 77.52% 300.88 1050 62.76% 125.91 870 75.75% TL
10_10_2 550 93.82% 104.40 511 86.30% 56.58 394 88.32% 45.75
10_10_3 6311 46.95% 683.75 7028 14.90% 798.28 1696 61.73% 398.13
10_10_4 2908 93.88% 321.00 3338 69.08% 376.74 2742 84.10% 344.95
10_10_5 1008 43.95% 199.79 1279 45.11% 140.73 1161 49.70% 129.01
10_10_6 2052 98.93% 401.93 1465 66.42% 169.88 1185 82.11% 154.21
10_10_7 2812 99.72% 350.28 3060 90.88% 355.09 2927 99.62% TL
10_10_8 1024 79.79% 220.16 1075 52.65% 120.12 625 90.56% 77.22
10_10_9 3615 98.70% 842.87 2784 90.05% 332.59 2606 96.20% 304.57

10_10_10 1050 2.86% 204.80 1039 87.87% 119.64 1031 88.55% 121.13
15_5_1 938 83.26% 105.21 844 46.92% 98.12 766 51.70% 85.16
15_5_2 1331 99.40% 135.69 600 34.00% 67.64 504 40.48% 54.62
15_5_3 1669 77.71% 170.31 2025 69.58% 228.84 1791 78.67% 196.47
15_5_4 1439 30.09% 151.18 1440 30.07% 155.89 1440 30.07% 154.77
15_5_5 2608 53.37% 267.31 2463 50.95% 269.83 2087 60.13% 245.75
15_5_6 1780 58.48% 185.98 2303 45.72% 251.72 1357 77.60% 175.02
15_5_7 1872 88.94% 186.76 1518 51.12% 161.35 1229 63.14% TL
15_5_8 801 26.72% 80.15 1271 54.37% 136.19 971 71.16% 114.52
15_5_9 1347 74.46% 161.77 1028 31.91% 106.86 812 40.39% 86.44
15_5_10 3256 98.13% 368.49 1914 79.68% 220.44 1798 84.82% 211.57
5_15_1 256 2.34% 27.67 299 2.34% 33.51 245 2.86% 27.78
5_15_2 7365 95.64% 862.23 3676 69.64% 439.41 3066 83.50% TL
5_15_3 1087 99.17% 117.19 910 87.91% 99.87 892 89.69% 98.69
5_15_4 1443 97.57% 160.24 2190 98.40% 238.90 1836 100.00% 206.00
5_15_5 300 30.67% 32.59 562 59.25% 59.34 456 73.03% 50.59
5_15_6 3345 79.04% 360.59 3391 30.37% 374.57 2690 38.29% TL
5_15_7 1029 49.95% 110.34 788 0.89% 85.24 552 1.27% 63.52
5_15_8 1247 72.81% 133.44 541 1.11% 58.70 34 17.65% 12.46
5_15_9 7485 95.07% 823.59 7089 0.18% 779.05 6295 0.21% TL

4.2 New heuristic methods for DBLP 81

instance
DR BC HBC

iter ott/iter CPU iter ott/iter CPU iter ott/iter CPU
5_15_10 436 88.30% 45.40 1003 94.92% 111.20 775 100.00% 90.53
15_10_1 8868 64.85% 931.27 9395 4.95% 1.079.68 7385 6.30% 881.39
15_10_2 1177 43.08% 243.70 1084 17.71% 126.67 964 19.92% 111.46
15_10_3 45 100.00% 4.51 2 50.00% 1.47 2 50.00% 1.89
15_10_4 5144 78.30% 549.35 3317 84.75% 363.17 2429 54.06% 322.89
15_10_5 3142 97.49% 325.31 3453 68.84% 430.33 2991 79.47% 375.06
15_10_6 7548 91.00% 818.11 6500 65.88% 736.32 5497 77.90% 627.82
15_10_7 4467 98.97% 469.95 4564 97.87% 495.05 4484 99.62% 482.63
15_10_8 3595 97.47% 366.68 3594 97.33% 392.03 3590 97.44% 395.49
15_10_9 4997 97.38% 513.08 4738 70.56% 517.50 4787 84.19% 517.84

15_10_10 2914 67.36% 298.90 2919 67.25% 307.76 2915 67.34% 305.20
10_15_1 946 98.52% 97.95 472 84.96% 47.85 416 96.39% 46.68
10_15_2 4536 84.59% 490.64 5008 85.22% 551.49 4870 87.64% 540.38
10_15_3 7172 88.83% 806.23 5451 96.57% 631.57 4781 82.66% 702.05
10_15_4 1504 31.52% 195.03 1813 18.97% 196.23 1298 23.50% 153.21
10_15_5 1902 92.80% 271.52 2220 94.73% 258.56 2152 97.72% 247.73
10_15_6 968 68.29% 148.17 869 53.62% 98.64 803 58.03% 91.54
10_15_7 837 86.86% 89.22 838 85.80% 90.40 816 88.11% 90.23
10_15_8 2361 96.15% 268.35 2674 91.85% 288.02 2574 95.42% 280.04
10_15_9 5204 64.62% 573.18 3526 60.10% 383.99 3218 65.85% TL

10_15_10 968 76.76% 208.39 2063 90.40% 227.93 1934 97.00% 211.41

Table 4.5. Computational results in details for DR, BC and HBC

4.2 New heuristic methods for DBLP

In Chapter 3 we introduced a new valid inequality for DCBLP and showed how to compute and use it in
order to reformulate the problem on a smaller feasible set and speed up the resolution. The same idea was
used in the previous section for developing a branch and cut algorithm for DBLP with positive results. In this
section we investigate more in detail the latter inequality for the discrete case, we show that its validity is not
always guaranteed for DBLP and, in order to overcome this difficulty, we propose two modified versions of the
inequality which are valid under proper necessary and sufficient conditions. Finally, we provide two new fast and
efficient heuristics for DBLP based on reformulating the original problem through the addition of the proposed
inequalities. Moreover, when the necessary and sufficient conditions hold the heuristics are exact methods and
always compute an optimal solution. We also present two special cases in which these conditions are always
satisfied and provide experimental results of the proposed heuristics.

4.2.1 Introduction

One of the most relevant results for a generic DBLP has been shown by Moore and Bard [114], who explain why
such a problem can not be solved through a pure branch and bound method since some of the classical fathoming

82 4. Discrete Bilevel Linear Programming

and bounding rules can not be applied. The authors propose a modified branch and bound approach which
allows to find an optimal solution if all the variables are discrete and finds a bilevel–feasible solution in the more
general mixed-integer case. We have already cited the algorithm proposed by DeNegre and Ralphs [57] based on
a simple valid inequality that eliminates an integer solution which is not bilevel–feasible, without modifying
the set of all the other integer solutions. The authors use this cut to develop a branch and cut framework which
overcomes the computational and theoretical difficulties pointed out in the literature. The algorithm has the
advantage to preserve classical fathoming and branching rules, nevertheless the cut used does not take into
account the bilevel nature of the problem and removes one by one every integer not bilevel–feasible solution. For
this reason the method can be applied only to small size instances due to the computational burden required.
Other examples of valid cuts can be found in the literature but only for the linear case (for instance Audet et al.
[12] [15] and Shiquan et al. [136]).

4.2.2 Two inequalities to reformulate DBLPs

We have already shown that one of the main criticalities of DBLPs is that relaxing all the integrality requirements
the optimal solution computed does not necessarily provide a lower bound. This enables the use of classical
branch and bound approaches for discrete problems.

Although the inducible region of a DBLP and the inducible region of its linear relaxation can not be compared
from a geometrical standpoint, the solution of this linear relaxation may provide a valid information about the
bilevel–feasibility of an integer solution. Recall that it is possible to obtain this kind of information solving the
auxiliary problem BLPmaxmin previously defined. Let (x̂, ŷ) be the optimal solution of BLPmaxmin . We introduce
the following two halfspaces

Γ+
y = {y | dT y ≤ ddT ŷe}

and

Γ−y = {y | dT y > ddT ŷe}

For a generic BLP the inequality dT y ≤ ddT ŷe is a valid cut. Let us call it bound_inequality. Note that for every
x such that the follower’s feasible set Ωy(x)BLP is non empty, Ry(x) is one of its extreme points or a facet. It
follows that at least an extreme point or a facet of Ωy(x)BLP is contained in the halfspace Γ+

y . More formally

Ωy(x)BLP ∩ Γ+
y 6= ∅ ∀x such that Ωy(x)BLP 6= ∅ (4.1)

Unfortunately, the extension to DBLP is not immediate and requires some notices. For the sake of clearness,
let us call Ωy(x)DBLP the follower’s feasible region in DBLP and Ωy(x)BLP the same region in BLP. As
in Ωy(x)BLP the follower’s variables are not required to be integer, Ωy(x)DBLP ⊆ Ωy(x)BLP . Hence,
Ωy(x)DBLP can be totally contained in Γ−y even if Ωy(x)BLP still satisfies condition in equation (4.1): in this
case the latter condition does not hold for DBLP. For instance, consider the following problem:

4.2 New heuristic methods for DBLP 83

min
x,y

F (x, y) = −x− 2y1 − y2

s.t. x ∈ {0, 1}
y ∈ min

y
f(y) = y1 + 2y2

s.t. 6x− 6y1 − 20y2 ≤ −33
6x− 6y1 + 20y2 ≤ 29
x+ 10y1 + y2 ≤ 35
y ∈ Z+

The two regions Ωy(x)DBLP and Ωy(x)BLP are shown in Figure 4.5.

Figure 4.5. Relation between Ωy(x)DBLP and Ωy(x)BLP

The following theorem holds.

Theorem 16. For a generic DBLP, the inequality dT y ≤ ddT ŷe is a valid cut if and only if, for every x such
that Ωy(x)DBLP is non empty, there exists at least an integer point of Ωy(x)DBLP contained in the halfspace
Γ+
y , i.e.

Ωy(x)DBLP ∩ Γ+
y 6= ∅ ∀x such that Ωy(x)DBLP 6= ∅ (4.2)

Proof. (Necessary) Let us assume that condition (4.2) is not satisfied. It means that there exists a x such that all
integer solutions of Ωy(x)DBLP are contained in the halfspace Γ−y and hence the rational solution lies in the
same halfspace. It follows that there exists an integer bilevel–feasible solution for the DBLP which does not
satisfy the inequality dT y ≤ ddT ŷe, hence it is not a valid cut.
(Sufficient) If condition (4.2) is satisfied, at least one integer solution of Ωy(x)DBLP is contained in Γ+

y and it
dominates all the other possible solutions contained in Γ−y which are not bilevel–feasible and can be cut off by
the inequality dT y ≤ ddT ŷe. Hence it represents a valid cut for DBLPs.
If follows that condition (4.2) is necessary and sufficient to define bound_inequality dT y ≤ ddT ŷe a valid
cut. 2

By Theorem 16 it follows that the validity of bound_inequality, is not further assured in the discrete case unless
condition (4.2) is verified. In other words, if we reformulate a DBLP through bound_inequality we do not have
the guarantee that the optimal solution is contained in such reformulation. Thus, integrating bound_inequality
in an exact method, the resulting approach is a heuristic. Notwithstanding, such integration can be easily

84 4. Discrete Bilevel Linear Programming

implemented as it works like a preprocessing technique and the goal is to sharp the feasible set and speed up
the resolution. Indeed, it usually happens that a DBLP has an elevated number of integer not bilevel–feasible
solutions which are very far from the inducible region: the bigger is the distance, the more bound_inequality is
effective.

Clearly it is very demanding from a computational point of view to verify whether condition (4.2) holds,
for this reason it may be convenient to introduce another inequality, obtained by a slight modification of
bound_inequality, which is less strong but it is more likely to satisfy condition (4.2).

We define the granularity of a given problem as the minimum positive difference between the value of the
objective function of two feasible solutions (see Mahajan [104]). Taking into account the follower problem of
DBLP, recall that the coefficient vector d ∈ Zm. It follows that the granularity of the follower problem is at least
the greatest common divisor (GCD) of all the coefficients of d.

Now it is possible to modify bound_inequality to introduce another inequality, denoted as granular-
ity_inequality, defined as follows

dT y ≤ g

where g is the smallest multiple of the GCD of all the coefficients of d greater than dT ŷ. The computation of
granularity_inequality is trivial and can be done with the same routine used for bound_inequality. Conditions
(4.2) are sufficient but not necessary for granularity_inequality.

Theorem 17. If condition (4.2) is satisfied, granularity_inequality is a valid cut for DBLP. The contrary does
not necessarily hold.

Proof. By the definition of g, it is clear that granularity_inequality is less strong that bound_inequality. In
particular ∀y ∈ Γ+

y we have dT y ≤ ddT ŷe ≤ g, hence if Ωy(x)DBLP ∩ Γ+
y 6= ∅, there is at least a rational

solution y such that dT y ≤ g. Notwithstanding, condition (4.2) is not necessary. In fact there may exist an x such
that Ωy(x)DBLP ⊂ Γ−y , hence the rational solution y is such that dT y > ddT ŷe, but it still satisfies dT y ≤ g.
Hence the proof. 2

This implies that on one side granularity_inequality may cut off a smaller portion of the feasible region of a
DBLP, but on the other side the halfspace it defines is more likely to contain integer solutions: hence granular-
ity_inequality is more likely to be a valid cut compared to bound_inequality.

Summing up, we propose two inequalities for DBLPs which are valid under condition (4.2). It is possible
to reformulate the original problem adding the proposed inequalities and solve it with a suitable algorithm we
introduce in the following section. The method obtained is heuristic for DBLPs. Finally there exist two special
cases in which condition (4.2) is always satisfied and the heuristic approach is exact.

4.2.3 Special cases

If the DBLP has only one lower level variable it is easy to show that dT y ≤ ddT ŷe and dT y ≤ g are valid cuts.

Proposition 10. If m = 1 for a generic DBLP, condition (4.2) is always satisfied.

Proof. Let us consider an integer vector x. As m = 1, Ωy(x)BLP is a segment with at least one extreme point
in Γ+

y , denoted with y1. If Ωy(x)BLP has at least one integer point, denoted with y2, Ωy(x)DBLP is not empty.

4.2 New heuristic methods for DBLP 85

Let us assume that y2 ∈ Γ−y , the convex combination of y1 and y2 intersects the equality dT y = ddT ŷe in an
integer point, denoted with y3. The integer solution y3 belongs to Ωy(x)BLP , because Ωy(x)BLP is a convex
set for every x, and it belongs to Γ+

y . Hence, for a given x, there is at least an integer point y3, which is feasible
for the follower, thus belong to Ωy(x)DBLP , and satisfies the inequality dT y ≤ ddT ŷe. It follows that condition
(4.2) holds. 2

Note that Proposition 10 is valid only if we round dT ŷ to its ceiling value otherwise if dT ŷ is fractional some
bilevel–feasible solutions of the DBLP may be wrongly discarded. Recalling the example of the previous section,
in Figure 4.6 a wrong application of the cut is shown which eliminates two only two bilevel–feasible solutions A
and B.

Figure 4.6. Wrong computation of bound_inequality

Finally, the following property holds.

Proposition 11. For a generic DBLP, if matrix B is totally unimodular (TUM) condition (4.2) is always satisfied.

Proof. The total unimodularity of matrix B implies that the follower’s feasible region Ωy(x)DBLP is either an
empty set or a polyhedron with integer extreme points. It implies that the integrality requirements on follower’s
variables can be relaxed, the DBLP is equivalent to a DCBLP, hence bound_inquality is a valid cut and, by
Theorem 16, condition (4.2) holds. 2

In other words, if matrix B is TUM, the problem can be reformulated and solved as a DCBLP. Even if in the
literature there exist well known techniques to solve DCBLPs, these cuts have never been used to enforce the
formulation and reduce the size of the feasible region.

4.2.4 Two new heuristics for DBLP

In this section we describe the two heuristic methods based on the inequalities previously introduced. As pointed
out, it is possible to use bound_inequality and granularity_inequality to reformulate the original problem and
then solve it by means of an existing method. In this section we consider the branch and cut method proposed
by DeNegre e Ralphs [57] to solve DBLPs as it is well performing and it embeds in a straightforward manner

86 4. Discrete Bilevel Linear Programming

all the rules of a classical branch and bound approach. For the sake of clearness, this branch and cut method is
decsribed in detail since the heuristics we propose are based on a modification of the latter.

A basic fathoming rule for a branch and bound algorithm applied to a discrete problem is that a node k of
the branching tree can be pruned if the linear relaxation of the subproblem associated to node k has an integer
solution. In a DBLP an integer solution may not be bilevel–feasible which does not allow to apply the same
fathoming rule.

In order to overcome this criticality, the rationale behind the algorithm is that every time an integer not
bilevel–feasible solution is found it is removed using a valid inequality. The latter is computed as follows.

Assume that the lower level constraints are in form aix+ biy ≤ ci i = 1 . . . q.

Proposition 12. (DeNegre and Ralphs [57]) Let (x̄, ȳ) be an integer not bilevel–feasible solution of a subproblem
k and let I be the subset of lower level constraints active at (x̄, ȳ). The inequality αx + βy ≤ γ − 1, with
α =

∑
i∈I ai, β =

∑
i∈I bi and γ =

∑
i∈I ci, is satisfied by all the integer solutions of subproblem k but (x̄, ȳ).

Finally recall that, as previously explained, given a DBLP it is not sufficient to relax the integrality requirements
to compute a valid lower bound. DeNegre and Ralphs propose to relax DBLP removing the integrality constraints,
but also dropping the follower’s objective function.

Here are the guide lines of the branch and cut method proposed by DeNegre and Ralphs.

Step 0 Initialize k = 0 and Z to a sufficiently large number.

Step 1 Solve subproblem k.

Step 1.1 (Fathoming) If subproblem k is infeasible prune the current node and go to Step 6.

Step 1.2 Let (xk, yk) be the optimal solution and go to Step 2.

Step 2 (Fathoming) If dF (xk, yk)e ≥ Z prune the current node and go to Step 6.

Step 3 (Integrality check) If (xk, yk) is integer go to Step 4, else go to Step 5.

Step 4 (Bilevel–feasibility check) Fix x at xk and solve the follower’s problem to compute a bilevel–feasible
solution (xk, y∗k). If yk 6= y∗k go to Step 4.1, else the solution is bilevel–feasible. If F (xk, yk) < Z put
Z = F (xk, yk). Go to Step 6.

Step 4.1 (Cut generation) Compute the set I of active constraints at (xk, yk) and compute α =
∑
i∈I ai,

β =
∑
i∈I bi and γ =

∑
i∈I ci. Add the inequality αx+ βy ≤ γ − 1 to the set of constraints of

subproblem k and go to Step 1.

Step 5 (Branching) Select a fractional variable in the solution (xk, yk) and branch. Generate 2 subproblems, set
k ← k + 1 and go to Step 1.

Step 6 (Backtracking) Select a live node k′ if it exists, set k ← k′ and go to Step 1. Otherwise STOP with
F ∗ = Z.

The main contribution of such method is that it preserves the basic idea of branch and bound making it applicable
to DBLPs and allows to compute an optimal solution only solving linear problems with continuous variables. On
the other hand, its main drawback is that the cut generation ignores the geometric properties of DBLPs and it

4.2 New heuristic methods for DBLP 87

seems to be quite weak as it removes only a single integer solution in each iteration.

We now describe how it is possible to easily integrate our inequalities in this algorithm in order to obtain
two heuristic methods. First of all the GCD of the coefficient vector d is computed for deciding which of the two
inequalities to use: if GCD is greater than 1 granularity_inequality is used in the heuristic, otherwise it is
replaced by bound_inequality.

The first heuristic method we present, called root branch and cut, integrates the chosen inequality in the
original scheme applying it only once in the root node of the branch and bound tree. The goal is to speed up the
resolution without dramatically increasing the computational burden. In fact note that the computation of both
bound_inequality and granularity_inequality requires the solution of problem BLPmaxmin , that is a bilevel linear
problem. It is clear that if we solved a BLP problem for every node of the branch and bound tree in the worst
case we would solve an exponential number of bilevel linear problems. Moreover, the main effects of the new
proposed inequalities occur at the very first iterations in which the feasible region is still comprised of lots of
integer but not bilevel–feasible solutions. The previous algorithm is modified as follows:

Step 0 Initialize k = 0 and Z to a sufficiently large number. Compute GDC. Solve problem BLPmaxmin .

Step 0.1 If BLPmaxmin is infeasible, the original problem is infeasible too, then STOP.

Step 0.2 Let (x̂, ŷ) be the optimal solution and go to Step 0.3.

Step 0.3 (Inequality generation) If GDC = 1 introduce the inequality dT y ≤ ddT ŷe, otherwise introduce
the inequality dT y ≤ g, and go to Step 1.

...

The second heuristic method, called extended branch and cut, selects one of the two inequalities as previously,
but in this case it is applied in the root node and every time an integer solution is found which does not satisfy the
bilevel–feasibility check. In more detail, we compare the lower level variables of the current solution and that of
the corresponding bilevel–feasible solution and apply the new inequality if and only if this difference is greater
than a fixed threshold delta. The main advantage is that the bilevel–feasibility check has to be made every
time an integer solution is found hence it is very simple to compute the “distance" of the current solution from
the inducible region. Furthermore, by properly setting the threshold it is possible not to apply this procedure
when this distance is small and the inequality may not produce significant effects. As the number of inequality
generations may grow exponentially with the number of subproblems, this procedure is applied at most once for
each subproblem. In our computational test the threshold δ was set equal to 1. The extended branch and cut can
be obtained modifying the previous code as follows:

Step 0 Initialize k = 0 and Z to a sufficiently large number. Compute GDC. Set threshold δ = 1. Solve problem
BLPmaxmin .

Step 0.1 If BLPmaxmin is infeasible, the original problem is infeasible too, then STOP.

Step 0.2 Let (x̂, ŷ) be the optimal solution and go to Step 0.3.

88 4. Discrete Bilevel Linear Programming

Step 0.3 (Inequality generation) If GDC = 1 introduce the inequality dT y ≤ ddT ŷe, otherwise introduce
the inequality dT y ≤ g, and go to Step 1.

...

Step 4 (Bilevel–feasibility check) Fix x at xk and solve the follower’s problem to compute a bilevel–feasible
solution (xk, y∗k). If yk 6= y∗k go to Step 4.1, else the solution is bilevel–feasible. If F (xk, yk) < Z put
Z = F (xk, yk). Go to Step 6.

Step 4.1 If f(yk)− f(y∗k) ≥ δ and the inequality has not already been added go to Step 4.2, else go to
Step 4.3.

Step 4.2 (Inequality generation) If GDC = 1 introduce the inequality dT y ≤ ddT ŷe, otherwise introduce
the inequality dT y ≤ g, and go to Step 1.

Step 4.3 (Cut generation) Compute the set I of active constraints at (xk, yk) and compute α =
∑
i∈I ai,

β =
∑
i∈I bi and γ =

∑
i∈I ci. Add the inequality αx+ βy ≤ γ − 1 to the set of constraints of

subproblem k and go to Step 1.

...

4.2.5 Computational comparison

In this section, we assess the computational performance of the two heuristic methods proposed and compare the
results obtained to the exact branch and cut algorithm of DeNegre and Ralphs which is used as benchmark. The
rationale behind this comparison is that the three methods make use of the same routine, but the two heuristics
solve a reformulated problem. Thus it possible to evaluate the effectiveness of the inequalities proposed in terms
of computational elapsed time and quality of the solution.

4.2.6 Numerical results

All the algorithms were applied on a test bed formed by different problems randomly generated following the
same rational used in the previous sections. We defined 7 different classes of problem, each one comprised of
10 instances, for a total of 70 instances solved, with n ∈ {5, 10, 15}, m ∈ {5, 10, 15} and q = n + m. Each
parameter was randomly chosen in the range [−15, 15].

The three algorithms were implemented in the C language on a PC Pentium Core 2 Duo with a 2 GHz
processor and 1 GB RAM. The AMPL language and the solver CPLEX 12.3 were used to solve mathematical
formulations at each tree nodes. The comparison was made taking into account the following features:

• subprob, the number of generated subproblems

• iter, the number of iterations

• opt_iter, the iteration in which the optimal solution was found

• orig_ineq, the total number of cuts of DeNegre and Ralphs used by the algorithm

• new_ineq, the number of bound_inequality or granularity_inequality used by the algorithm

4.2 New heuristic methods for DBLP 89

• opt_gap, the optimality gap between the solution computed by the algorithm and the optimal one

• CPU, the required CPU time in seconds spent to solve the DBPL.

We indicate with native the original branch and cut method used as benchmark, with root our first heuristic and
with extended our second heuristic.

In Table 4.6 all the results presented are the average values for each class, while in Tables 4.7, 4.8 and 4.9
we reported all the results in detail for all the instances solved.

(n,m) subprob iter opt_iter orig_ineq new_ineq opt_gap CPU

(10, 5)
native 1557.00 1717.50 1388.80 160.50 - - 183.62
root 1264.40 1397.40 1171.20 133.00 1.00 0.00% 150.80

extended 1146.60 1261.90 1032.30 46.00 101.10 2.44% 145.14

(5, 10)
native 1541.40 1719.40 964.30 178.00 - - 336.45
root 1154.20 1238.30 591.50 84.10 1.00 10.14% 228.08

extended 876.80 977.70 381.70 42.00 105.70 8.71% 182.17

(10, 10)
native 1325.20 1434.60 1100.20 109.40 - - 306.18
root 1025.80 1101.00 791.10 75.20 1.00 2.50% 232.12

extended 801.40 851.70 543.30 16.00 34.30 2.50% 179.46

(15, 5)
native 1782.20 1809.40 1229.60 81.20 - - 188.56
root 1247.20 1303.30 800.90 56.10 1.00 3.08% 140.01

extended 1048.80 1126.20 718.10 26.80 50.60 4.84% 126.23

(5, 15)
native 2704.20 2942.90 2612.10 238.70 - - 324.77
root 1880.00 2011.50 998.50 131.50 1.00 6.71% 223.82

extended 1531.80 1664.30 775.40 34.50 98.00 10.04 % 192.99

(15, 10)
native 3371.20 3491.30 2647.30 120.10 - - 416.25
root 2797.20 2870.30 1702.80 73.10 1.00 2.00% 351.02

extended 2716.40 2837.60 1685.10 51.40 69.80 2.00% 349.94

(10, 15)
native 3142.20 3312.40 3034.90 170.20 - - 460.09
root 2443.80 2537.60 2153.20 93.80 1.00 11.91% 336.35

extended 2173.90 2295.30 2000.50 43.10 78.20 11.05% 320.97

Table 4.6. Computational results of the three different branch and cut approaches

First of all it is interesting to note that comparing classes (10, 5) and (5, 10), (15, 5) and (5, 15), (15, 10) and
(10, 15), in which the number of leader’s and follower’s variables is inverted, the problems in which m > n

always require a higher CPU time for all the three algorithms, except for classes (15, 10) and (10, 15) for root
and extended. This is a reasonable result because the inner complexity of a bilevel problem strictly depends on
the size of the lower level problem.

The most relevant result is that root and extended always outperform native analyzing all the key performance
indicators we reported. In general, a typical trade-off of branch and cut approaches is that using an increasing
number of inequalities the computational burden increases, but the size of the branching tree is reduced. For
this reason we propose and compare root and extended in order to understand the effect of applying multiple
inequalities rather than only one inequality in the root node. Extended always requires the lowest computational

90 4. Discrete Bilevel Linear Programming

Figure 4.7. Comparison of algorithms in terms of CPU time

time and achieves the smallest number of subproblems and iterations and it is clearly the best performing
algorithm in all the classes of test problems. The comparison of the CPU time required by the three algorithms is
depicted in Figure 4.7.

Comparing native with extended, the reduction of generated nodes ranges from 18.72% for class (15, 10) to
43.14% for classes (5, 10) and (5, 15) and the CPU time reduction is still more valuable ranging from 15.93%
for class (15, 10) to 45.85% for class (5, 10).

In terms of number of inequalities, note that the application of the new inequalities remarkably reduces the
number of the original cuts used. Comparing native and root the reduction in the number of cuts ranges from
17.13% for class (10, 5) to 52.75% for class (5, 10); it means that the application of the new inequalities in the
root node, which can be considered like a preprocessing technique, considerably reduces the number of integer
not bilevel–feasible solutions found. This result is even more relevant if we consider extended: apart from class
(15, 10), it always uses less than half of the number of original cuts compared to root with a consequent increase
in the number of new inequalities.

Finally, the optimality gap of both the proposed algorithms is never greater than 11.91%. More in detail,
root solves to optimality 57 out of 70 instances (81.45%) and extended gains the same result in 55 test problems
(78.57%). The majority of problems in which both the algorithms fail to find the optimal solution are in class
(10, 15): in this class the optimality gap of both the algorithms is positive in 4 out of 10 problems with a maximum
value equal to 54.17%. It seems that extended, which clearly outperform root in terms of computational results,
is slightly worst in terms of quality of the solution, as expected.

In conclusion, both the heuristics presented are able to improve the effectiveness of the branch and cut
approach of DeNegre and Ralphs, simply using two different inequalities to reformulate the original problem.
The heuristics find the optimal solution in almost 78.57% of the cases showing that the proposed inequalities
have a very positive impact in terms of efficiency and that the negative effects are negligible. These results also
suggest the idea that not only the reformulated polyhedron has a reduced size compared to the original one, but it
is also very likely to contain the optimal solution.

4.2 New heuristic methods for DBLP 91

4.2.7 Conclusions

In the section we propose two new inequalities for a generic DBLP and integrate them within an exact branch and
cut algorithm present in the literature. The goal is twofold: on one side we provide two new heuristic methods
for DBLPs and on the other side we use the existing branch and cut as benchmark for a performance assessment
of our heuristics. By solving an auxiliary bilevel linear problem it is possible to derive two bounds on the value
of the follower’s objective function and then use this information to reformulate the problem. The proposed
inequalities are always valid for BLP, but in the integer case it is only possible to define necessary and sufficient
conditions to guarantee their validity. We present two cases in which these conditions are always satisfied.

A computational analysis shows that the use of the two inequalities reduces the number of subproblems, the
number of iterations, and also produces a remarkable computational time reduction up to 45.85%. Furthermore,
the performance improvement is significantly more valuable than the reduction of solution quality as the
computed solution is not the optimum only in 15 out of 70 test problems solved.

The proposed inequalities have to be considered as an initial attempt to improve the resolution of general
DBLPs and solve bigger size problems. Future work may be focused on identifying new sufficient conditions for
the validity of the proposed inequalities in order to define new cases in which the heuristics are exact solution
methods.

92 4. Discrete Bilevel Linear Programming

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
10_5_1 2041 2341 2262 300 - - 239.02
10_5_2 361 368 364 7 - - 35.60
10_5_3 3051 3320 1734 269 - - 347.77
10_5_4 2805 3117 2915 312 - - 334.37
10_5_5 235 244 130 9 - - 24.94
10_5_6 629 644 490 15 - - 64.65
10_5_7 3271 3544 2943 273 - - 371.13
10_5_8 1469 1708 1622 239 - - 208.21
10_5_9 1087 1243 1000 156 - - 142.82
10_5_10 621 646 428 25 - - 67.67
5_10_1 709 738 343 29 - - 83.48
5_10_2 2107 2340 11 233 - - 529.11
5_10_3 1531 1814 1813 283 - - 452.62
5_10_4 1357 1491 341 134 - - 163.74
5_10_5 3581 4172 2278 591 - - 994.47
5_10_6 1953 2148 2121 195 - - 479.19
5_10_7 663 724 674 61 - - 161.24
5_10_8 1437 1570 470 133 - - 190.38
5_10_9 855 911 856 56 - - 177.68
5_10_10 1221 1286 736 65 - - 132.60
10_10_1 1199 1308 1014 109 - - 300.88
10_10_2 531 550 516 19 - - 104.40
10_10_3 1665 1814 1806 149 - - 399.36
10_10_4 1667 1744 766 77 - - 352.94
10_10_5 985 1008 443 23 - - 199.79
10_10_6 1967 2052 2030 85 - - 401.93
10_10_7 179 181 12 2 - - 34.73
10_10_8 1005 1024 817 19 - - 220.16
10_10_9 3041 3615 3568 574 - - 842.87

10_10_10 1013 1050 30 37 - - 204.80
15_5_1 2869 3075 3074 206 - - 336.52
15_5_2 1309 1331 1323 22 - - 135.69
15_5_3 1613 1669 1297 56 - - 170.31
15_5_4 1733 1812 883 79 - - 189.46
15_5_5 2487 2608 1392 121 - - 267.31
15_5_6 1711 1780 1041 69 - - 185.98
15_5_7 1831 1872 1665 41 - - 186.76
15_5_8 785 801 214 16 - - 80.15
15_5_9 2373 2563 967 190 - - 268.91
15_5_10 571 583 440 12 - - 64.47
5_15_1 255 256 6 1 - - 27.67
5_15_2 6755 7555 7410 800 - - 841.37
5_15_3 2479 2682 2417 203 - - 301.50

4.2 New heuristic methods for DBLP 93

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
5_15_4 1367 1443 1408 76 - - 160.24
5_15_5 1607 1677 1021 70 - - 180.15
5_15_6 3109 3345 2644 236 - - 360.59
5_15_7 953 1029 514 76 - - 110.34
5_15_8 1167 1247 908 80 - - 133.44
5_15_9 6941 7485 7116 544 - - 823.59
5_15_10 2409 2710 2677 301 - - 308.80
15_10_1 8495 8868 5751 373 - - 931.27
15_10_2 1169 1177 507 8 - - 243.70
15_10_3 45 45 45 0 - - 4.51
15_10_4 4865 5144 4028 279 - - 549.35
15_10_5 3085 3142 3063 57 - - 325.31
15_10_6 4413 4560 3046 147 - - 484.26
15_10_7 1703 1736 1256 33 - - 179.48
15_10_8 3527 3595 3504 68 - - 366.68
15_10_9 3201 3278 3071 77 - - 342.78

15_10_10 3209 3368 2202 159 - - 735.17
10_15_1 5841 6297 6084 456 - - 706.09
10_15_2 4377 4536 3837 159 - - 490.64
10_15_3 3259 3411 3131 152 - - 366.93
10_15_4 3101 3278 2685 177 - - 358.04
10_15_5 3509 3707 3523 198 - - 399.95
10_15_6 2287 2485 2222 198 - - 288.18
10_15_7 831 837 727 6 - - 89.22
10_15_8 1313 1352 1164 39 - - 302.20
10_15_9 5955 6253 6233 298 - - 1391.29

10_15_10 949 968 743 19 - - 208.39

Table 4.7. Computational results of the native algorithm

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
10_5_1 1423 1650 1569 227 1 0.00% 167.40
10_5_2 333 340 319 7 1 0.00% 34.09
10_5_3 2745 3025 2487 280 1 0.00% 324.89
10_5_4 2177 2452 2225 275 1 0.00% 277.49
10_5_5 237 244 128 7 1 0.00% 25.96
10_5_6 647 667 534 20 1 0.00% 68.50
10_5_7 2181 2315 1758 134 1 0.00% 238.90
10_5_8 717 798 363 81 1 0.00% 92.18
10_5_9 1283 1517 1398 234 1 0.00% 175.05
10_5_10 901 966 931 65 1 0.00% 103.52

94 4. Discrete Bilevel Linear Programming

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
5_10_1 863 920 487 57 1 0.00% 100.06
5_10_2 1255 1306 169 51 1 0.00% 295.11
5_10_3 409 465 270 56 1 -50.00% 152.77
5_10_4 1369 1477 362 108 1 0.00% 162.65
5_10_5 3541 3865 3221 324 1 -14.29% 869.92
5_10_6 899 957 436 58 1 0.00% 217.79
5_10_7 575 606 99 31 1 -37.14% 128.93
5_10_8 1241 1325 86 84 1 0.00% 150.85
5_10_9 405 424 281 19 1 0.00% 94.57
5_10_10 985 1038 504 53 1 0.00% 108.17
10_10_1 835 863 655 28 1 0.00% 178.76
10_10_2 469 486 441 17 1 0.00% 97.70
10_10_3 1705 1860 1854 155 1 -25.00% 416.01
10_10_4 999 1009 296 10 1 0.00% 199.54
10_10_5 1117 1160 577 43 1 0.00% 231.15
10_10_6 1131 1172 973 41 1 0.00% 238.62
10_10_7 183 183 12 0 1 0.00% 35.07
10_10_8 607 622 566 15 1 0.00% 137.45
10_10_9 2199 2605 2507 406 1 0.00% 581.12

10_10_10 1013 1050 30 37 1 0.00% 205.81
15_5_1 873 931 769 58 1 -30.77% 106.74
15_5_2 503 503 204 0 1 0.00% 52.43
15_5_3 1713 1790 1409 77 1 0.00% 190.63
15_5_4 1615 1680 787 65 1 0.00% 180.91
15_5_5 1967 2085 1255 118 1 0.00% 223.38
15_5_6 1265 1338 1053 73 1 0.00% 144.25
15_5_7 1213 1224 776 11 1 0.00% 124.75
15_5_8 951 969 691 18 1 0.00% 100.39
15_5_9 2167 2305 965 138 1 0.00% 254.02
15_5_10 205 208 100 3 1 0.00% 22.56
5_15_1 243 244 7 1 1 0.00% 26.47
5_15_2 2629 2883 1661 254 1 -23.33% 315.14
5_15_3 4123 4527 4517 404 1 0.00% 519.22
5_15_4 1205 1233 1188 28 1 -6.25% 140.06
5_15_5 1149 1216 1142 67 1 0.00% 136.13
5_15_6 2513 2683 1030 170 1 0.00% 291.24
5_15_7 531 549 7 18 1 0.00% 59.12
5_15_8 27 28 6 1 1 0.00% 4.12
5_15_9 5945 6287 13 342 1 0.00% 688.96
5_15_10 435 465 414 30 1 -37.50% 57.77
15_10_1 7105 7375 465 270 1 0.00% 806.30
15_10_2 959 963 192 4 1 0.00% 207.56
15_10_3 1 1 1 0 1 0.00% 0.34

4.2 New heuristic methods for DBLP 95

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
15_10_4 2343 2385 1313 42 1 0.00% 261.00
15_10_5 2551 2592 2215 41 1 0.00% 278.10
15_10_6 4297 4411 4111 114 1 0.00% 473.04
15_10_7 1703 1736 1264 33 1 0.00% 182.68
15_10_8 3521 3589 3498 68 1 0.00% 379.13
15_10_9 2935 3007 2660 72 1 0.00% 327.15

15_10_10 2557 2644 1309 87 1 -20.00% 594.89
10_15_1 5507 5798 4738 291 1 -20.00% 648.42
10_15_2 4697 4869 4268 172 1 0.00% 525.97
10_15_3 3049 3188 2880 139 1 0.00% 355.76
10_15_4 2083 2161 1474 78 1 0.00% 241.55
10_15_5 2277 2335 2182 58 1 0.00% 255.83
10_15_6 1395 1475 1307 80 1 -54.17% 167.87
10_15_7 809 815 719 6 1 0.00% 89.45
10_15_8 1197 1233 1185 36 1 -26.47% 284.83
10_15_9 1529 1580 914 51 1 -18.42% 374.49

10_15_10 1895 1922 1865 27 1 0.00% 419.34

Table 4.8. Computational results of the root branch and cut

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
10_5_1 683 777 700 3 91 0.00% 80.51
10_5_2 315 322 301 0 7 0.00% 32.09
10_5_3 2745 3297 2729 280 271 0.00% 396.63
10_5_4 2131 2393 2073 8 254 -10.71% 278.98
10_5_5 237 252 135 7 8 0.00% 27.21
10_5_6 647 688 551 20 21 0.00% 73.23
10_5_7 1939 2101 1592 52 110 0.00% 226.68
10_5_8 433 473 191 1 39 0.00% 56.14
10_5_9 1107 996 899 74 134 0.00% 138.81
10_5_10 1229 1320 1152 15 76 -13.64% 141.12
5_10_1 863 977 531 57 57 0.00% 114.25
5_10_2 1255 1353 189 51 47 0.00% 325.96
5_10_3 525 626 536 44 525 -50.00% 149.53
5_10_4 1131 1225 307 15 79 0.00% 141.68
5_10_5 1739 2067 1105 169 159 0.00% 499.42
5_10_6 543 573 275 0 30 0.00% 130.95
5_10_7 575 638 104 31 32 -37.14% 151.23
5_10_8 847 910 55 0 63 0.00% 103.91
5_10_9 305 316 173 0 11 0.00% 71.04
5_10_10 985 1092 542 53 54 0.00% 133.75

96 4. Discrete Bilevel Linear Programming

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
10_10_1 835 892 679 28 29 0.00% 188.25
10_10_2 469 504 459 17 18 0.00% 107.59
10_10_3 1381 1497 1491 19 97 -25.00% 330.08
10_10_4 999 1021 302 10 12 0.00% 202.18
10_10_5 967 997 446 1 29 0.00% 188.04
10_10_6 1131 1214 1015 41 42 0.00% 255.48
10_10_7 183 184 13 0 1 0.00% 35.51
10_10_8 571 590 534 5 14 0.00% 130.18
10_10_9 465 531 463 3 63 0.00% 126.78

10_10_10 1013 1087 31 36 38 0.00% 230.49
15_5_1 495 607 443 55 57 -30.77% 86.31
15_5_2 503 504 205 0 1 0.00% 51.81
15_5_3 1371 1454 1135 17 66 0.00% 159.78
15_5_4 1615 1744 826 65 64 0.00% 193.86
15_5_5 2153 2394 1696 57 184 -17.65% 276.35
15_5_6 1101 1210 925 53 56 0.00% 137.87
15_5_7 1177 1188 740 0 11 0.00% 123.33
15_5_8 951 987 706 18 18 0.00% 104.80
15_5_9 917 962 402 0 45 0.00% 103.60
15_5_10 205 212 103 3 4 0.00% 24.54
5_15_1 243 246 8 1 2 0.00% 26.50
5_15_2 2005 2205 1101 52 148 -23.33% 254.67
5_15_3 2455 2737 2727 61 221 0.00% 327.35
5_15_4 1197 1228 1183 2 29 -6.25% 141.12
5_15_5 1087 1186 1112 38 61 0.00% 139.85
5_15_6 2513 2847 1097 170 164 0.00% 337.74
5_15_7 1225 1304 71 0 79 -33.33% 145.75
5_15_8 27 29 7 0 2 0.00% 4.59
5_15_9 4131 4376 14 0 245 0.00% 489.23
5_15_10 435 485 434 21 29 -37.50% 63.06
15_10_1 7101 7631 500 270 260 0.00% 866.16
15_10_2 959 968 193 4 5 0.00% 208.93
15_10_3 1 2 2 0 1 0.00% 0.58
15_10_4 2495 2547 1630 1 51 0.00% 281.92
15_10_5 2551 2633 2256 41 41 0.00% 289.77
15_10_6 3865 3968 3684 2 101 0.00% 430.26
15_10_7 1643 1695 1233 18 34 0.00% 183.25
15_10_8 3521 3658 3563 68 69 0.00% 393.45
15_10_9 2935 3079 2730 72 72 0.00% 348.01

15_10_10 2093 2195 1060 38 64 -20.00% 497.08
10_15_1 3951 4195 3998 60 184 -11.43% 484.76
10_15_2 4629 4939 4326 143 167 0.00% 561.69
10_15_3 2486 2604 2300 13 104 0.00% 307.16

4.2 New heuristic methods for DBLP 97

instance subprob iter opt_iter orig_ineq new_ineq opt_gap CPU
10_15_4 1699 1770 1129 0 71 0.00% 200.77
10_15_5 2277 2393 2238 58 58 0.00% 271.39
10_15_6 1395 1555 1387 80 80 -54.17% 187.75
10_15_7 809 822 725 6 7 0.00% 94.69
10_15_8 1197 1271 1223 36 38 -26.47% 316.12
10_15_9 1401 1454 788 8 45 -18.42% 339.64

10_15_10 1895 1950 1891 27 28 0.00% 445.69

Table 4.9. Computational results of the extended branch and cut

99

Chapter 5

New Applications

In this chapter we present two applications of mixed-integer bilevel linear programming to a problem of
scheduling and a problem of facility location. Both applications feature the presence of two different decision
makers with different objectives, but affecting each other.

5.1 Grid Scheduling by bilevel programming: a heuristic approach

We study the following Grid scheduling problem. A set of independent tasks, submitted to a Grid external
scheduler (ES), have to be assigned to a set of Grid computing sites, each one controlled by a local scheduler
(LS), for their execution. To each task are associated a release date and a due-date. If the due-date is exceeded, a
penalty cost proportional to the tardiness must be paid. If this cost is too high, the ES could prefer to reject the
task paying a rejection cost. Indeed, the ES wants to minimize the total cost for rejecting or delaying tasks, while
each LS wants to maximize computational resource usage efficiency. Thus problem is modelled by a discrete
bilevel programming where the decisions of the ES is constrained by that of the LSs and vice-versa. We propose
a heuristic algorithm to solve large size instances and we present and discuss computational results.

5.1.1 Introduction

Grids are distributed computational systems that allow users to access resources of computing sites owned by
different organizations (Foster and Kesselman [63]). They have been widely investigated and comprehensive
studies within such a framework can be found, e.g., in Casanova and Dongarra [45], Caramia and Giordani [44],
Chapin et al. [47], Kapadia and Fortes [82], Litzkow et al. [97], Su et al. [140], Buyya et al. [40],[41].

Grid computing (or the use of a computational Grid) is applying the resources of many computers to user
applications that require a great number of computer processing cycles or access to large amounts of data. In this
context, Grid scheduling, that is, the allocation of distributed computational resources to user applications, is one
of the most challenging and complex task (Nabrzyski et al. [115]).

One of the most known framework for Grid scheduling has been proposed by Ranganathan and Foster [124].
According to this architecture, users submit requests for application (task) execution to the Grid. The latter is
modelled by means of three components: an External Scheduler (ES) responsible for determining a particular
computing site where a submitted task can be executed; a Local Scheduler (LS) for each site, responsible for
determining the order in which tasks are executed at that particular site; a Dataset Scheduler, responsible for
determining if and when to replicate data and/or delete local files.

100 5. New Applications

In general, on receipt of a task request, the ES interrogates a set of LSs to ascertain whether the task can be
executed on the available local computing resources and meet the user requirements, e.g., the task due-date. If
this is the case, a specific computing site that can execute the given task is chosen, and the task request is passed
from the ES to this site and is managed locally by the associated LS.

On the basis of this general framework, it is immediate to design a Grid as a two level hierarchical structure.
Indeed, in the literature, there exist many examples of Grid scheduling problems in which the decision makers
are hierarchically related. In Tchernykh et al. [142] the ES, called Grid broker, allocates tasks to the available
computing sites using different scheduling strategies (e.g., minimum load per processor, minimum lower bound
on completion time); subsequently the LSs compute the optimal schedule of the assigned tasks. Kurowski et
al. [92] [93] propose a similar problem but assume that the ES is not the only decision maker and different
stakeholders, with different criteria, have to be taken into account. Also in these works, scheduling at the Grid
nodes is made by LSs after the ES assigns the tasks, but the way in which the problem changes according to
different local scheduling policies is not investigated.

In this application, we propose a novel modelling framework exploiting the hierarchical structure of Grid
scheduling problems. This approach consists in modelling the interactions between the ES and the LSs by means
of bilevel optimization. In fact, the ES and the LSs can be modelled as two decision makers whose decisions are
hierarchically related, i.e., the decision of the ES (the leader) precedes the decisions of the LSs (the followers)
that output their schedules on the basis of the task assignment made by the leader. The resulting model is a
DBLP.

As far as we know, this represents the first work in which a bilevel programming formulation is used for
such Grid scheduling problems. It implies that the ES and the LSs affect each other though they act sequentially
unlike what is modelled in Grid scheduling problems existing in the literature.

We provide a DBLP formulation of the considered Grid scheduling problem and a single level reformulation
of the latter. Solving the reformulation by means of a commercial solver (CPLEX) has been shown to be very
CPU time demanding and only instances with a few tasks can be optimally solved. Therefore, to cope with real
world large size instances, we designed a metaheuristic based on tabu search and exploiting the bilevel model. In
an initialization phase the algorithm solves a relaxed version of the single level reformulation and, after fixing
the optimal values of the leader’s variables so found, it finds the optimal solution of the follower problem, and
achieves a bilevel–feasible solution. Then, it keeps on executing iteratively the following three steps: (i) find a
new leader’s feasible solution by local search holding a tabu list on the moves performed, (ii) solve the follower
problem at the optimum fixing the leader’s solution found, (iii) compute the bilevel-feasible solution possibly
updating the best objective value found so far. The algorithm is halted after a certain number of iterations. To
assess the effectiveness of the proposed algorithm, computational results are presented and discussed.

5.1.2 The Grid scheduling framework

In the considered Grid scheduling problem, given a set J of n independent tasks (jobs) submitted to a Grid
external scheduler, they have to be assigned by the ES to a set of q Grid computing sites for their execution. For
each site s let Ms be the set of processing nodes (machines) that compose site s on which the assigned tasks are
locally scheduled by the LS of that site.

For the sake of simplicity, but without loss of generality, we assume that the processing nodes of a site have
the same performance (expressed, e.g., in million instructions per unit time period), may access any storage of
that site, and can execute at most one task during a given unit time period [t− 1, t).

5.1 Grid Scheduling by bilevel programming: a heuristic approach 101

We assume that the (planning) time horizon is given and discretized into τ unit time periods. The total
available computational resource units of site s is therefore equal to |Ms| · τ .

Each task j requires a certain amount of computational resources that depends on the task sizeOj (expressed,
e.g., in million of instructions) and on the performance of the computing site at which it is assigned. Let psj be an
integer number representing the computational resource units of site s required by task j if the task is assigned to
that site. For example, we can reasonably assume that psj is equal to the ratio between the size of task j and the
performance of a processing node of site s and that, without loss of generality, it is an integer value.

It is assumed that tasks are preemptable, more precisely when the execution of a task is interrupted it can be
resumed later from its interruption point, but tasks cannot migrate to another site once their execution is started.
Moreover, we assume that tasks are malleable, that is, the number of processing nodes assigned to a task may
change during its execution.

All tasks are assumed to be known by the Grid system in advance. Task j arrives in the system at a given
(release) date rj and has a due-date dj , that can be exceeded implying a reduction of the level of service offered
by the system to the task owner. The latter induces a penalty cost for the Grid system proportional to the task
tardiness, with a penalty cost per unit time period equal to (the weight) wj of task j. Since this cost reduces the
profit of the ES for executing task j, it is reasonable to assume that the tardiness penalty cost is limited by a given
maximum amount Bj . If the tardiness penalty cost exceeds Bj it is therefore preferable for the Grid system to
reject the task submission with a rejection cost (i.e., the loss of opportunity cost) equal, e.g., to the maximum
penalty cost Bj . Therefore, the values of Bj and wj induce an upper limit Tmax

j on the tardiness of task j equal
to Bj/wj , such that if a task could not be executed with at most such tardiness, it would be preferable for the ES
to reject the task.

While the ES looks for executing the submitted tasks over the Grid minimizing the total cost for rejecting
and delaying tasks, the goal of each LS is maximizing computational resource usage efficiency. In doing this, the
LS possibly leaves an over time increasing amount of computational capacity available to answer to other local
or external requests of computing. In short, a LS aims as much as possible to have a resource usage profile with
high resource usage at the beginning of the time horizon and low usage at the end. We model this LS policy by
introducing, for each site s, two resource usage cost parameters us1 and us2, and by assuming the cost cist of using
the resource unit of computational node i of site s in the unit time period [t− 1, t) being equal to (i · us1 + t · us2).
Therefore, the problem of the LS of site s is scheduling all the tasks assigned to that site, minimizing the total
cost of the used resources.

The ES problem, together with that of each LS, form a hierarchical optimization problem, where the decision
of the ES is constrained by that of the LSs, and vice-versa. In particular, it may be written as a discrete bilevel
optimization problem, because the ES (the leader) can only accept (in case paying a task tardiness penalty cost)
or reject (with a rejection cost) the tasks, assigning the accepted tasks to the sites, while the LSs (the followers)
determine optimal schedules of the assigned tasks without regarding the task tardiness.

5.1.3 A mathematical bilevel formulation

There are a very few papers in the literature where bilevel optimization is used to model (machine) scheduling
problems, see, e.g., Karlof and Wang [84], Kis and Kovács [87], Lukaĉ et al. [102]. Note that most of the bilevel
models and the solution techniques present in literature use continuous variables despite the use of discrete
variables may enable to better model real life problems with an inner combinatorial structure. The difficulties

102 5. New Applications

of bilevel problems in which all the variables or a subset of them are discrete have been well described in the
previous chapters.

Next, we give a formulation of the Grid scheduling bilevel problem. To this end, we introduce a dummy site
0, and consider a task as rejected if it is assigned to such a site.

Let us now define the following variables:

• ysj is a binary variable, controlled by the ES (i.e., the leader), equal to 1 iff task j is assigned to site s, and
0 otherwise, with s = 0, 1, . . . , q

• Tj is a real non negative variable, controlled by the ES, representing the tardiness of task j

• xisjt is a binary variable, controlled by the LS of site s (i.e., one of the followers), with s = 1, . . . , q, equal
to 1 iff task j is assigned (and executed) to a processing node i ∈Ms in the (unit) time period [t− 1, t),
and 0 otherwise.

The leader problem LP is then formulated as follows.

(LP) min
x,y,T

z1 =
n∑
j=1

Bjy
0
j +

n∑
j=1

wjTj (5.1)

Tj ≥ t · x̄isjt − dj

j = 1, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.2)

q∑
s=0

ysj = 1 j = 1, . . . , n (5.3)

Tj ≥ 0 j = 1, . . . , n (5.4)

ysj ∈ {0, 1}
j = 1, . . . , n
s = 0, . . . , q

(5.5)

where x̄isjt is the optimal solution of the follower problem FP (s) of site s (with s = 1, . . . q). The objective
function (5.1) to be minimized is the sum of two contributions: the first one is the total task rejection cost; the
latter is the total tardiness cost of the scheduled tasks. Constraints (5.2), together with (5.4), define a lower limit
on the tardiness of the tasks as a consequence of the followers’ task scheduling decisions. Constraints (5.3),
together with (5.5), assure that each task is assigned exactly to one of the q computational sites, or is rejected.

The follower problem FP (s), with s = 1, . . . , q, is formulated in the following, where the dummy task 0
available at time r0 = 0 is introduced for the sake of the formulation.

(FP (s)) min
x
z2(s) =

∑
i∈Ms

n∑
j=1

τ∑
t=rj+1

cist x
is
jt (5.6)

∑
i∈Ms

τ∑
t=rj+1

xisjt =
{

psj y
s
j

|Ms| · τ −
∑n
k=1 p

s
k y

s
k

j = 1, . . . , n
j = 0

(5.7)

5.1 Grid Scheduling by bilevel programming: a heuristic approach 103

∑
{j∈{0,1,...,n}|rj≤t−1}

xisjt = 1 t = 1, . . . , τ
i ∈Ms

(5.8)

xisjt ∈ {0, 1}
j = 0, . . . , n
t = rj + 1, . . . , τ
i ∈Ms

(5.9)

The objective function (5.6) to be minimized is the total cost of the used resources of site s. Constraints (5.7)
force the number of resource units assigned to task j, with j = 1, . . . , n, to be exactly equal to the amount psj
of required computational resource units of task j if j is assigned by the leader to that site, and 0 otherwise;
moreover, these constraints assign exactly the unused resources of site s to the dummy task 0. Constraints (5.8)
assure that, for each unit time period t, computational node i of site s is assigned exactly to one of the tasks
(included the dummy) released at time rj ≤ t− 1.

Note that the overall formulation we propose corresponds to the so called optimistic bilevel model. Recall
that, if there exist multiple optimal solutions for problem FP (s) among which the follower is indifferent, it is
assumed that the leader can select the solution that optimizes his objective function z1. This assumption is based
on the hypothesis of a semi-cooperative relation among the decision makers.

For the sake of clearness, let us consider a simple instance with the following input data: n = 2 (tasks 1 and
2), q = 1 Grid computing site provided with |M1| = 2 processing nodes and a planning time horizon of τ = 4
time periods. Moreover, task 1 has release-date r1 = 0, due-date d1 = 1 and requires p1

1 = 2 computational
resource units of site 1, while for task 2 r2 = 2, d2 = 4 and p1

2 = 3. Let us assume that y1
1 = 1 and y1

2 = 1, i.e.
tasks 1 and 2 are assigned to site 1 by the leader. Two feasible solutions to problem FP (s) are shown in Figure
5.1.

Figure 5.1. Two feasible scheduling solutions for the follower problem

Recall that the cost vector of FP (s) is defined as cist = i · us1 + t · us2, so the follower objective function z2(s)
increases with the time period t and the processing node i. In the example, regardless of the numerical values of
the two usage cost parameters us1 and us2, the two scheduling solutions in Figure 5.1 are better than any other
solutions in the follower’s perspective. Comparing schedule a and schedule b, the objective function values are:

schedule a : z2(1) = 6u1
1 + 13u1

2
schedule b : z2(1) = 7u1

1 + 12u1
2

104 5. New Applications

Which is the optimal schedule between a and b depends on the values of u1
1 and u1

2: if u1
1 > u1

2, schedule a
is better than schedule b and vice-versa. Note that if the follower optimal solution is schedule a, task 1 has a
positive tardiness T1 = 1, while if schedule b is the optimal follower solution both tasks are executed within their
due-date. Finally, if u1

1 = u1
2 the two solutions are equivalent for the follower, but according to the optimistic

formulation mentioned above, the leader selects schedule b which does not produce any tardiness.

Problem FP (s) is equivalent to the well known Hitchcock (transportation) problem and, hence, the constraint
coefficient matrix is totally unimodular, implying that the optimal solutions of the followers’ problems can
be obtained by solving their linear relaxations, because the right hand sides of constraints (5.7) are integers.
Moreover, |Ms| · τ −

∑n
k=1 p

s
k y

s
k +

∑n
j=1 p

s
j y

s
j =

∑
i∈Ms

∑τ
t=1 1 = |Ms| · τ , i.e., the sum of the right hand

sides of constraints (5.7) equals the sum of the right hand sides of constraints (5.8), whatever are the values of
the variables ysk ∈ {0, 1} chosen by the leader. Therefore, an optimal solution of problem FP (s) always exists
given that τ is sufficiently large to guarantee the existence of a feasible solution and also |Ms| · τ ≥

∑n
k=1 p

s
k y

s
k.

It follows that the DBLP we presented is equivalent to a DCBLP in which the integrality requirements on the
followers’s variables are relaxed. This significantly reduces the computational complexity of the model.

5.1.4 The single level reformulation

In this section, we transform the DBLP presented above, that is equivalent to a DCBLP, in its single level
reformulation. Since the latter can be optimally solved as linear programs, we can impose the primal feasibility
conditions (5.7) and (5.8), the dual feasibility conditions, and the complementary slackness conditions on the
followers problems. To this end, let γsj and βist be the dual variables associated with constraints (5.7) and (5.8),
respectively; since the latter are equality constraints, these dual variables are free in sign. Moreover, let ξisjt be the
non negative slack variables associated to the constraints of the dual of the linear relaxations of problem FP (s),
with s = 1, . . . , q. Therefore, we get the following single level reformulation:

min
x,y,T

z1 =
n∑
j=1

Bjy
0
j +

n∑
j=1

wjTj (5.10)

Tj ≥ t · xisjt − dj

j = 1, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.11)

q∑
s=0

ysj = 1 j = 1, . . . , n (5.12)

∑
i∈Ms

τ∑
t=rj+1

xisjt =
{

psj y
s
j

|Ms| · τ −
∑n
k=1 p

s
k y

s
k

j = 1, . . . , n
j = 0

s = 1, . . . , q (5.13)

∑
{j∈{0,1,...,n}|rj≤t−1}

xisjt = 1
t = 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.14)

γs0 + βist + ξis0t = 0
t = 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.15)

5.1 Grid Scheduling by bilevel programming: a heuristic approach 105

γsj + βist + ξisjt = i · us1 + t · us2

j = 1, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.16)

xisjt · ξisjt = 0

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.17)

xisjt ≥ 0

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.18)

ysj ∈ {0, 1}
j = 1, . . . , n
s = 0, . . . , q

(5.19)

Tj ≥ 0 j = 1, . . . , n (5.20)

ξisjt ≥ 0

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.21)

γsj free
j = 0, . . . , n
s = 1, . . . , q

(5.22)

βist free
t = 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.23)

Constraints (5.13)-(5.17) are the KKT optimality conditions for the FP (s) linear relaxations: constraints (5.13)
and (5.14) are the primal feasibility conditions, constraints (5.15) and (5.16) are the dual feasibility conditions,
and the bilinear constraints (5.17) are the complementary slackness conditions.

In order to linearize constraints (5.17) one may introduce a binary variable δisjt and replace the bilinear
constraints (5.17) as follows

ξisjt ≤M is
jt · (1− δisjt)

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.24)

xisjt ≤ δisjt

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.25)

106 5. New Applications

δisjt ∈ {0, 1}

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.26)

where M is
jt are big-M constants. W.l.o.g., we can assume M is

jt to be equal to an upper bound on the optimal
value of the slack variable ξisjt , and hence M is

jt ≤ (i ·us1 + t ·us2) + 2Us, for j = 1, . . . , n, and M is
0t ≤ 2Us, with

Us = [(n+ 1) + (|Ms| · τ)− 1](|Ms| · us1 + τ · us2) being an upper bound on the absolute value of the optimal
dual variables γsj and βist of the follower problems FP (s), with s = 1, . . . , q, which, we recall, are equivalent to
the transportation problem 1.

Hence, the overall resulting mixed-integer formulation of the single level reformulation, denoted as SLF , is
the following:

(SLF) min
x,y,T

z1 =
n∑
j=1

Bjy
0
j +

n∑
j=1

wjTj (5.27)

Tj ≥ t · xisjt − dj

j = 1, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.28)

q∑
s=0

ysj = 1 j = 1, . . . , n (5.29)

∑
i∈Ms

τ∑
t=rj+1

xisjt =
{

psj y
s
j

|Ms| · τ −
∑n
k=1 p

s
k y

s
k

j = 1, . . . , n
j = 0

s = 1, . . . , q (5.30)

∑
{j∈{0,1,...,n}|rj≤t−1}

xisjt = 1
t = 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.31)

γs0 + βist + ξis0t = 0
t = 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.32)

γsj + βist + ξisjt = i · us1 + t · us2

j = 1, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.33)

1Any basic feasible solution of the transportation problem with N origins and M destinations and costs ρhk (with
h = 1, . . . , N and k = 1, . . . ,M) has exactly (N +M − 1) basic variables whose values can be non-zero, while the other
(non-basic) variables are equal to zero. Denoting with uh, vk the dual variables, by applying the complementary slackness
conditions uh + vk = ρhk for each non-zero basic variable of the basic feasible solution, and assuming u1 = 0, we can
determine the values of the dual variables uh, vk related to the primal basic feasible solution. Since the number of such
conditions are at most as many as the number of basic variables (i.e.,N+M−1), we have that |uh| ≤ (N+M−1) max{ρhk}
(an analog consideration follows for the bound on the values of variables vk)

5.1 Grid Scheduling by bilevel programming: a heuristic approach 107

ξisjt ≤M is
jt · (1− δisjt)

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.34)

xisjt ≤ δisjt

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.35)

xisjt ≥ 0

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.36)

ysj ∈ {0, 1}
j = 1, . . . , n
s = 0, . . . , q

(5.37)

Tj ≥ 0 j = 1, . . . , n (5.38)

ξisjt ≥ 0

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.39)

δisjt ∈ {0, 1}

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.40)

γsj free
j = 0, . . . , n
s = 1, . . . , q

(5.41)

βist free
t = 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.42)

Theoretical properties

In this subsection we study some theoretical properties on the SLF . Let us denote withRx(ysj) the set of optimal
solutions of the linear relaxation of FP (s).

Recalling that: (i) the constraint coefficient matrix of the follower problem is totally unimodular and the
right hand sides are integer values; (ii) there are upper level constraints which do not only depend on the upper
level variables, we can show the following results.

Proposition 13. If one of followers problems, say FP (s), has multiple optimal solutions for a given vector ysj ,
Rx(ysj) is formed by at least two integer vertices of the polyhedron of FP (s) and by their convex combination.

Proof. FP (s) is an integer linear programming problem that, as we previously noted, may be solved by its
linear relaxation due to the total unimodularity of the constraint coefficient matrix and the integrality of the right

108 5. New Applications

hand sides. It follows that, for a given vector ysj , if FP (s) has a unique optimal solution, the latter must be
integer and this is also the unique solution of the linear relaxation of FP (s); otherwise, Rx(ysj) is a face of the
polyhedron of FP (s), defined by at least two (integer) optimal vertices and their convex combination. 2

Proposition 14. If the optimal solution (ysj ∗, xisjt
∗) of problem SLF has fractional lower level variables, at

least one of the followers problems, say FP (s), has multiple optimal solutions given vector ysj
∗, and vector xisjt

∗

belongs to a face of the polyhedron of FP (s).

Proof. If variables xisjt
∗ are fractional, it happens that: (i) problem FP (s) has multiple optimal solutions and,

by Proposition 13, Rx(ysj ∗) is a face of the polyhedron of FP (s); (ii) upper level constraints (5.28) and (5.38) in
SLF intersect Rx(ysj ∗) defining a new vertex, lying on a face of the feasible region of FP (s). The latter vertex
is the optimal fractional solution of problem SLF . 2

Note that the only constraints which depend on the follower’s variables are constraints (5.28) which define the
tardiness of the scheduling problem together with constraints (5.38) which impose the non negativity of the
tardiness. It is important to underline that constraints (5.28) and (5.38) do not impose any feasibility condition
on variables xisjt but they are only necessary to linearize the leader’s objective function. It follows that all the
integer solutions contained in the set Rx(ysj ∗) are bilevel–feasible.

Since the tardiness is defined as a non negative variable, it happens that among all the integer solutions
contained in Rx(ysj ∗), some correspond to a solution with Tj ≥ αj , with j = 1, . . . , n and αj ≥ 0, and at least
one vertex corresponds to a solution with Tj ≥ α′j , with α′j < 0 for some j = 1, . . . , n. Therefore, by the
intersection of Rx(ysj ∗) with constraints (5.28) and (5.38), a new fractional basic feasible solution (ysj ∗, x̄isjt) of
SLF is defined where x̄isjt is a convex combination of the integer solutions in Rx(ysj ∗) and yields the smallest
value for the leader’s objective function.

Another simplest way to understand Proposition 14 is that the leader’s objective function can be rewritten as
a non linear function removing constraints (5.28) as follows:

min
x,y,T

z1 =
n∑
j=1

Bjy
0
j +

n∑
j=1

wj ·max
t,i,s

[t · xisjt − dj , 0]

In this case the optimal solution may be an internal solution of Rx(ysj ∗) which is a face of the polyhedron of
FP (s) .

The latter result implies that if we solve SLF we are not guaranteed that the lower level variables will be
integer.

Proposition 15. If the optimal solution (ysj ∗, xisjt
∗) of problem SLF has fractional lower level variables for at

least one site, say site s, there is always a solution with integer lower level variables which is bilevel–feasible
and can be easily computed.

Proof. By Proposition 14 we know that if xisjt
∗ is fractional, it is a convex combination of the integer solutions in

Rx(ysj ∗) which are all bilevel–feasible; at least one of them can be computed by fixing the upper level variables
ysj
∗ and solving the follower problem FP (s). 2

Consider a simple example in which there are only n = 2 tasks, q = 1 site, |Ms| = 1 processing node and a
time horizon τ = 3. Moreover, consider the following data: B1 = B2 = 10 (they are large enough to avoid
task rejection), u1 = u2 = 1, d1 = d2 = 2, p1 = 1, p2 = 2, w1 = 2, w2 = 1, r1 = r2 = 0. Clearly it is not
convenient for the leader to reject the tasks and so task 1 and task 2 are scheduled on the same site and on the
same processing node. This implies that y1

j
∗ = 1 and y0

j
∗ = 0 for j = 1, 2.

5.1 Grid Scheduling by bilevel programming: a heuristic approach 109

There are three optimal integer solutions for FP (s), let us call them A, B and C as represented in Figure
5.2.

Figure 5.2. Optimal integer solutions for the follower problem

For solution A we have the following upper level constraints (5.28): T1 ≥ 0 , T2 ≥ 1 and a value for the
leader’s objective function equal to 1, while for solution B we have: T1 ≥ 1 , T2 ≥ 0 and a value for the
leader’s objective function equal to 2. Let us now consider solution C. The upper level constraints (5.28) are:
T1 ≥ −1 , T2 ≥ 1. Despite the previous two solutions, for solution C the non negativity constraint (5.38) on the
tardiness T1 ≥ 0 is not redundant and intersect the set Rx(ysj ∗) defining a new fractional solution D which is a
convex combination of A, B and C. The solution to the leader problem corresponding to the follower’s solution
C has T1 = 0 , T2 = 1 with an objective function value equal to 1.

By solving problem SLF its optimal solution corresponds to the following fractional solution D (apexes
i = 1 and s = 1 are omitted for the sake of clearness): x01 = 0 x11 = 1

3 x21 = 2
3

x02 = 0 x12 = 0 x22 = 1
x03 = 0 x13 = 2

3 x23 = 1
3

for which T1 = T2 = 0 and the optimal value for the leader’s objective function is 0. It follows, by the above
propositions, that if we solve SLF we may obtain a non integer solution, but for the same values of the upper
level variables there will always be a solution which is integer and optimal for the follower. Hence, it is possible
to solve SLF , then fix the upper level variables, and finally solve FP (s) obtaining an integer bilevel–feasible
solution. Based on these observations, we developed a heuristic algorithm to solve the linearized single level
reformulation SLF which is described in the following.

5.1.5 The heuristic algorithm

It is well known in bilevel optimization that the single level reformulation obtained by a bilevel program is very
difficult to solve because of the introduction of many additional binary variables. Another criticality of the SLF ,
as previously explained, is that there is no guarantee of finding an optimal integer solution. The simplest way to
overcome this problem, is to modify the formulation of problem SLF resetting variables xisjt to be binary.

In order to see the limits of SLF problem in terms of size of solvable instances, we started by conducting
preliminary tests of problem SLF , by implementing and solving the latter in the AMPL language and with

110 5. New Applications

CPLEX 12.3, on a PC Pentium Core 2 Duo with a 2 GHz processor and 1 GB RAM, respectively. The results of
these tests were, as expected, not satisfactory for the application under consideration. In particular, considering
the test case with q = 5 identical computing sites, each one with |Ms| = 3 machines, CPLEX was able to solve
problem SLF at the optimum within a reasonable computing time for the application (we imposed a time limit
of two minutes) only on instances with at most five tasks. The outcome of this experimentation led us to look for
a heuristic algorithm able to treat larger instances in limited computing time. This algorithm is based on tabu
search and is described in the following.

Initialization phase: solution of problem RSLF and integrality test. In the first phase we solve a
relaxation of problem SLF that is made by means of three steps: (i) we replace the equality constraints (5.30)
and (5.31) of the follower problem with inequality constraints; (ii) we remove the constraints (5.32)-(5.35)
and (5.40) concerning with the optimality of the follower problem; (iii) we add constraints (5.48) in order to
avoid scheduling task j on site s if j is not assigned to s. Hence, we solved the following relaxed single level
reformulation RSLF

(RSLF) min
x,y,T

z1 =
n∑
j=1

Bjy
0
j +

n∑
j=1

wjTj (5.43)

Tj ≥ t · xisjt − dj

j = 1, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.44)

q∑
s=0

ysj = 1 j = 1, . . . , n (5.45)

∑
i∈Ms

τ∑
t=rj+1

xisjt ≥

{
psj y

s
j

|Ms| · τ −
∑n
k=1 p

s
k y

s
k

j = 1, . . . , n
j = 0

s = 1, . . . , q (5.46)

∑
{j∈{0,1,...,n}|rj≤t−1}

xisjt ≥ 1
t = 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.47)

∑
i∈Ms

τ∑
t=rj+1

xisjt ≤ ysj · |Ms| · τ
s = 1, . . . , q
j = 1, . . . , n

(5.48)

xisjt ≥ 0

j = 0, . . . , n
t = rj + 1, . . . , τ
s = 1, . . . , q
i ∈Ms

(5.49)

ysj ∈ {0, 1}
j = 1, . . . , n
s = 0, . . . , q

(5.50)

Tj ≥ 0 j = 1, . . . , n (5.51)

We compute a solution (ȳsj ,x̄isjt) and make an integrality test on variables x̄isjt: if x̄isjt are binary and satisfy the
optimality conditions for the followers’ problems, solution (ȳsj ,x̄isjt) is optimal for SLF and hence optimal for

5.1 Grid Scheduling by bilevel programming: a heuristic approach 111

the optimistic version of the bilevel problem. Otherwise, we start our heuristic approach based on a tabu search
mechanism.

Iterative phase: tabu search. In this phase a tabu search mechanism is developed. The idea is similar to
that applied by Wen and Huang [150] for a generic DCBLP. Differently from [150], in the proposed algorithm
we do not use any diversification technique and even the mechanism of local search is quite different because we
use specific information connected to the model meaning. Moreover, our heuristic is thought to be applied to
large instances unlike that of Wen and Huang.

The main objective of a tabu search is to find a local optimum and its basic scheme is the following: compute
an initial solution, compute a good neighbor solution by a local search in order to try to improve the objective
function value and then move from it. Moving from a solution to another one is allowed even if there is no
improvement in the objective function: in this case the move is classified as tabu and is recorded in a tabu list to
avoid returning to a previously computed better solution and try to explore solutions far from the current local
optimum.

The first iteration starts from solution (ȳsj ,x̄isjt) calculated in the initialization phase. The algorithm fixes the
upper level variables to ȳsj and computes an integer rational solution for the followers by solving FP (s). Let
(ȳsj ,x̂isjt) be such a solution. From this initial solution the local search mechanism, described in the following,
starts. The algorithm computes the weighted tardiness values wj T̄j and wj T̂j corresponding to solutions (ȳsj ,x̄isjt)
and (ȳsj ,x̂isjt), respectively. Note that tasks weighted tardiness are part of the leader’s objective function and they
are crucial to determine the quality of the solution. Let

j∗ ∈ argmax{(wj T̂j − wjT j)}

where index j∗ corresponds to the task for which there is the highest difference of the weighted tardiness between
the integer and the fractional solution. Let s∗ the site in which task j∗ is assigned, i.e. ȳs

∗

j∗ = 1. Once j∗ is
computed, the algorithm forbids the assignment of task j∗ to site s∗ (local move). Hence we solve RSLF fixing
variables ys

∗

j∗ = 1− ȳs∗j∗ , so obtaining a solution (ȳsj ,x̄isjt) from which a new bilevel-feasible solution (ȳsj ,x̂isjt) is
computed by solving problems FP (s). If the new feasible solution is worse than the best found so far, the local
move used is recorded as tabu in a proper tabu list; the number max_tabu representing the number of iterations
within which a tabu move is forbidden is a parameter of the algorithm (this number is decreased by one at each
iteration until the move returns eligible). The algorithm keeps on iterating until one of the following stopping
criteria is met:

1. a predefined number max_iter of consecutive non improving iterations of the tabu search have been
executed;

2. a time limit is reached.

5.1.6 Simulated scenarios

In this section, we describe the experimentation conducted on the proposed heuristic. Our implementation
environment included the following: a PC Pentium Core 2 Duo with a 2GHz processor and 1GB RAM, a
Microsoft Windows C++ Developer 6.0 compiler, the AMPL language, and the CPLEX 12.3 solver.

112 5. New Applications

In recent work concerning with Grid scheduling problem the performance and the general behaviour of
models and proposed algorithms are tested on real data. Iosup et al. [77] realized the project of a Grid Workload
Archive (GWA) in which real workloads coming from different Grid environments are collected and stored in a
predefined format. According to Kurowski et al. [92] [93], even if a computational analysis on real data is more
significative in theory, the use of real workloads implies some criticality. Only a few instances provide all the
necessary information required to evaluate a model and its solving algorithm (e.g., due-dates or penalty costs)
and a real workload coming from a Grid system may not be used as a valid benchmark on another system due to
the presence of specific constraints and policies.

For this reason we conducted two separate simulations, both on synthetic and real workloads. We performed
both the simulations on a fictitious Grid system formed by q = 5 sites with the same characteristics. In particular,
each site s is assumed to be composed of |Ms| = 3 processing nodes (machines), with the same speed equal to
500 MI per time unit. The parameters us1 and us1 appearing in the cost function cist = i · us1 + t · us2 are assumed
to be equal to 1.

Synthetic workloads

The synthetic workloads were created in the following manner. Tasks arrive according to a Poisson arrival
process, with expected arrival rate (i.e., number of tasks per time unit) equal to λ.

Task sizes Oj (in MI) are uniformly generated at random with an expected value E[Oj] = 10000 MI, which
is similar to the order of magnitude of the task size assumed in Buyya [40] and with minimum value equal to
0.8 · E[Oj] and maximum value equal to 1.2 · E[Oj]. This implies that the computational resource units psj
required by j on site s is on average equal to 20. Moreover, since the sites are assumed to be the same, the
computational resource units psj required by j is the same for each site s.

Task due-dates dj are uniformly generated at random with an expected value E[dj] = rj + run_time, a
minimum value equal to rj + 0.8 · (run_time), and a maximum value equal to rj + 1.2 · (run_time), where
rj is the task arrival date. The parameter run_time (posed equal to 10 time units) is approximately the expected
task run time, assuming that, on average, 2

3 of the computational resources of a site is allocated to the task during
the run time period.

The maximum tardiness penalty costs Bj , i.e., the task rejection costs, are uniformly generated at random
with a given expected value E[Bj], a minimum value equal to 0.8 · E[Bj], and a maximum value equal to
1.2 · E[Bj].

Finally, the tardiness penalty unitary costs (task weights) wj , are uniformly generated at random with a given
expected value E[wj] = 10, a minimum value equal to 0.8 · E[wj] and a maximum value equal to 1.2 · E[wj].

All the generated data values are non negative integers. We have experimented with λ = 1, 2, 3, 4, 5, and
E[Bj] = 50, 100, 150, considering n = 100 tasks. The number of runs of the tabu search routine embedded
in the heuristic algorithm was fixed to max_iter = 15, the lenght of the tabu list was fixed to max_tabu = 5
and the time limit is 300 second. Moreover, we imposed a time limit of two minutes for the solution of every
RSLF and FP (s) problems. The number τ of unit time periods of the (planning) time horizon was assumed
sufficiently large.

The results are listed in Tables 5.1-5.3. In the tables, the columns list the average task arrival rate λ, the average
rejection cost, the average total cost among the 100 tasks, the average tardiness cost of the (accepted) scheduled
tasks, the number of rejected tasks and the CPU time in seconds spent by the algorithm.

5.1 Grid Scheduling by bilevel programming: a heuristic approach 113

λ avg_rej_cost avg_tot_cost avg_tard_cost rej_tasks CPU

1 6.75 11.15 5.18 15 75.48
2 39.48 40.04 4.31 87 166.59
3 34.61 42.04 33.77 78 124.75
4 0.00 21.92 21.92 0 96.72
5 45.71 45.71 0.00 100 108.71

Table 5.1. Synthetic workloads with E[Bj] = 50

λ avg_rej_cost avg_tot_cost avg_tard_cost rej_tasks CPU

1 0.00 0.11 0.11 0 55.39
2 53.94 59.83 14.37 59 124.33
3 94.97 94.97 0.00 99 248.65
4 42.58 87.44 84.64 47 124.35
5 55.08 69.61 35.44 59 124.60

Table 5.2. Synthetic workloads with E[Bj] = 100

λ avg_rej_cost avg_tot_cost avg_tard_cost rej_tasks CPU

1 0.00 0.77 0.77 0 91.42
2 35.06 109.32 97.71 24 133.43
3 147.69 147.69 0.00 99 249.49
4 127.26 127.26 0.00 100 187.18
5 28.19 82.58 67.15 19 171.57

Table 5.3. Synthetic workloads with E[Bj] = 150

It is interesting to note that for increasing values of λ, unlike what we can expect, the average rejection
cost (and the number of rejected tasks) does not always tend to increase due to an increase of the number of
rejected tasks and the biggest value is never in correspondence to the biggest value of λ. See for example the set
of instances with E[Bj] = 150 in which the smallest number of rejected tasks occurs for the extreme values of
λ = 1 and λ = 5. For λ ranging from 1 to 5, avg_rej_cost ranges from 0 to 45.71 when E[Bj] = 50, from
0 to 94.97 when E[Bj] = 100, and from 0 to 147.69 when E[Bj] = 150. In general it is remarkable to note
that, even if the number of rejected tasks has a large variance in the three cases, the average value is equal to
56 in the first case, 53 in the second and 48 in the third: it means that, according to an increasing rejection
cost, the average number of rejected tasks decrease. Looking at the avg_tard_cost(sched) values, it is worth
noting that they are always lower than the average maximum tardiness penalty costs E[Bj]. Another fact to
be noted is that for two instances the heuristic finds a solution in which all tasks are rejected and there is no
avg_tard_cost(sched) and for other two instances the number of rejected tasks is 99. This phenomenon may
be justified by the incapability of followers to schedule all the tasks within their due-date so, considering the
tardiness cost that would be generated, it is more convenient for the leader to reject all the tasks.

114 5. New Applications

Finally, we note that the running times do not tend to increase in a constant way for increasing values of λ,
but the lowest CPU time occurs always for λ = 1 and it seems that the biggest computational effort is for λ = 2
(E[Bj] = 50) and λ = 3 (E[Bj] = 100 and E[Bj] = 150). Even if the running times seem not to be limited for
a heuristic algorithm, it is necessary to consider that the model we propose is inherently difficult to solve due to
its discrete bilevel structure. Recall that DBLP is the hardest class of bilevel problems. In the literature there are
very few applications of DBLP to real problems and no one is for big instances: indeed the application of bilevel
models is still limited by the lack of efficient solution methods despite their capability to model problems in a
more realistic fashion than the classical linear single level models.

Real workloads

Real workloads are taken from the Grid Workload Archive (GWA) developed by Iosup et al. [77] which is a
big repository collecting real data from nine different Grid systems. Unfortunately, only a few workloads were
complete and suitable for our model; for this reason we made the following assumptions. The task arrival date
rj was taken by the GWA instances used for the simulation. We considered the first n = 100 tasks arriving in
the system. The computational resource units psj required by task j on site s was provided by the GWA. The
run_time was defined as for synthetic workloads (i.e., following the assumption that 2 out of the 3 available
computational resources of a site are allocated to a task).

All the other data not provided by the GWA, i.e. task due-dates dj , tardiness penalty costs wj and task
rejection costs Bj , were computed as for the synthetic workloads. In particular, we considered 5 real instances,
called GWA_1, GWA_2, GWA_3, GWA_4 and GWA_5, and experimented the tabu search algorithm in
three different scenarios, with E[Bj] = 50, 100, 150 and with the same parameters setting above used (i.e.
max_iter = 15, max_tabu = 5, time limit 300 seconds and τ sufficiently large). The results are listed in
Tables 5.4-5.6.

inst avg_rej_cost avg_tot_cost avg_tard_cost rej_tasks CPU

GWA_1 49.45 49.45 0.00 98 168.58
GWA_2 39.79 40.00 1.18 83 122.72
GWA_3 30.38 30.38 0.00 64 149.97
GWA_4 42.39 42.59 0.00 94 127.27
GWA_5 39.87 39.87 0.00 83 127.27

Table 5.4. Real workloads with E[Bj] = 50

inst avg_rej_cost avg_tot_cost avg_tard_cost rej_tasks CPU

GWA_1 96.08 96.08 0.00 96 159.26
GWA_2 63.31 80.62 52.45 67 125.50
GWA_3 61.73 61.73 0.00 64 150.21
GWA_4 65.87 65.87 0.00 68 105.23
GWA_5 43.00 44.55 2.77 44 125.49

Table 5.5. Real workloads with E[Bj] = 100

5.1 Grid Scheduling by bilevel programming: a heuristic approach 115

inst avg_rej_cost avg_tot_cost avg_tard_cost rej_tasks CPU

GWA_1 145.98 145.98 0.00 98 170.57
GWA_2 95.09 116.06 63.55 67 125.35
GWA_3 91.88 91.88 0.00 64 125.99
GWA_4 80.65 82.42 3.93 55 191.58
GWA_5 121.19 121.19 0.00 83 126.86

Table 5.6. Real workloads with E[Bj] = 150

For the 5 real instances we compared the results for different value of the expected rejected cost E[Bj]. The aim
is to make a sensitivity analysis with respect to the increase of the rejection cost. The first and most remarkable
result is that according to what we can expect, the largest number of rejected tasks for every instances occurs
always for E[Bj] = 50: it means that, when the rejection cost increases the leader tends to accept more tasks
counterbalancing with an increase of the tardiness cost. Looking at the average value of the rejected tasks, we
have that in the first case 84 tasks are rejected on average, 68 in the second and 73 in the third.

In this simulation there are no instances in which all the tasks are rejected, but the overall number of rejected
tasks is quite large and bigger than what happens in the synthetic simulations. Moreover, it is important to note
that, unlike the previous simulation in which the average tardiness cost was zero in 4 cases and for instances with
100 or 99 rejected tasks, in the real workloads simulation in 10 cases there is no tardiness cost, but in 6 cases
the rejected tasks are less than 85. This result implies that, once the tasks are accepted, the followers are more
able to schedule them without exceeding their due-dates. The combination of this two results may be explained
by the following observation. The tasks require computational resource units psj with a large variance, while
the due-dates are computed on the basis of the expected value of the run time: two tasks, arriving in the system
very close to each other, may have similar due-dates but very different psj . For the leader it is more convenient to
accept the smallest task and reject the other one with the final result that the number of rejected tasks is very large
and the accepted tasks are the only ones that can be easily scheduled by the followers, generating no tardiness
costs.

Finally, we note that the running times tend to be very similar no matter what is the value of the rejected cost
except for instances GWA_4.

Summing up, Table 5.7 lists the average values of all the indicators used for the synthetic and the real
scenarios.

E[Bj] scenario avg_rej_cost avg_tot_cost avg_tard_cost rej_tasks CPU

50
synth 25.31 32.17 13.04 56.01 114.45
real 40.38 40.46 0.24 84.41 139.12

100
synth 49.31 62.39 26.91 52.80 135.47
real 66.00 69.77 11.04 67.81 133.14

150
synth 67.64 93.52 33.13 48.40 166.62
real 106.96 111.51 13.50 73.39 148.07

Table 5.7. Comparison between the two simulated scenarios

116 5. New Applications

The running times are almost the same when E[Bj] = 100 and are comparable when E[Bj] = 50 (where the
synthetic scenario is solved faster), and E[Bj] = 150 (where the performance in the real scenario is better). The
analysis of the average values confirms what was previously observed: in the real scenarios there is a larger
number of rejected tasks, i.e., rejected cost, and a smaller average tardiness cost with respect to the synthetic
scenario. Despite this opposite behaviour, the average total costs are comparable and the performance of the
algorithm is not affected by the use of real data rather than synthetic ones.

A comparison with respect to a simple heuristic and two lower bounds

In order to assess the quality of the solutions computed by the proposed tabu search algorithm, we compared
the latter to a naive heuristic approach that works as follows: a feasible vector of leader’s variables is randomly
generated (i.e. the assignment of tasks to sites is randomly determined) and then the follower problem is solved by
fixing the leader’s variables found for computing a bilevel–feasible solution. This process is repeated iteratively
within a fixed time limit equal to 300 seconds. In order to realize a fair comparison the random heuristic and the
tabu search were run on the same instances with both synthetic and real workloads and in column CPU of the
random heuristic in Tables 5.8-5.10 and Tables 5.11-5.13 we listed the elapsed time in seconds until the best
solutions had been found.

Finally we solved two different relaxed versions of problem SLF for computing two lower bounds on the
optimal solution. The first bound (denoted as Bound_1) was computed making the following relaxation: (i) we
removed all the constraints concerning with the optimality conditions of the followers’ problems (i.e., KKT
conditions, primal and dual followers’ problems feasibility), (ii) we relaxed the integrality constraints on the
upper level variables. In the second lower bound (denoted as Bound_2) we also relaxed the integrality constraints
on the followers’ variables so obtaining a linear problem. The time limit imposed for the lower bounds calculated
is 7200 seconds.

A first comparison was made on the instances with synthetic workloads.

λ
Tabu_Search Random_Heuristic Bound_1 Bound_2

avg_tot_cost CPU avg_tot_cost CPU avg_tot_cost avg_tot_cost
1 11.15 75.48 14.38 171.78 - 0.00
2 40.04 166.59 45.50 289.45 24.49 5.85
3 42.04 124.75 45.16 273.68 27.88 11.35
4 21.92 96.72 57.02 128.43 20.57 0.00
5 45.71 108.71 102.82 124.67 - 0.00

Table 5.8. Comparison for synthetic workloads with E[Bj] = 50

In Tables 5.8-5.10 we compared the average total cost of the solutions obtained by the two heuristics, i.e., the
tabu search and the random heuristic, with the two bounds computed by solving two different relaxations. The
dashes correspond to instances for which it was not possible to compute a feasible solution within the fixed time
limit.

First of all it is important to note that the tabu search algorithm always achieves the better solution, which is
listed in bold, and finds a feasible solution in less time than the random heuristic in all the instances tested but
one (λ = 1 and E[Bj] = 150). Hence, the tabu search is clearly more effective and efficient than the random
heuristic because it exploits the bilevel model. Looking at the two lower bounds, we can note that the second one

5.1 Grid Scheduling by bilevel programming: a heuristic approach 117

λ
Tabu_Search Random_Heuristic Bound_1 Bound_2

avg_tot_cost CPU avg_tot_cost CPU avg_tot_cost avg_tot_cost
1 0.11 55.39 10.84 84.88 - 0.00
2 59.83 124.33 96.18 269.15 56.03 26.54
3 94.97 248.65 121.41 248.78 55.17 9.13
4 87.44 124.35 95.00 205.13 63.28 24.16
5 69.61 124.60 96.84 211.27 68.86 30.11

Table 5.9. Comparison for synthetic workloads with E[Bj] = 100

λ
Tabu_Search Random_Heuristic Bound_1 Bound_2

avg_tot_cost CPU avg_tot_cost CPU avg_tot_cost avg_tot_cost
1 0.77 91.42 38.07 73.12 - 0.00
2 109.32 133.43 110.30 286.89 70.18 0.00
3 147.69 249.49 148.89 286.10 92.66 10.19
4 127.26 187.18 145.53 201.37 104.29 32.27
5 82.58 171.57 114.22 114.89 - 0.00

Table 5.10. Comparison for synthetic workloads with E[Bj] = 150

is less tight because it is computed by solving a strongly relaxed version of the problem: in more than half of the
instances the average total cost is zero and the bound is not significant. On the other hand, the computation of
the first bound requires a very large amount of time and in 6 out of 15 instances it was not possible to compute a
solution within the time limit of 7200 seconds.

Comparing the value of the avg_tot_cost we can note that in the worst case the solution computed by the
tabu search heuristic provide an avg_tot_cost which is almost the double of that provided by the first lower
bound solution but in most cases the difference ranges from a minimum of about 1% to a maximum of about
55% with an average difference of about 27%.

The same comparison was realized on the instances with real workloads and listed in Tables 5.11-5.13.

inst
Tabu_Search Random_Heuristic Bound_1 Bound_2

avg_tot_cost CPU avg_tot_cost CPU avg_tot_cost avg_tot_cost
GWA_1 49.45 168.58 50.44 261.53 18.00 3.23
GWA_2 40.00 122.72 50.34 238.34 39.04 39.05
GWA_3 30.38 149.97 49.79 254.18 29.84 29.84
GWA_4 42.59 127.27 49.62 218.43 27.07 27.07
GWA_5 39.87 127.07 50.33 233.72 20.21 13.53

Table 5.11. Comparison for real workloads with E[Bj] = 50

Also in this case the tabu search algorithm clearly outperforms the random algorithm, both in term of solution

118 5. New Applications

inst
Tabu_Search Random_Heuristic Bound_1 Bound_2

avg_tot_cost CPU avg_tot_cost CPU avg_tot_cost avg_tot_cost
GWA_1 96.08 159.26 99.61 264.18 31.42 6.97
GWA_2 80.62 125.50 99.40 232.27 70.37 62.16
GWA_3 61.73 150.21 100.04 261.94 60.63 60.63
GWA_4 65.87 105.23 99.54 255.14 64.99 64.99
GWA_5 44.55 125.49 100.36 221.57 41.06 41.02

Table 5.12. Comparison for real workloads with E[Bj] = 100

inst
Tabu_Search Random_Heuristic Bound_1 Bound_2

avg_tot_cost CPU avg_tot_cost CPU avg_tot_cost avg_tot_cost
GWA_1 145.98 170.57 149.05 253.32 44.66 9.45
GWA_2 116.06 125.35 151.21 268.12 106.45 93.50
GWA_3 91.88 125.99 149.51 237.21 90.11 90.11
GWA_4 82.42 191.58 149.13 272.37 79.54 79.54
GWA_5 121.19 126.86 147.12 223.19 58.65 38.83

Table 5.13. Comparison for real workloads with E[Bj] = 150

quality and computational time. On the one hand, the difference in terms of average total costs is smaller, but on
the other hand the difference in terms of CPU times is more remarkable. Unlike the synthetic scenario, for every
instance both lower bounds can be computed within their time limit. Note that the difference between Bound_1
and Bound _2 is less notable than the previous scenario suggesting that the two relaxing procedures implemented
allow to find two valid and good lower bounds.

5.1.7 Conclusions

In the Grid scheduling problem considered in this section a set of independent tasks are submitted to an External
Scheduler (ES) who is in charge to individuate the most profitable computing site for their execution. The
allocation is driven by a cost function that takes into account both the tardiness cost of a task and the chance
to reject such a task in case no profitable site is found i.e., the tardiness cost of the task would exceed a given
maximum threshold. While the ES looks for executing the submitted tasks over the Grid minimizing the total cost
for rejecting or delaying tasks, the goal of the Local Scheduler (LS) of each site is maximizing computational
resource usage efficiency. The ES problem, together with that of each LS, form a hierarchical optimization
problem, where the decision of the ES constraints and is constrained by that of the LSs. In fact, the tardiness cost
values are dependent on the LSs’ decisions.

The problem has been modelled as a DBLP and reformulated as a single level mixed-integer problem
by introducing in the leader problem the KKT conditions of the followers problems. By testing the latter
reformulation with CPLEX, we found out that the solver was able to solve the reformulation at the optimum
within a reasonable computing time for the application only on instances with at most five tasks. This led us to
design a heuristic algorithm to cope with large size instances happening in practice preserving and exploiting the

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 119

bilevel nature of the model.
The algorithm works in two phases: the first phase initializes the algorithm by computing a particular linear

relaxation of the problem; the second phase works iteratively and uses a tabu search mechanism for finding a
bilevel–feasible solution. Computational results are presented and discussed. The algorithm was tested using
both synthetic workloads and real workloads and the results of both scenarios are consistent. The analysis of
the results show that the algorithm is able to compute good solutions compared to two lower bounds within a
reasonable computing time. This result is even more remarkable when real workloads are solved. Moreover, the
algorithm clearly outperforms in terms of solution quality a competing naive heuristic algorithm which does
not exploit the bilevel nature of the model. Future work may be focused on proper techniques to enhance the
performance of the tabu search heuristic modifying the mechanism of the local search and on a more efficient
and effective way to compute valid lower bounds in order to assess the quality of the solutions calculated by the
heuristic algorithm.

5.2 A branch and cut based algorithm for a bilevel capacitated facility
location problem

We address a particular capacitated facility location problem that is formulated as a discrete–continuous bilevel
linear problem. In the proposed model, the upper level decision maker, denoted as the leader, sets a subset of
facilities to open and the capacity of each facility; conversely, the lower level decision maker, call itdenoted as
the follower, once the facilities have been designed, is in charge of satisfying the demand of a given set of clients
beyond a certain threshold. The leader can foresee but can not control the follower’s behaviour. The resulting
formulation is a discrete–continuous bilevel problem. Although there exist in the literature exact methods for
this class of bilevel problems, they can not be used to solve real size problems. We propose a branch and cut
framework, in order to cope with the bilevel structure of the problem and the integrality of a subset of variables
under control of the leader. The algorithm is exact in theory, but for computational reason we introduce suitable
stopping criteria that make it a heuristic. A set of real benchmark instances available in the literature are used to
test the algorithm.

5.2.1 Introduction

Facility location is a well known problem and has been widely investigated in the literature. Given a set of
facilities with a fixed cost of activation and a set of demand sites to serve, the problem consists of setting the
facility activation and the assignment of each demand site to an open facility in order to minimize the sum of the
activation fixed costs and the variable assignment costs. This problem is also known as Uncapacitated Facility
Location Problem (UFLP) and is one of the most studied. Karp [85] demonstrated UFLP is a NP-hard problem,
while Krarup and Pruzan [90] showed the relation of UFLP to other combinatorial problems such as set-covering,
set-packing, set-partitioning, p-median and p-center problems. Some of the first solution methods were proposed
by Balinski and Wolfe [17], Efroymson and Ray [58], Khumawala [86], Cornuejols et al. [50], Erlenkotter [59].
A comprehensive survey on UFLP can be found in Cornuejols et al . [51].

A more realistic formulation of the problem considers a maximum capacity for each facility, i.e. once the
facilities are opened the assignment problem is not trivial. The latter is known as Capacitated Facility Location
Problem (CFLP) and it is much harder to tackle than the uncapacitated version. One of the first contribution on
CFLP was provided by Kuehn and Hamburger [91] who proposed a heuristic algorithm designed for a warehouse
location problem, and other solution methods were proposed, among the others, by Nauss [117], Akinc and

120 5. New Applications

Khumawala [5] and Geoffrion and Graves [70]. An updated reviews of literature on facility location problems,
in both the capacitated and uncapacitated version, is provided by Verter [144].

More recently a new branch of research is obtaining increasing attention as it aims at extending the classical
facility location models taking into account the effect of uncertainties on the decision making process. Removing
the hypothesis of deterministic parameters in the model, it is possible to define new solution strategies to cope
with uncertain events, such as demand variation, cost estimation errors, facilities disruption or system failure.
Stochastic optimization and robust optimization provide theoretical results necessary to solve these kind of
problems under uncertainty. When there are no information about the probabilistic distribution of uncertain
parameters, the most common approach used in the literature is to define particular robustness measures, such as
the min-max cost or the min-max regret. The latter are well known worst case optimization methods and there is
a wide literature on this kind of problems, see for instance Averbakh [16]. Snyder [138] presents an interesting
and comprehensive survey of the more recent literature on stochastic and robust facility location models along
with references to applications of facility location problems under uncertainty.

In the literature there are several examples of worst case analysis developed by means of bilevel program-
ming. Scaparra and Church [128] [129] propose a bilevel model for minimizing the effect of disruption and
interdiction of a set of facilities. In Arroyo and Galiana [10] the bilevel approach is used for the terroristic threat
problem. Aksen and Aras [8] develop a matheuristic for the facility location and interdiction problem formulated
as a static Stackelberg game and Kochetov et al. [88] propose a similar approach for the facility location problem
used to model the competition of two decision makers on the same market.

In this section we investigate a CFLP formulated as a discrete–continuous bilevel linear problem. The
proposed model originates from the stochastic facility location model proposed by Louveaux and Peters [101].
The authors utilize a scenario based approach to handle the uncertainty of demand and assignment profit and,
unlike classic uncapacitated facility location models, assume that the size of each facility can be determined by
the decision maker.

According to this framework, we propose a deterministic model but we assume the presence of two decision
makers with an explicit hierarchical relation, a leader and a follower. The leader (e.g. an Authority) locates
the facilities and defines their size, the follower (e.g. a private company) is in charge of satisfying the clients’
demand and aims at maximizing his profit. The key assumption of the model is that the follower is not obliged
to satisfy all the demands and the leader can not control, force or apply any sanction on him. The leader can
only open more facilities or install more capacity in order to make profitable for the follower to satisfy all the
demands beyond a given threshold fixed by the leader. Hence the two decision makers aim at different goals: the
leader pursues both an economical and a social objective, while the follower pursues only an economical one.
The difference of the objectives can be naturally represented by means of a bilevel model. In this section we
describe the mathematical model and propose a branch and cut based algorithm that is tested on a set of real
life benchmark instances. The rationale of the algorithm is the following: we solve the single level relaxation
of the model to compute a lower bound, then the upper level variables are set and the optimal solution of the
follower is computed. If this solution satisfies the leader’s constraint, i.e. each client is served beyond a certain
threshold, the latter is a feasible solution and provides an upper bound for the problem. Otherwise, given the
set of open facilities, we check if it possible to compute a feasible solution if the leader increases the installed
capacity. After this check, the solution is removed by means of a valid inequality and the algorithm iterates
computing a new solution of the single level relaxation. The algorithm is able to find the optimal solution of the
problem, in theory. Notwithstanding, we introduce suitable stopping criteria to limit the computational time and
obtain more meaningful results when real life instances are solved.

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 121

The main contribution of this application is to provide a novel approach for discrete location problems.
The framework we propose is typical of problems in which a player designs a system and a different player is
assigned to manage it. To our knowledge, similar applications of bilevel programming have not been presented
yet in the field of facility location problems.

5.2.2 Bilevel model formulation

The CFLP we address is formulated by means of bilevel programming. In the literature most of the real life
applications involving bilevel programming consider mathematical models with continuous variables. We
propose a DCBLP with mixed-integer upper level and continuous lower level variables. Both the objective
functions and the constraints are linear.

Given a set I of n clients and a set J of m facilities, the leader has to open a subset of facilities and define
their capacities with the aim of minimizing the total investment cost. Let fj be the fixed cost for opening a new
facility j and let gj be the cost for each unity of capacity installed in the facility j. We assume that the capacity
cost gj is equal for all the facilities, i.e. gj = g ∀j. Once the facilities have been designed and opened, the
follower is responsible for serving the clients. Let di be the demand for each client i, cij the shipment cost for
serving client i from facility j, and pi the price paid by client i for being served. If the follower assigns client i
to facility j he gains a unitary profit πij = pi − cij . The key assumption of the model is that the leader can not
control the follower and can not impose him to serve all clients, thus the follower has no operative constraints
and can manage the shipment service according to the maximization of his profit. Notwithstanding, in order
to obtain an equitable service, the leader has to guarantee that each client is served beyond a certain threshold
λ that is assumed to be the same for all clients. Let us consider, for instance, the problem of opening a set of
landfill plants: the leader is a public Authority that has to locate and design the landfill plants, but the waste
collection is managed by a private company. The Authority can not impose the company to serve all clients,
he can only properly design the system so that it is profitable for the company to collect a percentage of waste
beyond a certain threshold from each client.

The bilevel facility location problem BFLP is formulated in the following as a DCBLP.

(BFLP) min
x,z,y

∑
j∈J

fj xj +
∑
j∈J

g zj (5.52)

∑
j∈J

yij ≥ λ ∀i ∈ I (5.53)

xj ∈ {0, 1} ∀j ∈ J (5.54)

zj ≥ 0 ∀j ∈ J (5.55)

y ∈ argmax
y

∑
i∈I

∑
j∈J

di (pi − cij) yij (5.56)

∑
j∈J

yij ≤ 1 ∀i ∈ I (5.57)

∑
i∈I

di yij ≤ zj ∀j ∈ J (5.58)

yij ≤ xj ∀i ∈ I, ∀j ∈ J (5.59)

122 5. New Applications

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (5.60)

The leader’s variables are xj and zj : according to (5.54) and (5.55), xj is binary and is equal to 1 if the facility j
is open and to 0 otherwise, and zj is positive and represents the installed capacity of facility j. The follower’s
variable is yij and represents the percentage of demand of client i satisfied by facility j. The leader’s objective
function (5.52) is the minimization of fixed opening costs and variable capacity costs. Constraints (5.53), let us
call them social equality constraints, express the social goal of the leader and impose that the optimal solution of
the follower’s problem (5.56)-(5.60) is such that each client’s demand is satisfied beyond a certain threshold λ.
The follower’s objective function (5.56) is the maximization of the profit coming from the assignment of clients
to facilities. Constraints (5.57) assure that client’s demand is not exceeded, constraints (5.58) and (5.59) forbid
the follower to assign a client to a facility if the facility is close or if there is no installed capacity.

From the bilevel perspective, yij is required to be a rational solution. If a solution yij is both rational and
satisfies the leader’s constraints (5.53), it is bilevel-feasible. Constraints (5.53), (5.58) and (5.59) show how the
two decision makers affect each other: given a set of open facilities, i.e. after setting xj and zj , the follower
can only use this set of facilities and their capacities for the assignment of demand, but if the follower does not
provide an equitable solution, i.e. constraints (5.53) are violated, the leader is obliged to modify his solution.

A general and credible assumption we made is that there is a form of semi-cooperation between the two
decision makers, thus the optimistic approach is adopted. It meas that if the follower has multiple optimal
solutions and at least one satisfies the social equality constraint, the follower chooses the latter according to the
leader’s interest. Note that this assumption does not imply that the leader can control the follower in general.

In the following we define other two formulations that will be used in the algorithm described in the next
section. The single level relaxation SLR of BFLP is obtained by dropping the follower’s objective function
(5.56) as follows.

(SLR) min
x,z,y

∑
j∈J

fj xj +
∑
j∈J

g zj (5.61)

∑
j∈J

yij ≥ λ ∀i ∈ I (5.62)

xj ∈ {0, 1} ∀j ∈ J (5.63)

zj ≥ 0 ∀j ∈ J (5.64)∑
j∈J

yij ≤ 1 ∀i ∈ I (5.65)

∑
i∈I

di yij ≤ zj ∀j ∈ J (5.66)

yij ≤ xj ∀i ∈ I, ∀j ∈ J (5.67)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (5.68)

Recall that the optimal solution of SLR provides a valid lower bound for BFLP .
Finally we define the bilevel problem obtained by the original BFLP given a fixed set of open facilities, i.e.

with xj = x̄j . Let us call this problem, that is parameterized by x̄j , slave problem SV P (x̄j).

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 123

(SV P (x̄j)) min
z,y

∑
j∈J

g zj (5.69)

∑
j∈J

yij ≥ λ ∀i ∈ I (5.70)

zj ≥ 0 ∀j ∈ J (5.71)

y ∈ argmax
y

∑
i∈I

∑
j∈J

di (pi − cij) yij (5.72)

∑
j∈J

yij ≤ 1 ∀i ∈ I (5.73)

∑
i∈I

di yij ≤ zj ∀j ∈ J (5.74)

yij ≤ x̄j ∀i ∈ I, ∀j ∈ J (5.75)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (5.76)

In SV P (x̄j) the leader can only modify the capacity of the open facilities. Note that, despite there is not an
explicit relation between x̄j and zj , it is not convenient for the leader to increase zj when x̄j = 0 because this
does not affect the follower best response due to constraints (5.75).

In the next section we investigate how the mathematical models described are used to design a heuristic
algorithm for solving BFLP .

5.2.3 General framework of the branch and cut based heuristic

We have already seen that one of the most common method used to solve bilevel problem with a linear follower
problem, is to replace the latter by its KKT conditions. Despite its easy implementation, this approach can not
be efficiently used to solve large size instances. Moreover, in BFLP a subset of variables under control of
the leader is binary and this substantially increases the computational burden required to solve the single level
reformulation.

To cope with this criticality, we propose a heuristic approach that is designed as follows.

Step 0 Set lower bound lb = 0, incumbent solution best equal to a sufficiently large number, max_iter and gap.

Step 1 Solve SLR, if it is infeasible STOP, otherwise update lb. If lb ≥ best STOP (the incumbent is optimal),
else go to Step 2.

Step 2 (Bilevel-feasibility check) Solve the follower problem of BFLP given the solution (x̄j ,z̄j) computed at
Step 1. Let y∗ij be the optimal solution of the follower: if

∑
j∈J y

∗
ij ≥ λ ∀i ∈ I , update best then STOP

(the rational solution is also bilevel-feasible), else go to Step 3.

Step 3 (Slave problem resolution) Solve the slave model SV P (x̄j) given the vector x̄j computed at Step 1. Let
(x̄j , ẑj , ŷij) be the optimal solution and let optsvp =

∑
j∈J(g ẑj + fj x̄j). If there is some ẑj = 0 update

optsvp = optsvp −
∑
j|ẑj=0 fj . If optsvp < best then update best and go to Step 3.1, else go to Step 3.2.

Step 3.1 If best−lblb ≤ gap then STOP.

124 5. New Applications

Step 3.2 If max_iter iterations have been computed then STOP, else go to Step 4.

Step 4 (Cut generation) Given the vector x̄j computed at Step 1, let S1 = {j | x̄j = 1} and S0 = {j | x̄j = 0},
apply the following cut to SLR:

∑
j∈S1 xj +

∑
j∈S0(1 − xj) ≤ |J | − 1. If there is some ẑj =

0 update S1 = S1 \ {j} and S0 = S0 ∪ {j} ∀j such that ẑj = 0 and apply the additional cut∑
j∈S1 xj +

∑
j∈S0(1− xj) ≤ |J | − 1. Go to Step 1.

In Figure 5.3 a flow chart of the algorithm is depicted.

Figure 5.3. A flow chart of the branch and cut algorithm

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 125

The algorithm starts solving SLR to compute a lower bound, let us call the solution (x̄j , z̄j , ȳij) (Step 1). Note
that this lower bound may be greater than the incumbent solution, since every time a feasible solution of BFLP
is computed it is discarded by a cutting procedure (Step 4). Thus, if lb ≥ best, the optimal solution has already
been found and cut off, hence the algorithm can halt. Otherwise, we set the upper level variables at (x̄j , z̄j)
and solve the follower problem to compute the follower’s reaction; let y∗ij be the follower’s optimal solution
(Step 2). If y∗ij satisfies the social equality constraints (5.53), (x̄j , z̄j , y∗ij) is bilevel-feasible and provides an
upper bound for BFLP (Step 2). In this case, as the follower’s variables yij do not affect the leader’s objective
function, the value of the upper bound computed at Step 1 and the value of the lower bound computed at Step 2
coincide, hence (x̄j , z̄j , y∗ij) is the optimal solution and the algorithm halts. Otherwise, y∗ij is rational, but not
bilevel-feasible.

It may be possible for the leader to increase the capacity of the open facilities, compute a new solution
(x̄j , ẑj , ŷij) and check for bilevel-feasibility: this coincides with solving slave problem SV P (x̄j) (Step 3). The
solution computed solving SV P (x̄j) is the best for the leader given a set of open facilities. SV P (x̄j) is a bilevel
model like BLFP , but unlike the latter, binary variables xj are fixed so the model is a BLP. Notwithstanding, its
resolution still remains hard from a computational point of view. In order to circumvent this criticality, in the
following section we investigate the slave problem more in detail and propose an efficient branch and bound
method properly designed. After solving SV P (x̄j) there may exist open facilities in which the installed capacity
is zero; the vector x̄j is updated to x̂j just closing the unused facilities, the opening costs for these facilities are
discounted and a new feasible solution is computed.

Finally any solution with xj = x̄j (and in case xj = x̂j) is discarded and the algorithm iterates from scratch.
The cut used is

∑
j∈S1

xj +
∑
j∈S0

(1− xj) ≤ |J | − 1

where S1 = {j | x̄j = 1} and S0 = {j | x̄j = 0}. The algorithm iterates until at least one of the following
conditions occur: (i) SLR is infeasible, (ii) the optimal solution of SLR is worse than the incumbent, (iii)
the optimality gap is within a certain threshold, (iv) a maximum number of iterations is reached. If stopping
criterion (i) or (ii) occur, it means that the cuts added to SLR make it infeasible or cut off the optimal solution:
in both cases the optimal solution has already been computed in the previous iterations and the incumbent is the
optimum. Note that, without stopping criterion (iv) and setting gap = 0, the algorithm computes the optimal
solution of BFLP . Indeed, for each possible subset S1 and S0, a bilevel-feasible solution is computed and
after that it is discarded. Hence, in the worst case, all the possible bilevel-feasible solutions are computed and
the optimum is found. For the sake of algorithm application, we introduced a positive optimality gap and a
maximum number of iterations for limiting the computational time.

Let us consider a network G = (I, J), with a node for each client i and for each facility j, an arc (i, j) of
cost cij , that represents the assignment cost for serving client i from facility j and a positive weight pi for each
node i, that represents the price paid by client i for being served. Let us assume a client, say client i∗, is assigned
to an open facility j for which profit πi∗j = (pi∗ − ci∗j) < 0 and that all the other facilities k for which profit
πi∗k > 0 are closed. It follows that the social equality constraints

∑
j∈J yi∗j ≥ λ are never satisfied, because the

follower gains a negative profit from assigning client i∗ to facility j. According to this optimality requirement
for solution yij , we can modify the SLR by adding the following constraints

yij = 0 ∀i ∈ I, ∀j ∈ J such that (pi − cij) < 0 (5.77)

Note that arcs (i, j) with zero profit (i.e. πij = 0) are not excluded for the semi-cooperative assumption:

126 5. New Applications

if an optimal follower’s solution does not satisfy the social equality constraints and it is possible to restore
bilevel-feasibility using zero profit arcs, the follower objective function does not change, but the new solution is
bilevel-feasible and it is preferred by the follower.

It follows that if SLR admits a feasible solution (x̄j , z̄ij), all the arcs from the open facilities x̄j = 1 must
have non negative profit.

Proposition 16. If SLR is solved adding constraint (5.77) and the solution at Step 2 is not bilevel-feasible, it
is possible to modify the installed capacity zj , so that the optimal follower’s solution also satisfies the social
equality constraints.

Proof: The solution computed solving SLR with constraint (5.77) is such that for each open facility j and each
client i there exists at least one arc (i, j) with non negative profit. As the objective of the follower is to maximize
the profit, given a subset of open facilities, the higher is the installed capacity, the more demand will be served
by the follower. In a trivial case, it is possible to install in each open facility a capacity equal to the sum of all the
client’s demand. 2

Consider the example in Figure 5.4 in which λ = 0.5, three facilities are open and the installed capacity is 2.

Figure 5.4. An example

Although the installed capacity is adequate to cover at least the 50% of each client’s demand, the follower gains
the maximum profit of 30 just serving client 2. A trivial possibility for the leader is to increase the capacity to
zj =

∑
i di, i.e. za = zb = zc = 10 with a capacity cost of 90. Otherwise, a better solution can be achieved

computing the minimum amount of installed capacity zj such that the follower’s optimal solution satisfies all the
social equality constraints. The latter is exactly SV P (xj) whose optimal solution is za = 1, zb = 6 and zc = 1
with a capacity cost of 24. Note that, regardless the capacity cost, in any bilevel-feasible solution all the demand
of client 2 has to be satisfied since π2j ≥ π1j and π2j ≥ π3j for j = a, b, c.

In the next section we present a branch and cut algorithm to efficiently solve SV P (xj). This algorithm,
denoted as Slave Algorithm, is used like a subroutine in the general branch and cut algorithm we propose.

5.2.4 Slave Algorithm for problem SV P (xj)

The objective of solving SV P (xj) is to determine the capacity to be installed such that a ration solution is also
bilevel-feasible. In this section we present a branch and bound algorithm to solve SV P (xj). Every node of

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 127

the branching tree is a possible assignment of a client i to a facility j, denoted with node (i − j). The main
rationale of the algorithm is to consider all the possible assignments and exploit some properties that allow to
easily compute a lower bound for each branching node. Once the bound is computed, the node can be pruned or
other subproblems can be generated according to the classical fathoming rules. Since in the worst case every
client can be assigned to every facility, the maximum number of nodes is

∑n
i=0 m

i = mn+1−1
m−1 .

In the following we describe in detail how the algorithm works and apply it on a small example.

Priority list L

For each possible assignment i− j such that πij ≥ 0, we define a priority list Lij which is a row vector of n
elements (the number of clients). Lij is computed as follows:

1. given facility j, consider all the other clients k

2. if πij < πkj set the kth-element of Lij equal to 1 and 0 otherwise.

Furthermore, we define δij as the number of non-zero elements of Lij . Given a possible assignment (i − j),
in Lij there is 1 for every client that "dominates" client i in terms of profit from the follower’s perspective. It
implies that if a capacity is installed in j to serve i this capacity is used by the follower to serve all the other
dominating clients.

Let us recall the example in Figure 5.4. The priority list for each client is:

Lij 1 2 3 δij

L1a 0 1 0 1
L1b 0 1 1 2
L2a 0 0 0 0
L2b 0 0 0 0
L2c 0 0 0 0
L3b 0 1 0 1
L3c 0 1 0 1

From the priority list it is clear, for instance, that client 1 can not be served by facility b, unless clients 2 and 3
are fully satisfied. If the demand of a client i is totally covered, we define i a filled client, otherwise it is unfilled.

Remark 1. If there exists an assignment (i−j) such that δij = 0 for each client, the optimal solution of SVP(xj)
is trivial and every client is assigned to the facility such that it is not "dominated" by other clients. The minimum
capacity to be installed is

∑
j zj = λ ·

∑
i di.

Note that the assumption gj = g ∀j is fundamental to compute the optimal solution through the priority list:
indeed, it is not relevant in which facility the capacity is installed, but the optimal solution depends only on the
total amount.

Lower bound computation

Given a node (i− j) of the branch and bound tree, it represents a partial assignment of clients. It is possible to
compute a lower bound for node (i− j) updating its associated priority list as follows:

128 5. New Applications

L′ij = {Lij ∪ Lkv} ∀ node (k − v) predecessor of node (i− j)

We denote the qth-element of L′ij with L′ij [q]. The lower bound at node (i− j) is

LBij =
∑

q∈I | L′
ij

[q]=1

dq +
∑

q∈I | L′
ij

[q]=0

λ dq

If L′ij [q] = 1, client q is filled and the whole demand dq is considered, otherwise we consider only the percentage
λ dq .

We prove the following results.

Theorem 18. Given a node (i− j) and the associated partial assignment, the capacity to be installed in order
to guarantee bilevel-feasibility is greater than or equal to LBij .

Proof: The lower boundLBij is computed taking into account the priority list of node (i−j) and its predecessors.
We show that it is not possible to install a capacity smaller than LBij unless the assignment changes or does
not satisfy the social equality constraints. If client i is unfilled and served by j, we can not reduce zj otherwise
the demand satisfied is beyond threshold λ or the missing demand is covered by another facility, that is the
assignment changes. If client i is filled and we reduce zj , the solution is still feasible (the covered demand is
greater than λ di), but from the priority list it occurs that there exists a client k assigned to a facility v such that
πiv > πkv , hence the follower gains a higher profit changing the assignment. Hence the proof. 2

Remark 2. There always exists a trivial feasible solution in which all clients but one are filled. Let k be the
client with the minimum demand. All the solutions of SVP(xj) with

∑
j∈J zj >

∑
i∈I,i6=k di + λ dk are not

rational. Hence, if a node (i− j) has a priority list Lij with all 1, the node can be pruned.

The clients are sorted for the assignment according to the following branching rule: we choose the client with the
smallest number of non-zero elements in its priority list and we branch the node with the smallest lower bound.
Recalling the priority list reported above, clients are sorted and selected in the following order: 2− 3− 1.

Upper bound computation: rationality test

Unlike a classical branch and bound algorithm, once all clients have been assigned, the lower bound computed at
a leaf of the branching tree does not necessarily provide a valid upper bound. In this subsection we show how to
compute an upper bound once all clients have been assigned.

Let us consider the example in Figure 5.4. In Figure 5.5 a partial branch and bound tree is represented until
the first leaf is generated.
Starting from the root node, whose lower bound is 5, client 2 is selected and nodes (2− a), (2− b) and (2− c)
are generated. The algorithm continues branching on node (2− a). Client 3 is selected and other 2 nodes are
generated and so on. Finally at node (1− a) all clients are assigned and the path from the root to the leaf (1− a)
may represent a follower’s rational solution. L1a = {0, 1, 0}, client 2 is filled, while 1 and 3 are unfilled. Clients
1 and 2 are assigned to a and 3 is assigned to b, za = 7, zb = 1 and zc = 0: the total installed capacity is 8, the
total cost is 24 and the profit gained by the follower is 22. Actually, if we solve the follower problem, given the
same installed capacity, the maximum profit is 27 and the rational solution is y1a = 0.5, y2a = 0.83, y2b = 0.17,
that is 1 is unfilled and assigned to a, 2 is filled and assigned to both a and b and 3 is not assigned at all. Thus,

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 129

Figure 5.5. Partial branch and bound tree

the solution corresponding to path (2− a), (3− b) and (1− a) does not provide a valid upper bound as it is not
a rational solution.

This drawback occurs because SV P (xj) is a bilevel problem and the solution computed by the branch and
bound does not completely take into account the reaction of the follower. The priority list tries to consider the
follower’s best response, but it may not be enough.

In order to assess if a solution is rational it is possible to easily perform a rationality test. We solve a shortest
path problem on an auxiliary network built as follows:

1. consider only assignments i− j such that πij ≥ 0

2. introduce two dummy nodes, a source s and a sink t

3. introduce a directed arc (s, i) of cost 0 from s to every client i

4. introduce a directed arc (i, t) of cost 0 from every unfilled client i to sink t

5. if a client i is assigned to a facility j, introduce a directed arc (i, j) of cost −πij

6. for every unfilled client i introduce a directed arc (j, i) of cost πij , ∀j such that zj > 0

7. for every filled client i introduce a directed arc (j, i) of cost πij , ∀j such that zj > 0 and i is not assigned
to j.

See Figure 5.6 for a representation of the auxiliary network associated to solution (2− a), (3− b) and (1− a).
Let us give a flavour of the rationale used to build the network. A s − t path represents a redefinition of the
assignment inside the network. For the sake of clearness, let us consider for instance the path s− 2− a− 1− t
of cost −1. If one unit of demand used to serve client 2 is differently assigned to serve client 1, this produces a
marginal profit of −1, thus the follower has not interest in changing the assignment. Otherwise, if we consider
the path s− 3− b− 2− a− 1− t, the cost is 4, it means that changing the assignment this provides a marginal
profit of 4. Indeed, the follower never chooses the assignment (2− a), (3− b) and (1− a) because, with the
same amount of installed capacity, there exists another solution which provides a largest profit, thus the solution
is not rational.

130 5. New Applications

Figure 5.6. Auxiliary network associated to solution (2− a), (3− b) and (1− a)

Given an assignment, the rules used to build the network take into account all the possible changes in the
assignment. If client i is unfilled and it is served by facility j, the latter can increase or reduce the served demand,
hence there is an arc (i, j) and an arc (j, i) of cost −πij and πij , respectively (rules 5 and 6). Of course client i
can be also assigned to another facility j with zj > 0 yielding a profit increase of πij (rule 6). Otherwise, if
client i is filled and it is served by facility j, the latter can only reduce the served demand, thus there is only an
arc (j, i) (rule 7). Any extra demand can be served from another facility v only if the demand already served by
j is reduced of an equivalent amount toward another client of the network. For this reason there are not arcs (i, t)
(rule 4) from filled clients to the sink node.

Theorem 19. Given a solution corresponding to a leaf in the branching tree, the solution is rational if and only
if the longest s− t path in the associated auxiliary network has length equal to 0.

Proof: (Necessary) Let us assume, by contradiction, that there exists one s− t path with a positive length in
the auxiliary network. It means that, once the capacity is installed, the follower has the possibility to change
the assignment and earn an additional profit. Hence, the assignment does not correspond to the best follower’s
response.
(Sufficient) If there are no paths of positive length, every changing in the assignment does not change the profit
or yields a profit reduction for the follower. Hence he has not interest in modifying the solution. 2

A solution which satisfies the rationality test is rational and also bilevel-feasible as it is build to satisfy the social
equality constraints. Note that, if the longest path in the auxiliary network is equal to 0, the follower has multiple
optimal assignments, but, for the semi-cooperative assumption, he chooses the rational solution provided by the
branch and bound algorithm as it satisfies the social equality constraints.

Finally, the algorithm does not consider the assignment of a client to two or more facilities according to the
following result.

Theorem 20. In the described branch and bound scheme, given a rational solution with multiple assignments of
a client to facilities, it is always possible to compute a rational solution with single assignment for each client.

Proof: Let us assume to assign a client i to facilities j and v and let us perform a rationality test. The capacity
used to serve client i is installed on facilities j and v. We can move all the capacity used to serve i from j to v, if

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 131

πij ≤ πiv, and from v to j, otherwise, obtaining a single assignment for client i. The auxiliary network of this
new solution has less arcs and the same installed capacity. Hence, it is possible to compute a single assignment
solution with the same capacity whose auxiliary network has a smaller number of arcs, i.e. a smaller number of
s− t paths. If the multiple assignment solution is rational, also the corresponding single assignment solution is
rational, while the contrary is not true. Hence the proof. 2

Summing up all the theoretical results, the following corollary holds.

Corollary 3. The Slave Algorithm solves to optimality problem SVP(xj).

Proof: The algorithm is a branch and bound which considers all the possible assignments of clients to facilities.
For Theorems 18, 19 and 20, the method is exact. 2

Computational complexity of the rationality test

The rationality test can be easily performed solving a shortest path problem on the auxiliary network in which the
arc costs are changed of sign. All the operations to build the network have a complexity of O(n): it is sufficient
to control whether a client is filled or not and properly add arcs according to rules 1-7. The Bellman-Ford
algorithm for shortest s− t path is used, see Ahuja et al. [1]; this algorithm is able to compute the shortest path
with arbitrary arc costs and detects negative cycles. The algorithm has a computational complexity O(|N ||E|),
where |N | is the number of nodes and |E| is the number of arcs. In the worst case in which all the nodes are
unfilled, |N | = n+m+ 2 and then we have:

– two arcs between a client and its assigned facility = 2n

– an arc between each client and all the other facilities = n(m− 1)

– arcs from s and to t = 2n.

Thus |E| = 4n+ n(m− 1). The complexity of the algorithm is O(n2m+ nm2). If n = m, as in almost all the
benchmark problems present in the literature, it becomes O(n3). Alternatively, in order to verify the rationality
of the solution, it may be possible to solve the follower problem of SV P (xj) with a commercial solver, as it is a
linear programming problem, and then check if the social equality constraints are satisfied. It is valuable to note
that in the worst case, if the follower problem admits multiple rational solutions, some of them violating the
social equality constraints and some other not, it is necessary to solve the linear programming problem twice,
unlike what happen solving the shortest path problem. Computational tests show that the overall performance of
the shortest path approach is better than solving the follower problem by means of a commercial solver, mainly
because there is a high number of multiple rational solutions in real life benchmark problems. Finally, it is useful
to observe that the rationality test is applied given a subset of open facilities. Since the objective of the leader is
to minimize the total cost, especially in the first iterations of the branch and cut algorithm, the subset of open
facilities is very small. It follows that m << n and the complexity can be approximated as O(n2).

An example

Let us recall example in Figure 5.4 in which all the facilities are open. As above noted, the rationality test of
assignment (2− a), (3− b) and (1− a) shows that the solution is not rational. The complete branch and bound
tree is reported in Figure 5.7.

132 5. New Applications

Figure 5.7. Complete branch and bound tree of the Slave Algorithm

The first rational assignment is (2− b), (3− b) and (1− a) which corresponds to solution za = 1, zb = 7
and zc = 0 of cost 24. All the other nodes with LBij ≥ 8 are pruned and the algorithm terminates with a
bilevel-feasible assignment.

The solution of BFLP is: xa = xb = xc = 1, za = 1 zb = 7 zc = 0 and y1a = y3b = 0.5 y2b = 1. The
cut introduced at the end of this iteration is x1 + x2 + x3 ≤ 2. Note that facility c is open but is not used, thus
another bilevel-feasible solution is obtained by setting xc = 0 and another cut can be added to BFLP , namely
x1 + x2 − x3 ≤ 1.

5.2.5 Computational results

In this section we describe the computational results of the proposed branch and cut algorithm. These results are
obtained by solving a set of benchmark test problems existing in the literature.

Our implementation environment consists of a PC Pentium Core 2 Duo with a 2GHz processor and 1GB
RAM. The C programming is used to code both the branch and cut algorithm and the subroutine Slave Algorithm,
the AMPL language and the solver CPLEX 12.3 are used to solve SLR. The benchmark instances used for the
computational analysis are:

– 24 facilities and 50 clients, proposed by Kuehn and Hamburger [91], called KH_24

– 55 facilities and 55 clients, proposed by Swain [141], called S_55

– 49 facilities and 49 clients, proposed by Daskin [53], called D_49

– 88 facilities and 88 clients, proposed by Daskin [53], called D_88

– 150 facilities and 150 clients, proposed by Daskin [53], called D_150.

Test problems available in the literature were not completely suitable for our model and we added the price pi
paid by each client for the service and the capacity cost g that we assumed identical for all the facilities. For
each test problem we created two different scenario: S′ in which pi = 1

nm

∑
i∈I

∑
j ∈ Jcij , and S′′ in which

pi = maxi∈I, j∈J cij . In S′ the price is set equal to the average value of costs cij , while in S′′ the price paid by
each client is greater than or equal to the assignment costs, i.e. each assignment (i− j) yields a non negative

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 133

profit. We changed the value of parameter λ in the range {1, 0.75, 0.5, 0.25}: the higher is the value of λ, the
tighter are the social equality constraints, i.e. the leader’s requirements. In other words, by setting λ it is possible
to simulate different levels of interaction between the decision makers: for λ = 1 the leader requires that all
client’s demand is satisfied, while for λ = 0 the leader can not influence the follower’s behaviour at all, thus the
bilevel model is meaningless and this case is not taken into account.

Finally, for the stopping criteria we fixed a maximum number of iterations max_iter = 500 and an
optimality gap of 25%.

In Tables 5.14-5.17 all the results are listed. Each benchmark problem is solved in both scenario S′ and
S′′ and the tables list the value of parameter λ, the value lead of the solution computed by the branch and cut
algorithm in Ke, the number of open facilities, the number of iterations, a lower bound lb in Ke, the CPU time
in seconds and the optimality gap between lead and lb.

scenario instance λ lead(Ke) open iter lb(Ke) CPU gap

S′

KH_24 1 889.20 2 1 889.20 1.48 0.00%
KH_24 0.75 835.00 4 434 685.52 949.73 21.81%
KH_24 0.5 765.98 4 500 467.01 1121.97 64.02%
KH_24 0.25 860.87 4 500 248.51 1112.75 246.42%

S′′

KH_24 1 881.52 1 1 881.52 1.38 0.00%
KH_24 0.75 826.83 2 240 670.52 395.41 23.31%
KH_24 0.5 764.65 2 500 459.51 956.22 66.40%
KH_24 0.25 702.46 2 500 241.01 969.82 191.47%

Table 5.14. Results for Kuehn and Hamburger problem

scenario instance λ lead(Ke) open iter lb(Ke) CPU gap

S′

S_55 1 2317.50 3 1 2317.50 3.46 0.00%
S_55 0.75 2226.25 4 500 1739.88 1832.47 27.95%
S_55 0.5 2167.75 4 500 1161.25 1862.46 86.67%
S_55 0.25 2074.38 4 500 582.63 1824.03 256.04%

S′′

S_55 1 2315.50 1 1 2315.50 2.53 0.00%
S_55 0.75 2285.75 2 500 1737.88 1411.05 31.53%
S_55 0.5 2255.00 2 500 1159.25 1377.55 94.52%
S_55 0.25 2224.25 2 500 580.63 1312.84 283.08 %

Table 5.15. Results for Swain problem

The first remarkable result is that comparing scenario S′ and S′′ the number of open facilities is always larger in
the first scenario. According to the definition of p, this shows that the model is sensitive to the price value and
changes as expected: for small value of p the follower does not consider profitable to serve clients very far from
the open facilities (i.e. a high assignment cost), thus the leader is obliged to open more facilities for satisfying
the equality requirements. A similar result does not occur for the CPU time: indeed, for problems K_24 and

134 5. New Applications

scenario instance λ lead(Ke) open iter lb(Ke) CPU gap

S′

D_49 1 752.92 2 1 752.92 1.65 0.00%
D_49 0.75 729.59 3 500 575.24 1635.54 26.83%
D_49 0.5 701.80 3 500 389.94 1669.58 79.98%
D_49 0.25 674.01 3 500 204.63 1703.43 229.37%

S′′

D_49 1 745.05 1 1 745.05 1.67 0.00%
D_49 0.75 731.15 1 500 569.75 1908.85 28.33%
D_49 0.5 717.24 1 500 384.45 1906.96 86.57%
D_49 0.25 703.34 1 500 199.12 1916.7 253.22%

Table 5.16. Results for Daskin problem with 49 facilities

scenario instance λ lead(Ke) open iter lb(Ke) CPU gap

S′

D_88 1 135.67 2 1 135.67 7.02 0.00%
D_88 0.75 134.09 3 500 102.66 4582.82 30.61%
D_88 0.5 131.91 3 500 69.02 4573.44 91.13%
D_88 0.25 129.72 3 500 35.37 4593.34 266.79%

S′′

D_88 1 134.85 1 1 134.85 5.90 0.00%
D_88 0.75 133.67 1 500 68.41 6164.27 95.40%
D_88 0.5 132.21 1 500 68.41 6266.23 93.25%
D_88 0.25 130.74 1 500 34.76 5913.91 276.11%

Table 5.17. Results for Daskin problem with 88 facilities

scenario instance λ lead(Ke) open iter lb(Ke) CPU gap

S′

D_150 1 176.72 2 1 176.72 303.09 0.00%
D_150 0.75 174.70 2 500 133.04 10410.55 31.31%
D_150 0.5 172.67 2 500 89.36 10139.75 93.23%
D_150 0.25 170.65 2 500 45.68 9114.42 273.57%

S′′

D_150 1 175.72 1 1 175.72 400.14 0.00%
D_150 0.75 174.80 1 500 132.04 16007.43 32.39%
D_150 0.5 173.16 1 500 88.36 18193.70 95.97%
D_150 0.25 171.87 1 500 44.68 16826.92 284.67%

Table 5.18. Results for Daskin problem with 150 facilities

S_55 the computational time required in S′ is larger than in S′′, while for Daskin problems we can note the
opposite result. Notwithstanding, the optimality gap obtained in S′ is better than in S′′ for all instances but one
(K_24 with λ = 0.25).

Looking at parameter λ, it is important to note that it plays a crucial role in the model, as above mentioned.
For λ = 1 the problem BFLP is solved in one iteration and the optimal solution is found in a CPU time that is

5.2 A branch and cut based algorithm for a bilevel capacitated facility location problem 135

considerably smaller than the other cases: two orders of magnitude smaller for K_24 and S_55, three orders for
D_49 and D_88 and one order for D_150. With λ = 1 the follower’s feasible set is significantly reduced as he is
obliged to satisfy all the demands. For this reason, SLR provides the optimal solution of the problem.

Reducing the value of λ the quality of the solution dramatically worsen while the general performance of the
algorithm is almost steady. Although the CPU time is not remarkably different when λ changes from 0.75 to
0.25, the optimality gap always increases, except D_88 in scenario S′′. Looking at the value of the solution and
at the number of open facilities we can note a similar behaviour of the CPU time. The main reason is that the
lower bound computed solving SLR is not sufficiently tight especially for small values of λ. Computing a lower
bound of poor quality does not allow to halt the algorithm before the maximum number of iterations is reached:
indeed, in all but two instances, max_iter iterations are performed when λ is not equal to 1. This suggests that
the optimality gap may be high due to a weak lower bound rather than a bilevel-feasible solution far from the
optimum. Recall that the lower bound of BFLP is computed by solving SLR in which the follower’s objective
function is dropped. Unfortunately, this procedure does not provide a good relaxation on benchmark instances
used and its quality strictly depends on the value of parameter λ. Future works may be directed to define new
valid relaxations of BFLP in order to compute a tighter lower bound.

5.2.6 Conclusions

In this section we addressed a CFLP that was formulated as a discrete–continuous bilevel linear programming
problem. The leader controls the investments for the facilities, i.e. he decides which facilities open and their
capacities, while the follower is in charged of the assignment of clients to facilities. The main assumption of the
model is that the leader has to make his decision now and, once the facilities are open, he can not control the
follower nor oblige him to serve all clients. For this reason, the leader pursues both an economical objective, i.e.
the minimization of the investment cost, and a social equality objective, i.e. he wants every client’s demand to
be satisfied beyond a certain threshold λ. On the other hand, the follower assigns clients to facilities only with
the objective of maximizing his profit. Given a set of open facilities and capacities, the leader can foresee the
optimal solution of the follower. Thus if the latter does not satisfy the equality requirements, the leader must
increase the capacities or the number of facilities.

This model shows a clear hierarchical structure in which the two decision makers affect each other and bilevel
programming is particularly suitable for this kind of problems. To our knowledge in the literature there are not
similar applications of bilevel programming to CFLP. Our model is a DCBLP in which there are mixed-integer
variables under control of the leader and continuous variables under control of the follower.

We proposed a branch and cut based algorithm that works according to the following rationale. A lower
bound is computed solving the single level relaxation of the problem and it is checked its bilevel-feasibility.
If the solution is not bilevel-feasible, it is possible to increase the capacity of the open facilities and compute
a new bilevel-feasible solution. For computing the minimum amount of capacity that has to be increased to
restore bilevel-feasibility, we solve a slave bilevel problem by means of a subroutine. This subroutine, that is
embedded in the algorithm, is a branch and bound approach that considers all the possible assignments of clients
to pen facilities and always provides a bilevel-feasible solution. After that, a cut is introduced to discard this
solution and the algorithm iterates from scratch. The algorithm is able to find the optimal solution in theory,
notwithstanding we introduced a maximum number of iterations and an optimality gap in order to cope with
large size instances.

The algorithm was tested on a set of benchmark problems present in the literature. Computational results
show that parameter λ plays a key role for the performance of the algorithm. From a mathematical standpoint λ

136 5. New Applications

affects the relation between the two decision makers and represents the authority of the leader: the higher is λ, the
tighter are the leader’s requirements. For λ = 1 the single level relaxation provides the optimal solution, while
for decreasing values the optimality gap and the CPU time dramatically increase. This behaviour stems from the
poor quality of the lower bound provided by the single level relaxation. For this reason the algorithm reaches the
maximum number of iterations in almost all the instances solved and the quality of the solution found is not
significant. Future research may be addressed to compute tighter lower bounds and deeper valid inequalities for
this bilevel facility location problem in order to speed up the resolution and have a more significant assessment
of the solution’s quality provided by the algorithm.

137

Chapter 6

Conclusion

In this dissertation we focused our attention on bilevel programming and in particular on the subclass of Bilevel
Linear Problems (BLPs) with a subset or all the variables required to be integer. Bilevel programming represents
a relatively modern area of research: although the first example of bilevel linear problems are not vey recent,
in the last two decades these probems have received an increasing interest from the scientific community for
several reasons. Bilevel problems, even in the simplest linear version, are very challenging problems with
particular mathematical properties. Despite their inner computational complexity, they represent very powerful
mathematical programming approaches and allow to model real life problems in a novel and more realistic way
compared to traditional single level models.

The main characteristic of bilevel problems is the presence of two decision makers hierarchically related
within the same mathematical program. The two decision makers, denoted as leader and follower, optimize their
own objective functions affecting each other. Once the leader makes a choice, the follower reacts according to
his objective function. Hence the leader has to take the follower’s best reaction into account in order to minimize
or maximize his objectives function. From a mathematical point of view, a bilevel problem is comprised of two
nestled problems in which the optimal solution of the inner problem (follower problem) is a feasible solution for
the outer problem (leader problem). BLPs are closely related to other well known problems, such as MPECs,
Stackelberg games, Stochastic Programming Problems or Multiobjective Programming Problems. For this
reason, there are many different directions of research and investigation and this is one of the most interesting and
promising feature of this class of problems. In this dissertation we focused on integer BLPs and we studied them
trying to exploit their geometrical properties and their similarity to classical linear and integer linear problems.
The most relevant part of this work investigates the impact of integer variables on BLPs: for the sake of clearness
in Chapter 3 we studied BLPs with integer variables only in the upper level, while in Chapter 4 we extended the
study to pure integer BLPs with both upper and lower level discrete problems. We believe that, despite their
computational complexity, integer bilevel linear problems have not been sufficiently investigated despite their
potentiality, especially for modelling integer and combinatorial problems with an inner hierarchical structure and
multiple decision makers involved.

Basically, the computational complexity of bilevel problems stems from their nestled structure. Although
the two problems are linear programming problems, the resulting BLP is a NP-hard problem and requires some
additional notations. In Chapter 1 we introduced some basic definition such as follower’s feasible set, rational
set, inducible region and bilevel-feasible solution. Moreover we described the computational complexity of

138 6. Conclusion

bilevel problems, their relation to other similar problems and made an overview of all possible applications that
have been proposed in the literature.

In Chapter 2 we examined in detail all the main mathematical and polyhedral properties of BLPs, we pro-
vided some additional definitions such as single level relaxation and single level reformulation. Great attention
was dedicated to the impact of upper level constraints: in our opinion the role of this set of constraints, which
determines the difference between reaction set and inducible region, is often overlooked in the literature. In the
rest of the chapter we reported an overview of the state of the art that is rich of solution methods since BLPs
are the simplest and most studied bilevel programming problems. Finally, we investigated the role of integer
variables in bilevel formulation and we defined two main problems that represent the principal topic of this
dissertation: Discrete–Continuous Bilevel Linear Problems (DCBLPs) and Discrete Bilevel Linear Problems
(DBLPs).

In Chapter 3 we studied DCBLPs and proposed two different solution approaches. In the first part we
started from an existing reformulation technique that relaxes the integer upper level variables by means of
a penalized function. We proposed an improvement of the existing method, we tested and certificated that
our approach is better than the existing one despite it still presents some drawbacks that do not allow to use
it as an exact method and need more investigation. In the second part we proposed a new valid inequality
that is based on some geometrical properties of BLPs. This inequality represents the effort to solve discrete
BLPs starting from well known properties of the corresponding continuous BLPs as it happens between linear
programs and integer linear programs. The proposed inequality is valid for BLPs and DCBLPs and was efficiently
used to speed up the resolution of a generic DCBLP with encouraging results on small and medium size problems.

In Chapter 4 we analyzed DBLPs that are one of the most challenging class of BLPs. We followed two lines
of research providing two different results: two new exact methods and two new heuristic approaches. In the first
part of the chapter we proposed two new exact methods, a branch and cut and a cutting plane approach. Both
the methods were tested and compared to a benchmark existing algorithm. Their computational performances,
especially for the cutting plane, clearly show an improvement and a remarkable progress in the state of the art
of solution methods for DBLPs. The second part of the chapter is dedicated to the description of two heuristic
approaches based of the valid inequality proposed in Chapter 3. We show how it is possible to extend and readapt
the inequality, that is not valid in general for DBLPs, and how to embed it within an existing method to design
two new heuristics.

In Chapter 5 we described two applications of integer BLPs to real problems in the field of operation man-
agement. The first application is a Grid scheduling problem that is modelled as a DBLP and is solved by means
of a tabu search heuristic that, on one side, exploits the bilevel structure of the problem and, on the other side,
copes with the big size of real life instances. The second application is a capacitated facility location problem
modelled as a DCBLP. We propose a branch and cut framework that is able to compute the optimal solution, in
theory, but it is halted by suitable stopping criteria for solving real life instances within a reasonable computing
time for the application. Both the applications represent innovative use of bilevel programming for such problems.

The study conducted on integer bilevel linear problems highlighted that this class of problems has not
been sufficiently explored. We proposed new contributions in terms of exact methods and heuristics: some of
them can be considered preliminary encouraging results, some other certainly represent promising directions

139

for future research. In our opinion it is still necessary to better investigate the connection between BLPs and
other well known problems, especially Multiobjective Programming Problems. Some theoretical results about
the equivalence of the latter two problems have been shown, but only in theory and not for the integer case.
Bilevel programming may be potentially used to model and solve a wide range of interesting applications,
although the lack of efficient solution methods limits their use. The development of new fast heuristics, well
performing on big size instances, is a necessary direction for future research. Finally, it may be possible to
exploit the theoretical results and contributions provided in this dissertation to design new valid inequalities, new
reformulation approaches and new branch and bound schemes in order to readapt, as much as possible, well
known methods of integer linear programming for solving integer bilevel linear problems.

141

Appendix A

Acronyms

BC – Branch and Cut algorithm
BFLP – Bilevel Facility Location Problem
BLP – Bilevel Linear Problem
CDBLP – Continuous–Discrete Bilevel Linear Problem
CFLP – Capacitated Facility Location Problem
CP – Cutting Plane algorithm
DBLP – Discrete Bilevel Linear Problem
DCBLP – Discrete–Continuous Bilevel Linear Problem
DR – DeNegre and Ralphs algorithm
ES – External Scheduler
FP(s) – Follower Problem
GCD – Greatest Common Divisor
GWA – Grid Workload Archive
HBC – Hybrid Branch and Cut algorithm
IR – Inducible Region
KKT – Karush–Kuhn–Tucker conditions
LB – Lower Bound
LMM – Liner Max-Min Problem
LP – Leader Problem
LS – Local Scheduler
MCP – Modified Cutting Plane algorithm
MIP – Mixed–Integer Programming
MPEC – Mathematical Programming with Equilibrium Constraints
RSLF – Relaxed Single Level Reformulation
SLF – Single Level Reformulation
SLR – Single Level Relaxation
SVP(xj) – Slave Problem
TUM – Totally Unimodular
UB – Upper Bound
UFLP – Uncapacitated Facility Location Problem

143

Bibliography

[1] Ahuja, R. K., Magnanti, T. L., Orlin, J. B. (1993). Network flows: theory, algorithms, and applications.
Prentice Hall.

[2] Anandalingam, G. (1988). A mathematical programming model of decentralized multi-level systems. The
Journal of the Operational Research Society, 39(11), 1021–1033.

[3] Anandalingam, G., Mathieu, R., Pittard, C. L., Sinha, N. (1989). Artificial intelligence based approaches
for solving hierarchical optimization problems. In Sharda, R., Golden, B. L., Wasil, E., Balci, O., Stewart,
W. (Eds.) Impacts of recent computer advances in operations research , North–Holland, 289–301.

[4] Anandalingam, G., White, D. J. (1990). A solution method for the linear static Stackelberg problem using
penalty functions. IEEE Transactions on Automatic Control, 35(10), 1170–1173.

[5] Akinc, U., Khumawala, B. M. (1977). An efficient branch and bound algorithm for the capacitated
warehouse location problem. Management Science, 23(6), 585–594.

[6] Aksen, D., Akca, S. S., Aras, N. (2014). A bilevel partial interdiction problem with capacitated facilities
and demand outsourcing. Computers and Operations Research, 41, 346–358.

[7] Aksen, D., Aras, N. (2012). A bilevel fixed charge location model for facilities under imminent attack.
Computers and Operations Research, 39(7), 1364–1381.

[8] Aksen, D., Aras, N. (2013). A matheuristic for leader-follower games involving facility location-protection-
interdiction decisions. In Talbi E. (Ed.) Metaheuristics for bi-level optimization studies in computational
intelligence, Studies in Computational Intelligence, volume 482, Springer, 115–151.

[9] Alarie, S., Audet, C., Jaumard, B., Savard, G. (2001). Concavity cuts for disjoint bilinear programming.
Mathematical Programming, 90(2), 373–398.

[10] Arroyo, J. M., Galiana, F. D. (2005). On the solution of the bilevel programming formulation of the
terrorist threat problem. IEEE Transactions on Power Systems, 20(2), 789–797.

[11] Audet, C., Haddad, J., Savard, G. (2006). A note on the definition of a linear bilevel programming solution.
Applied Mathematics and Computation, 181(1), 351–355.

[12] Audet, C., Haddad, J., Savard, G. (2007). Disjunctive cuts for continuous linear bilevel programming.
Optimization Letters, 1(3), 259–267.

[13] Audet, C., Hansen, P., Jaumard, B., Savard, G. (1997). Links between linear bilevel and mixed 0-1
programming problems. Journal of Optimization Theory and Applications, 93(2), 273–300.

[14] Audet, C., Hansen, P., Jaumard, B., Savard, G. (1999). A symmetrical linear maxmin approach to disjoint
bilinear programming. Mathematical Programming, 85(3), 573–592.

144 Bibliography

[15] Audet, C., Savard, G., Zghal, W. (2007). New branch-and-cut algorithm for bilevel linear programming.
Journal of Optimization Theory and Applications, 134(2), 353–370.

[16] Averbakh, I. (2000). Minmax regret solutions for minimax optimization problems with uncertainty.
Operations Research Letters, 27(2), 57–65.

[17] Balinski, M. L., Wolfe, P. (1963). On Benders decomposition and a plant location problem. Working
paper-ARO 27. Mathematica, Princeton.

[18] Bard, J. F. (1983). An efficient point algorithm for a linear two-stage optimization problem. Operations
Research, 31(4), 670–684.

[19] Bard, J. F. (1983). Coordination of a multidivisional firm through two levels of management. Omega,
11(5), 457–465.

[20] Bard, J. F. (1984). Optimality conditions for the bilevel programming problem. Naval Research Logistics
Quarterly, 31(1), 13–26.

[21] Bard, J. F. (1998). Practical bilevel optimization: algorithms and applications. Kluwer Academic
Publishers.

[22] Bard, J. F. (2001). Bilevel programming in management . Encyclopedia of Optimization, Kluwer Academic
Publishers, volume 1, 173–177.

[23] Bard, J. F., Falk, J. E. (1982). An explicit solution to the multi-level programming problem. Computers
and Operations Research, 9(1), 77–100.

[24] Bard, J. F., Moore, J. T. (1990). A branch and bound algorithm for the bilevel programming problem.
SIAM Journal on Scientific and Statistical Computing, 11(2), 281–292.

[25] Bard, J. F., Plummer, J., Sourie, J. C. (2000). A bilevel programming approach to determining tax credits
for biofuel production. European Journal of Operational Research, 120(1), 30–46.

[26] Ben-Ayed, O. (1993). Bilevel linear programming. Computers and Operations Research, 20(5), 485–501.

[27] Ben-Ayed, O., Blair, C. (1990). Computational difficulties of bilevel linear programming. Operations
Research, 38(3), 556–560.

[28] Ben-Ayed, O., Blair, C., Boyce, D., LeBlanc, L. J. (1992). Construction of a real-world bilevel linear
programming model of the highway network design problem. Annals of Operations Research, 34(1),
219–254.

[29] Ben-Ayed, O., Boyce, D., Blair, C. (1988). A general bilevel linear programming formulation of the
network design problem. Transportation Research Part B, 22(4), 311–318.

[30] Bialas, W. F. (1989). Cooperative n−person Stackelberg games. In Proceedings of the 28th IEEE Confer-
ence on Decision and Control, 3, 2439–2444.

[31] Bialas, W. F., Chew, M. N. (1982). Coalition formation in n−person Stackelberg games. In Proceedings
of the 21st IEEE Conference on Decision and Control, 21, 669–672.

[32] Bialas, W. F., Karwan, M. H. (1978). Multilevel linear programming. Technical Report 78-1, State
University of New York at Buffalo, Operations Research Program.

Bibliography 145

[33] Bialas, W. F., Karwan, M. H. (1982). On two-level optimization. IEEE Transactions on Automatic Control,
27(1), 211–214.

[34] Bialas, W. F., Karwan, M. H. (1984). Two-level linear programming. Management Science, 30(8), 1004–
1020.

[35] Bianco, L., Caramia, M., Giordani, S. (2009). A bilevel flow model for hazmat transportation network
design. Transportation Research Part C, 17, 175–196.

[36] Birge, J. R., Louveaux, F. (1997). Introduction to stochastic programming Springer Series in Operations
Research.

[37] Bracken, J., McGill, J. T. (1973). Mathematical programs with optimization problems in the constraints.
Operations Research, 21(1), 37–44.

[38] Bracken, J., McGill, J. T. (1978). Production and marketing decisions with multiple objectives in a
competitive environment. Journal of Optimization Theory and Applications , 24(2), 449–458.

[39] Brotcorne, L., Marcotte, P., Savard, G. (2008). Bilevel programming: the Montreal school. INFOR, 48(4),
231–246.

[40] Buyya, R. (2002). Economic-based distributed resource management and scheduling for Grid computing.
Ph.D. thesis, School of Computer Science and Software Engineering, Monash University, Melbourne.

[41] Buyya, R., Abramson, D., Giddy, J., Stockinger, H. (2002). Economic models for resource management
and scheduling in Grid computing. Concurrency and Computation: Practice and Experience, 14(13-15),
1507–1542.

[42] Candler, W., Norton, R. (1977). Multilevel programming. Technical Report 20. World Bank Development
Research Center, Washington D.C.

[43] Candler, W., Townsley, R. (1982). A linear two-level programming problem. Computers and Operations
Research, 9(1), 59–76.

[44] Caramia, M., Giordani, S. (2011). An economic model for resource allocation in Grid computing.
Operations Research, 59(4), 956–972.

[45] Casanova, H., Dongarra, J. (1997). NetSolve: A network server for solving computational science
problems. International Journal of Supercomputing Applications and High Performance Computing,
11(3), 212–223.

[46] Cassidy, R. G., Kirby, M. J. L., Raike, W. M. (1971). Efficient distribution of resources through three
levels of government. Management Science, 17(8), 462–473.

[47] Chapin, S. J., Katramatos, D., Karpovich, J., Grimshaw, A. S. (1999). The legion resource management
system. Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science, 1659,
162–178.

[48] Charnes, A., Clower, W., Kortanek, K. O. (1967). Effective control through coherent decentralization with
preemptive goals. Econometrica 35(2), 249–319.

[49] Colson, B., Marcotte, P., Savard, G. (2007). An overview of bilevel optimization. Annals of Operations
Research, 153(1), 235–256.

146 Bibliography

[50] Cornuejols, G., Fisher, M., Nemhauser, G. L. (1977). Location of bank accounts to optimize float: an
analytic study of exact and approximate algorithms. Management Science, 23(8), 789–810.

[51] Cornuejols, G. , Nemhauser, L. G., Wolsey, L. A. (1990). The uncapacitated facility location problem. In
Mirchandani, P., Francis, R. (Eds.) Discrete location theory, John Wiley and Sons Inc., 119–171.

[52] Danskin, J. W. (1966). The theory of max-min with applications. SIAM Journal of Applied Mathematics,
14(4), 641–664.

[53] Daskin, M. S. (1995). Network and discrete location: models, algorithms, and applications. John Wiley
and Sons Inc.

[54] Dempe, S. (2002). Foundation of bilevel programming. Kluwer Academic Publishers.

[55] Dempe, S., Dutta, J. (2010). Is bilevel programming a special case of a mathematical program with
complementarity constraints? Mathematical Programming, 131(1-2), 37–48.

[56] DeNegre, S. T. (2011). Interdiction and discrete bilevel linear programming. Ph.D. thesis, Department of
Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania.

[57] DeNegre, S. T., Ralphs, T. K. (2009). A branch-and-cut algorithm for integer bilevel linear programs.
Operations Research and Cyber-Infrastructure, 47(2), 65–78.

[58] Efroymson, M. A., Ray, T. L. (1966). A branch-bound algorithm for plant location. Operations Research,
14(3), 361–368.

[59] Erlenkotter, D. (1978). A dual-based procedure for uncapacitated facility location. Operations Research,
26(6), 992–1009.

[60] Falk, J. E. (1973). A linear max-min problem. Mathematical Programming 5(1), 169–188.

[61] Fliege, J., Vicente, N. (2006). Multicriteria approach to bilevel optimization. Journal of Optimization
Theory and Applications, 131(2), 209–225.

[62] Fortuny-Amat, J., McCarl, B. (1981). A representation and economic interpretation of a two-level
programming problem. Journal of the Operational Research Society, 32(9), 783–792.

[63] Foster, I., Kesselmanm C. (2004). The Grid 2: blueprint for a new computing infrastructure. Morgan
Kaufmann Publishers.

[64] Fülöp, J. (1993). On the equivalence between a linear bilevel programming problem and linear optimization
over the efficient set. Technical Report WP 93-1, Laboratory of Operations Research and Decision Systems,
Computer and Automation Institute, Hungarian Academy of Sciences.

[65] Gallo, G., Ülkücü, A. (1977). Bilinear programming: an exact algorithm. Mathematical Programming,
12(1), 173–194.

[66] Gao, Z., Wu, J., Sun, H. (2005). Solution algorithm for the bi-level discrete network design problem.
Transportation Research Part B, 39(6), 479–495.

[67] Garey, M. R., Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-
completeness. W. H. Freeman.

[68] Gendreau, M., Marcotte, P., Savard, G. (1996). A hybrid tabu-ascent algorithm for the linear bilevel
programming problem. Journal of Global Optimization, 8(3), 217–233.

Bibliography 147

[69] Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical
Analysis and Applications, 22(3), 618–630.

[70] Geoffrion, A. M., Graves, G. W. (1974). Multicommodity distribution system design by Benders decom-
position. Management Science, 20(5), 822–844.

[71] Gzara, F. (2013). A cutting plane approach for bilevel hazardous material transport network design.
Operations Research Letters, 41(1), 40–46.

[72] Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a
graph. Operations Research, 12(3), 450–459.

[73] Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network and some
related graph theoretic problems. Operations Research, 13(3), 462–475.

[74] Hansen, P., Jaumard, B., Savard, G. (1992). New branch-and-bound rules for linear bilevel programming.
SIAM Journal on Scientific and Statistical Computing, 13(5), 1194–1217.

[75] Haurie, A., Savard, G., White, D. (1990). A note on: an efficient point algorithm for a linear two-stage
optimization problem. Operations Research, 38(3), 553–555.

[76] Hobbs, B. F., Nelson, S. K. (1992). A nonlinear bilevel model for analysis of electric utility demand-side
planning issues. Annals of Operations Research, 34(1), 255–274.

[77] Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D. H. J. (2008). The Grid
Workloads Archive. Future Generation Computer Systems, 24(7), 672–686.

[78] Jeroslow, R. G. (1985). The polynomial hierarchy and a simple model for competitive analysis. Mathe-
matical Programming, 32(2), 146–164.

[79] Jùdice, J. J., Faustino, A. M. (1992). A sequential LCP method for bilevel linear programming. Annals of
Operations Research, 34(1), 89–106.

[80] Kalantari, B., Rosen, J. B. (1982). Penalty for zero-one integer equivalent problem. Mathematical
Programming, 24(1), 229–232.

[81] Kall, P., Wallace, S. W. (1994). Stochastic programming, Wiley-Interscience.

[82] Kapadia, N. H., Fortes, J. A. B. (1999). PUNCH: an architecture for web-enabled wide-area network-
computing. Cluster Computing, 2(2), 153–164.

[83] Kara, B. Y., Verter, V. (2004). Designing a road network for hazardous materials transportation. Trans-
portation Science, 38(2), 188–196.

[84] Karlof, J. K., Wang, W. (1996). Bilevel programming applied to the flowshop scheduling problem.
Computers and Operations Research, 23(5), 443–451.

[85] Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E., Tatcher, J. W. (Eds.)
Complexity of computer computations, Plenum Press, 85–103.

[86] Khumawala, B. M. (1972). An efficient branch-and-bound algorithm for the warehouse location problem.
Maagement Science, 18(12), 718–731.

[87] Kis, T., Kovács, A. (2009). On bilevel machine scheduling problems. In Proceedings MAPSP 2009,
Workshop on Models and Algorithms for Planning and Scheduling Problems, 116–118.

148 Bibliography

[88] Kochetov, Y., Kochetova, N., Plyasunov, A. (2013). A matheuristic for the leader-follower facility location
and design problem. In Proceedings of the 10th Metaheuristics International Conference (MIC 2013),
1–3.

[89] Konno, H. (1971). Bilinear programming: Part I. Algorithm for solving bilinear programs. Technical
Report 71-9, Stanford University.

[90] Krarup, J., Pruzan, P. M. (1983). The simple plant location problem: survey and synthesis. European
Journal of Operational Research, 12(1), 36–81.

[91] Kuehn, A. A., Hamburger, M. J. (1963). A heuristic program for location warehouses. Management
Science, 9(4), 643–666.

[92] Kurowski, K., Nabrzyski, J., Oleksiak A., Weglarz, J. (2008). Multicriteria approach to two-level hierarchy
scheduling in Grids. Journal of Scheduling, 11(5), 371–379.

[93] Kurowski, K., Oleksiak A., Weglarz, J. (2010). Multicriteria, multi-user scheduling in Grids with advance
reservation. Journal of Scheduling, 13(5), 493–508.

[94] Labbé, M., Marcotte, P., Savard, G. (1998). A bilevel model of taxation and its application to optimal
highway pricing. Management Science, 44(12), 1595–1607.

[95] Liberatore, F., Scaparra, M. P., Daskin, M. S. (2011). Analysis of facility protection strategies against an
uncertain number of attacks: the stochastic R-interdiction median problem with fortification. Computers
and Operations Research, 38(1), 357–366.

[96] Lignola, M. B., Morgan, J. (1995). Topological existence and stability for Stackelberg problems. Journal
of Optimization Theory and Applications, 84(1), 145–169.

[97] Litzkow, M., Livny, M., Mutka, M. W. (1988). Condor - a hunter of idle workstations. In Proceedings of
the 8th International Conference of Distributed Computing Systems (ICDCS 1988), 104–111.

[98] Lodi, A., Ralphs, T. K. (2009). Bilevel programming and maximally violated valid inequalities. In
Proceedings of the Cologne Twente Workshop on Graphs and Combinatorial Optimization, 125–134.

[99] Loridan, P., Morgan, J. (1996). Weak via strong Stackelberg problem: new results. Journal of Global
Optimization, 8(3), 263–287.

[100] Losada, C., Scaparra, M. P., Church, R. L. (2010). On a bi-level formulation to protect uncapacitated
p-median systems with facility recovery time and frequent disruptions. Electronic Notes in Discrete
Mathematics, 36, 591–598.

[101] Louveaux, F. V., Peeters, D. (1992). A dual-based procedure for stochastic facility location. Operations
Research, 40(3), 564–573.

[102] Lukac̆, Z., S̆orić, K., Rosenzweig, V. V. (2008). Production planning problem with sequence dependent
setups as a bilevel programming problem. European Journal of Operational Research, 187(3), 1504–1512.

[103] Luo, Z. Q., Pang, J. S., Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge
University Press.

[104] Mahajan, A. (2010). Presolving mixed-integer linear programs. Preprint ANL/MCS-P1752-0510, Mathe-
matics and Computer Science Division.

Bibliography 149

[105] Mansi, R., Alves, C., de Carvalho, J. M. V., Hanafi, S. (2012). An exact algorithm for bilevel 0-1 knapsack
problems. Mathematical Problems in Engineering, Hindawi Publishing Corporation, volume 2012.

[106] Marcotte, P. (1986). Network design problem with congestion effects: a case of bilevel programming.
Mathematical Programming, 34(2), 142–162.

[107] Marcotte, P., Savard, G. (1991). A note on the Pareto optimality of solutions to the linear bilevel
programming problem. Computers and Operations Research, 18(4), 355–359.

[108] Marcotte, P., Savard, G. (2001). Bilevel programming: applications. Encyclopedia of Optimization,
Kluwer Academic Publishers, volume 1, 158–159.

[109] Marcotte, P., Savard, G. (2005). Bilevel programming: a combinatorial perspective. In Avis, D., Hertz, A.,
Marcotte, O. (Eds.) Graph theory and combinatorial optimization, Kluwer Academic Publisher.

[110] Mathieu, R., Pittard, L., Anandalingam, G.(1994). Genetic algorithm based approach to bi-level linear
programming. RAIRO - Operations Research - Recherche Opérationnelle, 28(1), 1–21.

[111] Mattia, S. (2012). Separating tight metric inequalities by bilevel programming. Operations Research
Letters, 40(6), 568–572.

[112] Mersha, A. G., Dempe, S. (2005). Linear bilevel programming with upper level constraints depending on
the lower level solution. Applied Mathematics and Computation, 180(1), 247–254.

[113] Migdalas, A. (1995). Bilevel programming in traffic planning: models, methods and challenge. Journal of
Global Optimization, 7(4), 381–405.

[114] Moore, J. T., Bard, J. F. (1990). The mixed integer linear bilevel programming problem. Operations
Research, 38(5), 911–921.

[115] Nabrzyski, J., Schopf, J. M., Weglarz, J. (2004). Grid resource management: state of the art and future
trends. Kluwer Academic Publisher.

[116] Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54(2), 286–295.

[117] Nauss, R. M. (1978). An improved algorithm for the capacitated facility location problem. Journal of
Operational Research Society, 29(12), 1195–1201.

[118] Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (2007). Algorithmic game theory, Cambridge
University Press.

[119] Osborne, M. J. (2003). An introduction to game theory. Oxford University Press.

[120] Özaltin, O. Y., Prokopyev, O. A., Schaefer, A. J. (2010). The bilevel knapsack problem with stochastic
right-hand sides. Operations Research Letters, 38(4), 328–333.

[121] Papavassilopoulos, G. (1982). Algorithms for static Stackelberg games with linear costs and polyhedral
constraints. In Proceedings of the 21st IEEE Conference on Decision and Control, 2, 647–652.

[122] Pareto, V. (1986). Cours d’economie politique. Rouge, Lausanne.

[123] Parraga, F. A. (1981). Hierarchical programming and applications to economic policy. Ph.D. thesis,
Department of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona.

150 Bibliography

[124] Ranganathan, K., Foster, I. (2002). Decoupling computation and data scheduling in distributed data-
intensive applications. In Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11), 352–358.

[125] Roy, B. (1968). Classement et choix en présence de point de vue multiples (La méthod ELECTRE). Revue
Française d’Automatique, d’Informatique et de Recherche Opérationnelle , 2(1), 57–75.

[126] Sahin, K., Gümüs, Z., Ciric, A. (2001). Bilevel programming: applications in engineering. Encyclopedia
of Optimization, Kluwer Academic Publishers, volume 1, 160–163.

[127] Savard, G. (1989). Contribuition à la programmation mathématique à deux niveaux. Ph.D. thesis, École
Polytechnique de Montréal.

[128] Scaparra, M. P., Church, R. L. (2008). A bilevel mixed-integer program for critical infrastructure protection
planning. Computers and Operations Research, 35(6), 1905–1923.

[129] Scaparra, M. P., Church, R. L. (2008). An exact solution approach for the interdiction median problem
with fortification. European Journal of Operational Research, 189(1), 76–92.

[130] Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games.
International Journal of Game Theory, 4(1), 25–55.

[131] Sherali, H. D., Soyster, A. L., Murphy, F. H. (1983). Stackelberg-Nash-Cournot equilibria: characteriza-
tions and computations. Operations Research, 31(2), 253–276.

[132] Shi, C., Lu, J., Zhang, G. (2005). An extend Kuhn-Tucker approach for linear bilevel programming.
Applied Mathematics and Computation, 162(1), 51–63.

[133] Shi, C., Lu, J., Zhang, G. (2005). An extended Kth-best approach for linear bilevel programming. Applied
Mathematics and Computation, 164(4), 843–855.

[134] Shi, C., Lu, J., Zhang, G., Zhou, H. (2006). An extended branch and bound algorithm for linear bilevel
programming. Applied Mathematics and Computation, 180(2), 529–537.

[135] Shi, C., Zhang, G., Lu, J. (2005). On the definition of linear bilevel programming solution. Applied
Mathematics and Computation, 160(1), 169–176.

[136] Shiquan, W. U., Yang, C., Marcotte, P. (1998). A cutting plane method for linear bilevel programs. System
Sciences and Mathematical Sciences, 11(2), 125–133.

[137] Smith, J. C., Lim, C., Alptekinoğlu, A. (2009). New product introduction against a predator: a bilevel
mixed-integer programming approach. Naval Research Logistics, 56(8), 714–729.

[138] Snyder, L. V. (2006). Facility location under uncertainty: a review. IIE Transactions, 38(7), 537–554.

[139] Stackelberg, H. (1952). The theory of market economy. Oxford University Press.

[140] Su, A., Berman, F., Wolski, R., Strouta, M. M. (1999). Using AppLeS to schedule simple SARA on the
computational Grid. International Journal of High Performance Computing Applications, 13(3), 253–262.

[141] Swain, R. (1971). A decomposition algorithm for a class of facility location problems. Ph.D. thesis,
Cornell University, Ithaca, New York.

[142] Tchernykh A., Ramarez J., Avetisyan A., Kuzjurin N., Grushin D., Zhuk S. (2006). Two level job-
scheduling strategies for a computational grid. Parallel Processing and Applied Mathematics, Lecture
Notes in Computer Science, 3911, 774–781.

Bibliography 151

[143] Ünlü, G. (1987). A linear bilevel programming algorithm based on bicriteria programming. Computers
and Operations Research, 14(2), 173–179.

[144] Verter, V. (2011). Uncapacitated and capacitated facility location problems. In Eiselt, H. A. , Marianov, V.
(Eds.), Foundations of location analysis, Springer, 25–37.

[145] Vicente, L. N., Calai, P. H. (1994). Bilevel and multilevel programming: a bibliography review. Journal of
Global Optimization, 5(3), 291–306.

[146] Vicente, L. N., Savard, G., Judice, J. J. (1994). Descent approaches for quadratic bilevel programming.
Journal of Optimization Theory and Applications, 81(2), 379–399.

[147] Vicente, L. N., Savard, G., Judice, J. J. (1996). Discrete linear bilevel programming problem. Journal of
Optimization Theory and Applications, 89(3), 597–614.

[148] Wen, U. P., Hsu, S. T. (1989). A note on a linear bilevel programming algorithm based on bicriteria
programming. Computers and Operations Research, 16(1),79–83.

[149] Wen, U. P., Hsu, S. T. (1991). Linear bi-level programming problems – A review. Journal of the Opera-
tional Research Society, 42(2), 125–133.

[150] Wen, U. P., Huang, A. D. (1996). A simple tabu search method to solve the mixed-integer linear bilevel
programming problem. European Journal of Operational Research, 88(3), 563–571.

[151] Wen, U. P., Yang, Y. H. (1990). Algorithms for solving the mixed integer two-level linear programming
problem. Computers and Operations Research, 17(2), 133–142.

[152] White, D. J., Anandalingam, G. (1993). A penalty function approach for solving bi-level linear programs.
Journal of Global Optimization, 3(4), 397–419.

	Introduction
	Notation and general assumption
	Stability problem
	Computational complexity
	Related problems
	Max-min problems
	Game theory
	Multiobjective and multicriteria problems
	Stochastic programming problems
	Mathematical programming with equilibrium constraints

	Applications
	General framework and our contributions

	Bilevel Linear Programming
	Polyhedral properties
	Upper level constraints

	BLP relaxations
	Relaxation via removal of constraints
	Single level relaxation

	Solution methods
	Continuous and discrete BLPs
	Reformulation techniques

	Discrete–Continuous Bilevel Linear Programming
	Reformulation approaches for binary DCBLP
	Preliminary results
	Lower bound improvements
	Experimental analysis
	Conclusion

	A New valid inequality for DBLP
	Introduction
	The continuous case: BLP
	The discrete–continuous case: DCBLP
	Computational results
	Conclusions

	Discrete Bilevel Linear Programming
	Enhanced exact algorithms for DBLP
	Preliminaries
	A cutting plane method
	Modified cutting plane
	An example
	A branch and cut algorithm
	Hybrid branch and cut
	Computational analysis
	Cutting plane algorithms
	Branch and cut algorithms
	Conclusions

	New heuristic methods for DBLP
	Introduction
	Two inequalities to reformulate DBLPs
	Special cases
	Two new heuristics for DBLP
	Computational comparison
	Numerical results
	Conclusions

	New Applications
	Grid Scheduling by bilevel programming: a heuristic approach
	Introduction
	The Grid scheduling framework
	A mathematical bilevel formulation
	The single level reformulation
	The heuristic algorithm
	Simulated scenarios
	Conclusions

	A branch and cut based algorithm for a bilevel capacitated facility location problem
	Introduction
	Bilevel model formulation
	General framework of the branch and cut based heuristic
	Slave Algorithm for problem SVP(xj)
	Computational results
	Conclusions

	Conclusion
	Acronyms

