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ABSTRACT

Stochastic optimization is an optimization method that solves stochastic problems for min-

imizing or maximizing an objective function when there is randomness in the optimization

process. In this dissertation, various stochastic optimization problems from the areas of

Manufacturing, Health care, and Information Cascade are investigated in networks systems.

These stochastic optimization problems aim to make plan for using existing resources to im-

prove production efficiency, customer satisfaction, and information influence within limita-

tion. Since the strategies are made for future planning, there are environmental uncertainties

in the network systems. Sometimes, the environment may be changed due to the action of

the decision maker. To handle this decision-dependent situation, the discrete choice model is

applied to estimate the dynamic environment in the stochastic programming model. In the

manufacturing project, production planning of lot allocation is performed to maximize the

expected output within a limited time horizon. In the health care project, physician is allo-

cated to different local clinics to maximize the patient utilization. In the information cascade

project, seed selection of the source user helps the information holder to diffuse the message

to target users using the independent cascade model to reach influence maximization.

The computation complexities of the three projects mentioned above grow exponentially by

the network size. To solve the stochastic optimization problems of large-scale networks within

a reasonable time, several problem-specific algorithms are designed for each project. In the

manufacturing project, the sampling average approximation method is applied to reduce the

scenario size. In the health care project, both the guided local search with gradient ascent

and large neighborhood search with Tabu search are developed to approach the optimal

solution. In the information cascade project, the myopic policy is used to separate stochastic

programming by discrete time, and the Markov decision process is implemented in policy
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evaluation and updating.
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CHAPTER 1: INTRODUCTION

1.1 Review of Stochastic Optimization

Stochastic optimization (SO) is a common method in mathematics and operations research,

and it is an optimization method using random variables. For the formulation of the stochas-

tic optimization problems, the random variables appear in objective functions or constraints.

Stochastic programming is an approach to modeling the stochastic optimization problem. It

has been widely applied in optimization problems with uncertainty. Uncertainty is usually

measured by a probability distribution on the parameters. Stochastic programming deals

with problems of maximizing or minimizing objective functions of decision variables and ran-

dom variables subject to constraints. Stochastic programming has been applied to a wide

variety of areas. The traditional applied and studied stochastic programming models are

two-stage (linear) programs. In two-stage stochastic programming, the decisions are made

at current time, they should be based on data available at this time point, instead of depend-

ing on future observations. In the first stage, the decision maker takes some action. After

a random event is observed, the outcome of the first-stage decision will be affected by the

random variables. Based on the outcome of the first-stage decision, a recourse decision is

made in the second stage depending on the random event that occurred. The optimal policy

from such a model is a single first-stage decision and a collection of recourse decisions (de-

cision rule) defining which second-stage action should be taken in response to each random

outcome. The typical two-stage stochastic programming with the minimization problem can

be formulated as

min
x∈X

f(x) + E
[
Q(x, ξ)

]

1



where Q(x, ξ) is the optimal value of the second-stage problem based on the solution first-

stage decision x̂,

min
y∈Y (ξ)

g(y, ξ)

s.t. h(x̂, y, ξ) ≤ 0

If we consider the two-stage problem as linear, that means the model has a linear objective

function, subject to linear equality and linear inequality constraints; then, the two-stage

stochastic linear programming can be expressed as

min
x∈X

cᵀx+
∑
s∈S

Ps · dsᵀys

s.t. Ax+Bsys ≤ hs ∀ s ∈ S

where s ∈ S is the scenario index and set, while Ps is the probability that the scenario s will

happen in the future.

The objective function is optimizing (minimizing) the cost cᵀx of the first-stage decision

and the expected cost of the (optimal) second-stage decision. The second-stage problem

can simply be considered as an optimization problem that describes the supposedly optimal

behavior of the first stage when the uncertain data is revealed. The solution of the second

stage is a recourse action where ys is the cost of this recourse action restricted by the

constraint Bsys ≤ hs −Ax̂. For multi-stage problems, the decisions may be made at several

time periods t = 1, 2, · · ·T . The standard form of multi-stage stochastic programming can

be formulated as:

min
x∈X

F (x0, x1, · · ·xT−1)

2



= E
[
Q(x0, x1, · · · , xT−1, ξ1, ξ2, · · · ξT )

]
s.t. xt ∈ Ft ∀ t ∈ T

where xt represent the decision vector, chosen at stage/time t, and ξt, t = 1, 2, · · · , T repre-

sent a sequence of random variables with a specified probability distribution. In addition,

xt ∈ Ft is nonanticipativity constraint. Ft ⊆ Ft+1 means all information happening before

time t should be kept to next time period t+ 1. For example, the decisions made today are

influenced by previous decisions and outcomes.

Probabilistic dynamic programming is similar to multi-stage stochastic programming, as

shown in Figure 1.1. The difference is the dynamic programming is based on a state system,

and the information from the previous time period is not considered to make the current

decision. When the probability distribution of the random variables is known, and decision

is make to control the Markov process, this is known as a Markov Decision Process (MDP).

The standard form of probabilistic dynamic programming can be formulated as:

min
x∈X

F (x0, x1, · · ·xT−1)

= E
[
Q1(ζ1), Q2(ζ2), · · · , QT (ζT )

]
s.t. ζt = z0 t = 0

ζt = ft(ζt−1, xt−1, ξt+1) t = 1, 2, · · · , |T |

1.2 Review of Discrete Choice Models

Discrete choice models are used to explain or predict a choice from a set of two or more

discrete (i.e., distinct and separable; mutually exclusive) alternatives. For example, a discrete

3



choice model may be used to analyze why people choose to drive, take the subway, or walk

to work, or to analyze the factors causing people to pick one job over another. Techniques

like logistic regression and probit regression can be used for empirical analysis of discrete

choice. Assume person n has a choice set I, which includes all possible alternatives i.

• Choice yni: dummy variable, if yni = 1, then person n chooses alternative i

(a) Multi-stage Stochastic programming

(b) Probabilistic Dynamic programming

Figure 1.1: Comparison between Multi-stage Stochastic programming and Probabilistic
Dynamic programming

4



• Utility Uni: the utility that person n obtains from choosing alternative i.

• Probability Pni: Pr (yni = 1), the probability that person n will choose alternative i.

The utility depends on many factors, where some are observed zni, some are not observed

εni:

Uni = βzni + εni

Here, zni = z(xni, sn), where xni is the a vector of attributes of alternative i faced by person

n and sn is a vector of characteristics of person n. The behavior of the person is utility

maximizing: Person n chooses the alternative that provides the highest utility.

yni =

1 Uni > Unj ∀j 6= i

0 otherwise

The choice probability is

Pni = Pr(yni = 1)

= Pr
(⋂
j 6=i

(
Uni > Unj

))
= Pr

(⋂
j 6=i

(
βzni + εni > βznj + εnj

))
= Pr

(⋂
j 6=i

(
εnj − εni < βzni − βznj

))

In the Discrete Choice Model, the random variable is following two types of distribution:

• Extreme Value Distribution – Type I Gumbel (Logit), with the probability density

5



function

f(x;µ, σ, ξ = 0) = e−
x−µ
σ e−e

−x−µσ

• Normal Distribution (Probit), with the probability density function

f(x;µ, σ) = ϕ

(
x− µ
σ

)
=

1√
2πσ2

e−
1
2
(x−µ
σ

)2

The random variable εni is normalized, and then the probability density function of these

distributions will be

f(εni) = e−εnie−e
−εni and ϕ (εni) =

1√
2π
e−

1
2
ε2ni

Let us start with binary choice. The choice set of person n has two alternatives. The utility

of each alternative Uni depends on observed variable zni and unobserved/random variable

εni:

Uni = βzni + εni

The choice probability of alternative i = 1 is

Pn1 = Pr(yn1 = 1) = Pr(Un1 > Un2)

= Pr(βzn1 + εn1 > βzn2 + εn2)

= Pr(εn2 − εn1 < βzn1 − βzn2)

6



If the random variables of each utility is iid, then the choice probability is based on joint

probability distribution:

Pn1 =

∫ εn1=+∞

εn1=−∞

∫ εn2=βzn1−βzn2+εn1

εn2=−∞
e−εn1e−e

−εn1 · e−εn2e−e−εn2 dεn1dεn2

=

∫ εn1=+∞

εn1=−∞
e−εn1e−e

−εn1 ·

(∫ tn2=exp(−(βzn1−βzn2+εn1))

tn2=+∞
e−tn2 (−dtn2)

)
dεn1

(let tn2 = e−εn2)

=

∫ εn1=+∞

εn1=−∞
e−εn1e−e

−εn1 · e−e−(βzn1−βzn2+εn1) dεn1

=

∫ tn1=0

tn1=+∞
e−tn1 · e−tn1·e−(βzn1−βzn2) (−dtn1) (let tn1 = e−εn1)

=
1

1 + exp(βzn1 − βzn2)

=
exp(βzn1)

exp(βzn1) + exp(βzn2)

The normal distribution has the property

X ∼ N(µX , σ
2
X)

Y ∼ N(µY , σ
2
Y )

X ± Y ∼ N(µX ± µY , σ2
X + σ2

Y )

Then, the choice probability with normal distribution is Pn1 = Φ(βzn1 − βzn2).

Multinomial choice has two types; one is multinomial choice without correlation among

alternatives, while the other is multinomial choice with correlation among alternatives. The

difference is whether it has correlation between alternatives. For extreme value distribution,

the two types of multinomial choice model are as follows

7



• No attributes of the alternatives

Pni =
exp(βzni)
J∑
j=1

exp(βznj)

• Generalized nested logit

Nests of alternatives are labeled B1, B2, · · · , BK . Each alternative can be a member of

more than one nest:

Pni =
K∑
k=1

Pni|Bk · Pnk

where the probabilities of nest k and alternative i given nest k are

Pnk =

∑
j∈Bk

(
αjke

Vnj
)1/λk∑K

l=1

(∑
j∈Bl(αjle

Vnj)1/λl
)λl

Pni|Bk =

(
αike

Vni
)1/λk∑

j∈Bk (αjkeVnj)
1/λk

For normal distribution, the multinomial choice model is as follows:

Pni =

∫
I(Vni + εni > Vnj + εnj ∀ j 6= i)φ(εn|Ω) dεn

where some parameters are defined as

• U r
ni = Vni + εni

• I = 1, if Uni > Unj; and I = 0, otherwise

• φ(εn|Ω) is joint normal density function with mean 0 and covariance Ω

8



1.3 Outline of This Dissertation

This dissertation is motivated by real-world operations research problems in resource alloca-

tion. It aims at developing the optimal strategy to satisfy customer demand by solving the

stochastic programming problem in a large-scale network. Several mathematical models and

efficient algorithms are developed to deal with the exponential computation complexity of

each research project. The structure of this dissertation is as follows: In Chapter 2, we study

the two-stage stochastic programming physician location problem with patients having dis-

crete choices. Chapter 3 investigates decision-dependent multistage stochastic programming

for the information cascade problem under user discrete choice. In Chapter 4, we study

the multi-stage stochastic programming job-shop Problem in Semiconductor Manufacturing.

Chapter 5 concludes the dissertation.

9



CHAPTER 2: DECISION-DEPENDENT STOCHASTIC

PROGRAMMING FOR PHYSICIAN ALLOCATION

CONSIDERING PATIENTS’ DISCRETE CHOICES

In this chapter, we study a stochastic facility location problem considering customer prefer-

ence. The model is motivated by a physician scheduling problem in local clinics. The model

aims to improve hospital efficiency by allocating the hospital resource (sending physicians to

local clinics), as well as to match the patient preference and maximize patient satisfaction. A

two-stage stochastic programming model is proposed for the physician/clinic facility location

and patient assignment problem, where the patient preference is considered as endogenous

uncertainty. Instead of being prefixed, scenario probabilities are defined through discrete

choice theory, considering various features of patient preference. The two-stage stochastic

programming model is computationally intractable due to the exponentially growing number

of scenarios. To solve the model, this paper designs hybrid algorithms via the combination

of the Large Neighborhood Search and Tabu Search to solve the location problem in the

first stage and Sample Average Approximation to estimate the value function of the second

stage. Computational experiments show that the proposed hybrid algorithms can outper-

form existing hill-climbing techniques, such as Guided Local Search and Gradient Descent

method, in terms of both solution quality and computational time.

2.1 Introduction

Physician shortages are continuously increasing in both primary and specialty care. In the

2018 updated report from the Association of American Medical Colleges (AAMC), Dall et al.

10



[17] show a projected shortage of between 42,600 and 121,300 physicians by the end of the

next decade in Figure 2.1. The main reason leading to the huge shortage is that physician

demand will grow faster than supply. Typically, physicians can be categorized to two types,

namely, primary care and non-primary care physicians. The primary care shortage is between

14,800 and 49,300 physicians, while the non-primary care shortage is between 33,800 and

72,700 physicians. The shortage of physicians is a critical problem in health care systems;

besides, there is another challenge in matching physicians with patients. In reality, patients

facing higher barriers to accessing care (racial and ethnic minorities, the uninsured, and

those living outside metropolitan areas) have lower health care utilization than those patients

with fewer barriers to access. Figure 2.2 shows that it will require more physicians than the

equivalent care utilization (Scenario 1), if we consider the care utilization of different pairs
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Figure 2.1: Projected Physician Shortfall Range, 2016-2030. Reprinted from “The Com-
plexities of Physician Supply and Demand: Projections from 2016 to 2030,” by IHS Markit
Ltd., 2018. Copyright (2018) by Association of American Medical Colleges.
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Figure 2.2: Additional Physician Demand to Achieve health care Utilization Equity, 2016.
Reprinted from “The Complexities of Physician Supply and Demand: Projections from 2016
to 2030,” by IHS Markit Ltd., 2018. Copyright (2018) by Association of American Medical
Colleges.

of physician and patient are not equivalent (Scenario 2) based on the AAMC health care

utilization equity (HCUE) analysis model. Due to the different patient barriers, more and

more medical procedures are moving into outpatient facilities, which reduces complications

and allows patients to return home sooner [1]. With the growing outpatient care, however,

how to match the physician supply and patient demand in Clinically Integrated Networks

(CINs) is becoming a big issue. As a network problem, the physician allocation in CINs can

be modeled as a facility location problem.

In this paper, we present two-stage stochastic facility location models while considering the

random discrete choices of the patients due to their preferences. These models directly

address physician scheduling problems among various local clinics. In recent years, the

physician shortage and resource limits have created tough problems to provide necessary

health care access to patients. One way to alleviate this burden is to send physicians from

central hospital(s) to local clinics, as in the case of Veterans Affairs (VA) hospitals [41].
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Instead of the central hospital, patients can visit local clinics close by to avoid congestion

and unnecessary trips. However, patients’ decisions on which clinic they choose to visit

are not certainly known to the scheduler in charge of the physician allocation. From the

viewpoint of the scheduler, this can be modeled as a stochastic facility location problem,

where the demand for each clinic or physician is random. It is challenging to model these

demand uncertainties while assuming prefixed distributions. This is due to patients’ different

preferences toward the physician, the travel distance to clinics, patient race and ethnicity, and

so on. The distributions of random demands at various locations are intrinsically endogenous,

corresponding to the whereabouts of physicians. We can borrow the Discrete Choice Theory

that we first introduced in [44] to model the decision-dependent uncertain demands, since

each patient has a discrete number of selections of clinics or physicians. Then, the total

demand of a particular location can be calculated by aggregating the patients choosing to

visit this location.

2.1.1 Literature Review

The study of physician allocation and patient assignment in health care is a growing area

of research. Here, we only focus on the papers considering resource allocation and customer

choice in health care, which is most relevant to our research. Relman [52] finds the utilization

of health care system is determined largely by the collective decision of physicians. The

business model for health care resources in human terms is identified by Kluge [34]. In

this paper, the patient becomes a service consumer, the physician is a service provider, and

the physician–patient relationship is the key question for health care resource allocation.

Nicholson and Levy [48] consider the physician allocation strategy for large-scale medical

services to reduce the burden of health care costs by increasing efficiency. Barz and Rajaram

[6] develop the approximate dynamic programming by formulating the MDP for the patient
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admission problem with multiple resource constraints. Operations research methods, such as

the integer programming model, have been introduced to solve the physician allocation and

patient assignment problem with the capacity constraint in [35, 41]. Balasubramanian builds

a two-stage capacity allocation model with an uncertain patient demand in which he assumes

the distribution of uncertainty is known [4]. Wang formulates a two-server network model

to maximize the patient benefit, combining of analytical calculation and simulation-based

optimization [61].

The prescriptive mathematical model was developed to assist the facility location decision,

which is used to find optimal solution. A typical normative model is the mathematical pro-

gramming model [50]. In general, the classic facility location problems consider the following

elements: characteristics of the facility, characteristics of the served population, and objec-

tives. An important factor of facility characteristics is spacing. According to the facility

spacing property, the facility location can be categorized into capacitated and uncapacitated

problems [59]. For characteristics of the served population, customer demand is a key factor,

which may be splittable or unsplittable [36]. The facility location problem is an NP-hard

problem, and it can be reached by reduction from the set-packing-covering-partitioning prob-

lems [31]. The neighborhood search procedure is one of the earliest heuristic/approximation

algorithms in the facility location problem [37]. The algorithm has exhibited good practical

performance and proved to be a good approximation algorithm with guaranteed performance

in polynomial time [14].

Many facility location problems involve strategic decisions that must hold for some consid-

erable time. In such cases, it is important to embed uncertainty in the models. To this end,

many research endeavors based on stochastic programming and robust optimization have

been undertaken. The common uncertainty of a facility location problem includes demand

levels, travel time or cost for supplying the customers, location of the customers, presence or
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absence of the customers, and price for the commodities [16]. There are two popular ways

of handling the uncertainty, namely, stochastic programming and robust optimization [56].

If the information is probabilistic and the uncertain parameters can be represented through

random variables, then stochastic programming models and methods can be used to deal

with the problem. In those models, the objective is usually to minimize the expected cost

[45, 54]. If no probabilistic information is available but some ranges of uncertainties are

known, robust optimization can be used for evaluating the performance of the system. In

those models, two classical objectives are often considered–minmax cost and minmax regret

[5, 28].

Patient demand is the main concern for decision makers in the health care facility loca-

tion problem. Early research on patient demand shows that the assignment between the

physicians and the local clinics strongly influences the patient’s choice [15, 21]. Lawton uses

the conditional logit model to estimate the probability of an individual physician or patient

choosing a specific hospital [8], following McFadden’s random utility approach [44, 43]. At-

las, et al. measure physician performance by categorizing all patients seen in a large primary

care network [3]. In Güneş et al. [29]’s paper, the researchers show how to match patient

and physician preference to arrive at the central planner’s objectives, which are maximizing

the coverage–the percentage of assigned patients–and minimizing the average patient travel

distance. This study case is from Sakarya, Turkey, and shows the patient’s preference is

highly correlated with travel distance. Griffin develop a model to determine the best loca-

tion and number of new Community Health Centers (CHCs) to maximize the coverage of

the weighted demand in the population within a limited budget and facility capacity [26].

The previous studies have realized the importance of the patient’s preference and the physi-

cian’s characteristics in providing high-quality health care services, while there is no work

on matching the customer (patient) choice and provider (physician/clinic) availability. The
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mismatching between the demand of customers and the supply of providers may reduce

customer satisfactions.

2.1.2 Our Contributions

To address the mismatching of customer and provider in health care, we model the problem as

a facility location problem with the maximal patient satisfaction. Since this problem involves

three elements–clinic, physician,patient–we decompose this problem to two sub-problems,

namely, the physician allocation problem and the patient assignment problem. In this paper,

we propose a large-scale planning model through a two-stage, decision-dependent, stochastic

programming approach. The stochastic formulation considers endogenous uncertainty, which

is represented by the discrete probability distribution of patient preference.

The computation challenge of our model is decision-dependent uncertainty with the non-

linear probability mass function and exponentially increasing number of scenarios. Goel

and Grossmann [22] define the stochastic programming model with decision-dependent un-

certainty and use the Lagrangian Duality based Branch and Bound (LDB&B) algorithm

to solve the model. The necessary condition to apply this algorithm by relaxing the non-

anticipativity constraints is that the scenarios s and s′ should either differ exclusively in their

multiple parameters with exogenous uncertainty, or one parameter with endogenous uncer-

tainty. Due to the nonlinear probability of the uncertainty, intuitively, an initial attempt

to solve our model by LDB&B involves linearizing the non-linear terms. The probability

constraints can seem to be non-anticipativity constraints, since the probability distribution

of patient preference is the same for all scenarios. Before applying the Lagrangian relax-

ation of the probability constraints, we check the necessary condition of LDB&B within the

linearization model. The scenarios are jointed with each other based on the realization for
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the choice of patient preferred physician, with the result that LDB&B is not applicable in

our model. In addition to focusing on the stochastic programming, we look at the property

of the decision variables. Since our model is based on the facility location problem, the

main decision is to allocate different physicians to the proper local clinic, which is a typ-

ical combinatorial optimization problem. Zlochin et al. [66] summarize some model-based

search algorithms that can be used on our model, such as the stochastic gradient ascent

and estimation of distribution algorithms. Fu [19] introduces simulation-based methods for

estimating gradients in the optimization problem. Based on the property of combinatorial

optimization, we design two problem-specific hybrid algorithms to solve our model; one is a

combination of the guided local search and gradient decent method, and the other one is a

combination of the Tabu search and large neighborhood search.

We summarize the contributions of this project as follows:

• We introduce the discrete choice model in the facility location and assignment problem

with customer preference and address its health care applications;

• We develop practical algorithms for solving the two-stage stochastic programming prob-

lem with endogenous uncertainty;

• To avoid dealing directly with the exponentially growing number of scenarios, we take

advantage of implicit Sample Average Approximate with Monte Carlo Simulation; and

• We apply the sensitivity analysis while increasing the penalty of unpreferred assignment

to shown the percentage change between the assignment types.

The rest of this chapter is structured as follows: We briefly describe the the physician alloca-

tion and patient assignment problem, and provide three models with different assumptions

in section 2. In section 3, we design two hybrid heuristic algorithms to solve the problem

and compare the computation results. Section 4 concludes the study and discusses options
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for future field-work and implementation.

2.2 Mathematical Models

We formulate the health care problem of multiple physicians as a two-stage stochastic pro-

gramming model consisting of physician allocation followed by patient assignment. In the

first stage, we assume that, for each physician l, there are several outreach clinics to be

allocated. The problem is deciding which outreach clinic j the physician l needs to go to.

The capacities of the clinic and physician are unknown until the allocation is decided. In

the second state, following the allocation decision, the problem is to decide how many pa-

tients from group k are assigned to physician l within the limits of the clinic and physician

capacities.

In economics, Utility Maximization is when, in making a purchase decision, a consumer

attempts to obtain the greatest value possible while spending the least amount of money.

His or her objective is maximizing the total value derived from the available money. In our

problem, we have the same idea that the objective is maximizing the patient’s total utility

derived from the proper physician allocation and patient assignment. The patient’s total

utility is define as Health Care Utilization by Carrasquillo [10]. For different physician as-

signment, patients have different levels of Personal Utility (PU). No assignment lead to a PU

of 0; we call this dissatisfaction. We develop three following models to achieve Maximiza-

tion on Health Care Utilization: the Basic Model (BP), Stochastic programming Model with

Equally Likely Scenarios (SPEL), Decision-dependent Stochastic programming with Discrete

Choice Uncertainty (SPDC). The purpose of these three models is the same, to maximize

the patient total utility. The physician allocation decision of BP assumes the patient always

prefers to be assigned to the physician with a higher PU. However, the two stochastic models,
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SPEL and SPDC consider service quality more than BP does by adding the uncertainty of

patient preference. The difference between SPEL and SPDC is the assumption of probability

distribution.

2.2.1 The Basic Model

The basic model considers the arrangement between the three factors (patient, physician

and clinic) of the health care system without uncertainty. There are two types of decision:

one is the physician allocation ylj which are binary variables that decide which clinic does

the physician visit; another one is patient assignment xki which are continues variables that

decide which physician and how many patient are assigned. In the basic model, the physician

allocation and patient assignment does not happen in time sequence, which means the central

hospital can make these two types of decision at the same time. Our model considers a short-

term case, such as daily health care services. To avoid the waste of available working hours

caused by the physician traveling, we assume each physician is only allowed to allocate once,

Central
Hospital

Patient
Group

Local Clinic

(a) Before Decision

Central
Hospital

Patient
Group

Local Clinic

(b) After Decision

Figure 2.3: The Physician Allocation and Patient Assignment in Basic Model
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Table 2.1: Notation of Basic Model

Symbol Definition

Indices and Sets

j ∈ J outreach clinic

k ∈ K patient group

L ∈ L physician

Parameters

dk the total people size of patient group k

glj the available surgery people size for physician l, if it is assigned to outreach

clinic j

uklj the utility of patient k, if it is assigned to physician l and visit outreach

clinic j

Decision Variable

yjl binary variable, the allocation decision between physician l and outreach

clinic j

x0k continuous variable, the number of unsatisfied patient in group k

x1kl continuous variable, the number of patient in group k assigned to physician l

which means the physician only can visit and work in one clinic. It is a Capacitated Facility

Location Problem (CFLP), that the availability of the patient assignment is restricted by

the physician working hours and clinic spacing. Let consider a small case, we have 2 patient

locations, 3 local clinics and 3 physician in the central hospital, as shown int Figure 4.2. Both

physician and patient need to visit the local clinic to provide services or take treatments.

Due to the capacity constraint, the patient group may be assigned to multiple physician

separately. The notation of basic model is shown in Table 2.1. The deterministic model of
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basic model is shown below:

[BP] max
x,y

∑
k∈K

∑
l∈L

∑
j∈J

(
uklj · yjl · x1kl

)
+m0 ·

∑
k∈K

x0sk (2.1a)

s.t.
∑
j∈J

ylj = 1 ∀ l ∈ L (2.1b)

x0k +
∑
l∈L

x1kl = dk ∀ k ∈ K (2.1c)

∑
k∈K

x1kl ≤
∑
j∈J

(
glj · ylj

)
∀ l ∈ L (2.1d)

∑
k∈K

∑
l∈L

(
ylj · x1kl

)
≤ hj ∀ j ∈ J (2.1e)

yjl ∈ B, x0k ∈ R+, x1kl ∈ R+

The objective (2) is to maximize the quality of the patient assignment measured by the

patient utility respect to the certain physician and clinic. Constraint (2.1b) tells that each

physician is only allowed to allocate to one clinic. The constraint (2.1c) means all patients

should be assigned or unsatisfied. The constraint (2.1d) and (2.1e) means the capacity of

physician and clinics is limited. For any physician l ∈ L in constraint (2.1d),
∑
j∈J

(
glj · ylj

)
is the maximal working time which may varies by physician allocation variable ylj. For

any clinic j ∈ J in constraint, the total assigned patient of all location k respected to the

allocated physician (2.1e).

2.2.2 The Stochastic programming Model with Equally Likely Scenarios

Everyone has personal preferences, and these may affect the choices we make, while the

basic model (BP) doesn’t consider the patient choices. It is important for health care sys-

tems to recognize that patient preferences are associated with how individuals use health
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Patient Group Local Clinic Central Hospital

First Stage
The decision variable is 𝑦𝑦𝑗𝑗𝑗𝑗

(Physician Allocation)

Second Stage
The decision variable is 𝑥𝑥𝑗𝑗𝑗𝑗1 and 𝑥𝑥𝑗𝑗𝑗𝑗2

(Patient Assignment)

(a) Physician Allocation Decision

Patient Group Local Clinic Central Hospital

The Preferred Assignment 𝑥𝑥𝑗𝑗𝑗𝑗1

?

First Stage
The decision variable is 𝑦𝑦𝑗𝑗𝑗𝑗

(Physician Allocation)

Second Stage
The decision variable is 𝑥𝑥𝑗𝑗𝑗𝑗1 and 𝑥𝑥𝑗𝑗𝑗𝑗2

(Patient Assignment)

(b) Patient Preferred Assignment

Patient Group Local Clinic Central Hospital

The Unpreferred Assignment 𝑥𝑥𝑗𝑗𝑗𝑗2

First Stage
The decision variable is 𝑦𝑦𝑗𝑗𝑗𝑗

(Physician Allocation)

Second Stage
The decision variable is 𝑥𝑥𝑗𝑗𝑗𝑗1 and 𝑥𝑥𝑗𝑗𝑗𝑗2

(Patient Assignment)

(c) Patient Unpreferred Assignment

Patient Group Local Clinic Central Hospital

First Stage
The decision variable is 𝑦𝑦𝑗𝑗𝑗𝑗

(Physician Allocation)

Second Stage
The decision variable is 𝑥𝑥𝑗𝑗𝑗𝑗1 and 𝑥𝑥𝑗𝑗𝑗𝑗2

(Patient Assignment)

(d) Utility Maximization

Figure 2.4: The Physician Allocation and Patient Assignment in Stochastic programming
Model

care services, such as giving them choices to choose the physician [42]. So we develop the

stochastic programming model using patient choice as uncertainty, which is following the

discrete uniform distribution, as shown in Figure 2.4.

In this model, we involve the new concept Patient Preference for Physician, which is denoted

as A. akl is the element of row k and column l in matrix A. If the patient k would like to
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choose physician l, this physician is considered as preferred (akl = 1) and other physician

l′ is unpreferred (akl = 0). The stochastic patient preference is approximated by a scenario

tree, which is constructed according to the following steps:

• Individual Probability : For any patient k, there are |L| options to choose the preferred

physician l. Since we have the assumption that the uncertainty is following the discrete

uniform distribution, as shown in n Figure 2.5a, the probability of patient choice is

pkl = Prob(akl = 1) = 1/|L| (2.2a)

• Scenario Probability : For each scenario s, the uncertainty size is |K|, since each patient

has the difference choice, ie. preferred physician. The patient choice is independent,

so the scenario probability is the joint probability of individual probability, as shown

in Figure 2.5b and Figure2.5c.

P s =
∏
k∈K

Prob(akl = 1) =
∏
k∈K

(∑
l∈L

pkl · akl
)

=
1

|L|k
=

1

|S|
(2.2b)

Patient
Group 1

Patient
Group 2

Physician 1 Physician 2 Physician 3

𝑎11 + 𝑎12 + 𝑎13 = 1

𝑎21 + 𝑎22 + 𝑎23 = 1

𝑝11 = 𝑝12 = 𝑝13 = 1/3

𝑝21 = 𝑝22 = 𝑝23 = 1/3

(a) Individual Probability

Figure 2.5: Scenario Tree
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Patient
Group 1

Scenario Construction: Preferred Physician

Patient
Group 2
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3
×
1

3
=
1

9

(b) Scenario Probability

Patient
Group 1

Scenario Construction: Preferred Physician

Patient
Group 2

𝑃1 = 𝑃2 = 𝑃3 = 𝑃4 = 𝑃5 = 𝑃6 = 𝑃7 = 𝑃8 = 𝑃9 =
1

3
×
1

3
=
1

9

(c) Deterministic Equivalent

Figure 2.5: Scenario Tree (cont.)
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Table 2.2: Notation of Stochastic programming Model

Symbol Definition

Indices and Sets

s ∈ S scenario

Parameters

m the penalty if the patient is assigned to unpreferred physician

askl the choice between patient k and physician l

Decision Variable

x0sk continuous variable, the number of unsatisfied patient in group k

x1skl continuous variable, the number of patient in group k assigned to preferred

physician l

x2skl continuous variable, the number of patient in group k assigned to unpreferred

physician l

Based on the patient choices, the patient assignment is separate to two variables. The

additional notation is shown in Table 2.2.

If patient k choose physician l, we will try to satisfy its preference firstly. But sometimes

there is no space for preferred physician l to accept patient k, we will try to reassigned

patient k to another unpreferred physician l′ depending on the utility. In that case, there is

discount factor on patient utility with unpreferred assignment. The deterministic equivalent

is reformulate as below:

[SPEL] max
x,y

E [Q (x, y;ω)] =
∑
s∈S

P s ·Qs (x, y) =
1

|S|
·
∑
s∈S

Qs (x, y) (2.3a)

s.t. Qs (x, y) =
∑
k∈K

∑
l∈L

∑
j∈J

[
ujkl · yjl ·

(
x1skl +m2 · x2skl

) ]
+m0 ·

∑
k∈K

x0k

∀ s ∈ S (2.3b)
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∑
j∈J

yjl = 1 ∀ l ∈ L (2.3c)

x0sk +
∑
l∈L

(
x1skl + x2skl

)
= dk ∀ s ∈ S, k ∈ K (2.3d)

∑
k∈K

(
x1skl + x2skl

)
≤
∑
j∈J

(gjl · yjl) ≤ 0 ∀ s ∈ S, l ∈ L (2.3e)

∑
k∈K

∑
l∈L

yjl ·
(
x1skl + x2skl

)
≤ hj ∀ s ∈ S, j ∈ J (2.3f)

x1skl ≤ askl · dk ∀ s ∈ S, k ∈ K, l ∈ L (2.3g)

x2skl ≤ (1− askl) · dk ∀ s ∈ S, k ∈ K, l ∈ L (2.3h)

yjl ∈ B, x1skl ∈ R+, x2skl ∈ R+, x0sk ∈ R+

Objective function (2) is maximizing the expected total utility considering all the scenarios.

The total utility of each scenario is defined in equation (2.3b), which is similar to objective

function (2) of Basic Model. Constraints (2.3c - 2.3f) are similar to constraint (2.1b - 2.1e)

of Basic Model. The difference is that we separate the assignment to two types: preferred

and unpreferred. Due to the patients’ preference, there are two additional constraints (2.3g,

2.3h) which is used to distinguish the assignment types. The preferred assignment should be

followed patient’s preference, as shown in (2.3g). The unpreferred assignment is only allowed

when the preferred physician doesn’t accept the patient for the reason of limited capacity,

as shown in (2.3h).

2.2.3 The Decision-dependent Stochastic programming with Discrete Choice Uncertainty

(SPDC)

The previous stochastic model (SPEL) considers only the exogenous uncertainty where pa-

tients’ preferences are not related to physician allocation. In the real world, if health care
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planners knew more about patients’ health-related preferences, the provided health care

would most likely be more effective, and closer to the individuals’ desires. in reality, the

characteristics of physicians and locations of clinics also have effect on the patient prefer-

ence. For instance, if a physician is allocated to a remote area, even through the reputation

of this physician is good, the patient will unlikely visit there due to the long travel distance.In

such case, interaction between the decisions and uncertainty would exist in many cases and

thus the endogenous uncertainty must be included. In [65, 64], the probability distributions

of uncertain parameters is impacted by optimization decisions. In our uncertainty defini-

tion, each patient has the discrete random choice on preferred physician. To describe patient

choices between multiple physician, we implement an economics choices prediction model in

our model, ie. Discrete Choice Model (DCM). Since the choice of preferred physician is in-

dependent that fulfilled with multinomial choice without correlation among alternatives, we

use multinomial logit (MNL) model of DCM to find the probability of the patient preference.

pkl (y) =

∑
j∈J

(eujkl · yjl)∑
τ∈L

∑
j∈J

(eujkτ · yjτ )
∀k, l

The distribution of patient preference is depended on physician allocation which means the

uncertainty is endogenous (decision-dependent uncertainty).

max
x,y

Es [Q (x, y; s)] =
∑
s∈S

P s (y)Qs (x, y) (2.4a)

s.t. P s (y) =
∏
k∈K

∏
l∈L

[pkl(y)]a
s
kl ∀s ∈ S (2.4b)

pkl (y) =

∑
j∈J

(eujkl · yjl)∑
τ∈L

∑
j∈J

(eujkτ · yjτ )
∀ k ∈ K, l ∈ L (2.4c)

Model (SPEL) Constraint (2.3b - 2.3h)
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Due to the dicrete choice model, model (SPDC) is non-linear, non-convex problem, which

does not has the existed algorithm to solve it. The easiest method is prefixing the probability

to avoid the non-linear probability function, while it is unsuccesful method. The following

theorem shows the relationship between the optimal solution of model (SPDC) and the

optimal solution of stochastic programming with prefixed probability, which tells why we

cannot use this prefixing method.

Theorem 1. If the distribution of scenarios is fixed based on the optimal solution of model

(SPDC), the new optimal solution of the stochastic programming with exogenous uncertainty

may be not feasible in the original model.

Proof. We consider the model (SPDC) in the generic form (SPGF),

[SPGF] max
x,y

z(x,y) = pᵀUx (2.5a)

s.t. p = f(y) (2.5b)

g(x, y) = h (2.5c)

x ∈ X ,y ∈ Y

where p is the vector of scenario probability, U is the matrix of patient utility. In the right

hand side of equation (2.5b), f is the probability mass function with physician allocation y.

The equality constraint (2.5c) is the capacity constraints, either physician and clinic. Set X

and set Y is the other constraints that only obtain the variable x or y, ie. patient choice

and unique allocation. The optimal solution (x∗,y∗) can be presented below,

(x∗,y∗) = arg max
x∈X ,y∈Y

{
z(x,y)|p = f(y), g(x, y) = h

}
(2.6a)
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Consider the nonempty polyhedral set P =
{

(x,y)|p = p∗
}

where p∗ = f(y∗). Instead of

constraint (2.5b), solve the model (SPGF) within the polyhedral set P , then (x◦,y◦) is the

optimal solution of this stochastic programming with exogenous uncertainty,

(x◦,y◦) = arg max
x∈X ,y∈Y

{
z(x,y)|p = f(y∗), g(x, y) = h

}
(2.6b)

We prove this theorem by contradiction. Suppose the solution (x◦,y◦) is a feasible solution

in model (SPGF), then

z(x◦,y◦) ≤ max
x∈X ,y∈Y

{
z(x,y)|p = f(y), g(x, y) = h

}
= z(x∗,y∗) (2.7)

Since (x∗,y∗) fall in the polyhedral set P =
{

(x,y)|p = f(y∗)
}

and is validated with con-

straint g(x, y) = h, then it is feasible solution of model with fixed probability max
x∈X,y∈Y

{
z(x,y)∣∣∣p = f(y∗), g(x, y) = h

}
. Due to the property of optimality,

z(x◦,y◦) = p∗ᵀUx◦ ≥ p∗ᵀUx∗ = z(x∗,y∗) (2.8)

When (x◦,y◦) 6= (x∗,y∗) and there is unique optimal solution in model with fixed probability

max
x∈X ,y∈Y

{
z(x,y)|p = f(y∗), g(x, y) = h

}
. The objective function value of (x◦,y◦) is strictly

less then the objective function value of (x◦,y◦). The relationship between solution (x◦,y◦)

and solution (x∗,y∗) from our assumption in inequality (2.7) is contradicted to the fact in

(2.8). Thus, (x◦,y◦) is infeasible solution in model (SPDC) when (x◦,y◦) 6= (x∗,y∗).
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2.3 Solution Approaches

The physician allocation problem is combinatorial optimization problem and the patient

assignment is based on the uncertain patient preference. According the model structure

that first stage binary variables and second stage continuous variables, the integer L-shaped

method is the traditional method to solve the mix-integer stochastic programming. La-

grangian relaxation is a method to handle the large-scale problem. While the decision-

dependent uncertainty is a difficulty that we cannot use these two methods. In this section,

we propose the approximation algorithms to solve the health care planning problems at

reasonable computational costs.

2.3.1 Sample Average Approximation

Firstly, we consider large-scale problem size caused by the scenario size. This difficulty hap-

pens in the computation of second stage. The scenario size |S| = |L||K| which is exponential

growth. Since the exogenous uncertain parameter of scenarios cannot be differ exclusively

with each other, Lagrangian relaxation is not able to apply in our model. To handle the

large amount scenarios, Kleywegt, Shapiro, and Mello [33] design the new efficiency method,

sample average approximation (SAA) method. Different to the original SAA, we aim to

solve the problem in reasonable time, so the sample size is pre-defined with the certain con-

fidence level and confidence interval instead updating by the estimated optimality gap. The

modified SAA is shown in Algorithm 1.

There is another difficulty caused by the decision-dependent uncertainty, that is nonlinear

probability function which transit the allocation decision from first stage to the probability

distribution of patient choice in second stage. The basic logic to solve this problem is variable

30



Algorithm 1 Sample Average Approximation (SAA)

1: Initialization: given confidence level (CL), the significance level α = 1 − CL and confi-

dence interval (CI)

2: for each patient index k ∈ K do . Calculate sample size for each patient choice

3: Calculate the variance σ2
k and the mean µk

4: Define the sample size Nk, that the interval
(
µk −

zα/2 · σk√
Nk

, µk +
zα/2 · σk√

Nk

)
is within

the confidence interval

5: return the minimal required sample size Nk ≥ Nk =
z2α/2 · σ2

k

CI2

6: end for

7: Define the sample set N , where the set size is equal to the minimal required sample size

for scenarios |N | = max
k∈K

Nk ≤ ||S|| . Find sample size for scenarios

8: for each sample index n ∈ N do

9: Use Monte Carlo method randomly generate the patient choice matrix An

10: Update the parameters of model (SPDC)

11: Solve subproblem to get the objective value Qn∗

12: end for

13: The objective value of all scenarios can be approximated by
1

|N |
∑
n∈N

Qn∗

separation which is similar to Benders Decomposition (BD). The solution is updated by

adding optimality cut by using BD method, while we design two hybrid algorithms, one is

based on Gradient Ascent Algorithm with minor updated by Guided Local Search, another is

based on Tabu Search Algorithm with minor updated by Large Neighborhood Search. Both

hybrid algorithms can reduce the computation time from exponential to polynomial time.
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2.3.2 Gradient Ascent and Guided Local Search

The first hybrid algorithm method presented here combines Gradient Ascent (GA) and

Guided Local Search (GLS) methods. In this hybrid algorithm, GA provide the framework

to iterative update the physician allocation. Within each iteration of GA, we use the GLS

to create the gap list, which can give the patient sequence to update the physician allocation

one by one. Between two iterations, physician allocation is updated by GA. The computation

complexity is O(L× (J ×N + log(L)), where L is the size of the physician and J is the size

of the clinic. The algorithm of GA-GLS method is shown in Algorithm 2 and Algorithm 3.

Algorithm 2 Gradient Ascent (GA)

1: Initialization: set iteration i = 0, physician allocation yi = 0, sequence si =

{0, 1, ..., |L| − 1}, build and solve model, return maximal objective value z̄ . Start

from Trivial Solution

2: time limit = TL, iteration limit = IT , allocation update = 1 . Stopping Criteria

3: build computation history list Y to save computation time

4: if computation time < TL, i < IT , allocation update == 1 then

5: Run Algorithm 3 Guided Local Search (GLS)

6: else

7: Output Stop Reason ”Overtime” or ”Overiteration” or ”Cannot find better solution”

8: end if

9: The best solution is z̄

Within each iteration, the Guided Local Search (GLS) aimed to find the better solution

following the sequence of gap list. For example, we consider the case of 7 physicians and

3 clinics. At the iteration 0, we assume all the physician will be allocated to clinic 0 and
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Figure 2.6: GA-GLS: Iteration update

the sequence is from physician 0 to physician 6. Within the iteration 0, we compare the

objective function value of different clinic 0,1 and 2 for physician 0 at first, in the meantime,

fix the other physician allocation. The flow chart is shown in figure 2.6.

We pick the best clinics of physician 0 and calculate the gap of the objective function value

between the best clinic and previous clinic. Then we do the same thing for next physician

from the sequence list. After we updated all the physician allocation, we get the GAP list.
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Algorithm 3 Guided Local Search (GLS)

1: allocation update = 0, last solution = z̄

2: create SEQUENCE GAP LIST

3: for each sequence index n ∈ L do

4: return change physician l̂= sn

5: clean the allocation of l̂: yl̂j = 0 ∀j ∈ J

6: for each clinic j ∈ J do

7: return yl̂j = 1

8: check if this allocation is already in the list, if YES, skip, else do

9: Update physician allocation yi and Run Algorithm 1 Sample Average Appoxima-

tion (SAA)

10: return objective value zj, and add allocation decision and objective value in the

computation history list

11: end for

12: z = maxj{zj}

13: if z ≥ z̄ then

14: z̄ = z

15: return allocation update = 1

16: end if

17: return sequence gapn = z−last solution

18: end for

19: i = i+ 1

20: sort sequence gap, and update the sequence of next iteration si
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The patient who has the lower gap will have higher priority to allocate in the next iteration.

The flow chart is shown in figure 2.7.

Figure 2.7: GA-GLS: Create gap list and Find sequence

2.3.3 Tabu Search and Large Neighborhood Search

The second hybrid algorithm method presented here combines Tabu Search (TB) and Large

Neighborhood Search (LNS) methods. In this algorithm, we use the Tabu Search method to

create the tabu list of each iteration, which can jump out of the local optimum by forbidding

the same physician allocation. Within the iteration, physician allocation is updated by Tabu

Search method. The algorithm of TB-LNS method is shown in Algorithm 4.

We consider the same example with the previous algorithm. Within the iteration, we only

change one physician allocation, and pick the best change into the tabu list. In the next

iteration, if the new objective function value is lower than the best solution, we keep add

the new allocation decision into the tabu list, until we find the one solution is better than
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Algorithm 4 Tabu Search (TB) - Large Neighborhood Search (LNS)

1: Initialization: set iteration i = 0, physician allocation yi = 0, create the tabu list which

is used to avoid the local minimal solution y, build and solve model . Start from

Trivial Solution

2: return maximal objective value z̄, and add it into the tabu list

3: time limit = TL, iteration limit = IT , allocation update = 1 . Stopping Criteria

4: build computation history list Y to save computation time

5: if computation time < TL, i < IT , allocation update == 1 then

6: if not in the Tabu list then . at iteration i = 0, tabu list is empty

7: Run Algorithm 1 Sample Average Appoximation (SAA)

8: add the ŷ and Q̂(x; s) in the tabu list

9: end if

10: do nothing, change to another direction . in the tabu list

11: if Q̂(x) ≥ LB then

12: UPDATE the lower bound LB = Q̂(x)

13: end if

14: else

15: output solution . meet the stopping criteria

16: end if

all solution of the tabu list. Then the tabu list will be cleaned and add the current best

allocation decision into the tabu list. Any physician allocation decision in the tabu will be

forbidden in the next iteration. The computation complexity is O(L× (J ×N + 1)).
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Figure 2.8: TB-LNS: Iteration update
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2.4 Computational Results

Numerical experiments and results of different algorithms are presented in this section on

solving model (SPDC). We randomly generate 5 data sets, from small size (2 Patient Groups,

4 Physicians, 2 Clinics) to large size (10 Patient Groups, 50 Physicians, 5 Clinics). The

largest date set is similar to a health care system of median city. The algorithms are coded

in Microsoft Visual Studio 2015 C++ linked with CPLEX 12.8. All the programs are run

in Microsoft Windows 10 Professional operating system with Intel Xeon CPU E3-1535M v6

3.10GHz and 16GB RAM.

2.4.1 Algorithm Comparison

In the SPDC model, the GA-GLS method is increasing faster than TB-LNS method at

beginning, but the TB-LNS can jump out of the local optimal solution. Figure 2.9 shows the

objective value updating with the time increasing. In table 2.3, we compare the computation
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Figure 2.9: GD-GLS and TB-LNS computation time and lower bound
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Figure 2.9: GD-GLS and TB-LNS computation time and lower bound (cont.)

result accuracy and time in five methods: direct method, GA-GLS, TB-LNS, GA-GLS with

SAA and TB-LNS with SAA. The parameter of objective function is defined with discount

factor of unpreferred assignment m2 = 0.5 and penalty of no assignment m0 = 5. To decide

the Monte Calo sample size in sample average approximation algorithm, we use 3 different

confidence level (two-side) of each data set, that are 90.0%, 99.0% and 99.9%. Since the

data set size is exponentially increasing, we define the confidence intervals of the small data

sets are 0.01µ, the large data sets are 0.10µ.
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Table 2.3: Computation Time 1and Solution Comparison

Data Set

(|K|, |L|, |J |)
Direct

Method
GA-GLS TB-LNS

Confidence

Interval

GA-GLS with SAA TB-LNS with SAA

90.0% 99.0% 99.9% 90.0% 99.0% 99.9%

(2, 4, 2)

Time 0.044 0.018 0.016

0.01

0.534 1.301 5.334 1.255 3.213 5.001

Optimal 608.54 608.54 608.54 608.738 608.64 608.61 608.73 608.64 608.61

Gap N/A 0.00% 0.00% 0.032% 0.016% 0.011% 0.032% 0.016% 0.011%

(3, 5, 2)

Time 0.459 0.109 0.109

0.01

0.110 0.159 0.226 0.090 0.146 0.200

Optimal 1186.29 1186.29 1186.29 1186.8 1186.7 1186.4 1186.85 1186.70 1186.46

Gap N/A 0.00% 0.00% 0.046% 0.035% 0.014% 0.046% 0.035% 0.013%

(4, 7, 3)

Time 653.424 11.536 14.877

0.01

4.846 10.298 20.895 11.320 28.604 48.613

Optimal 1652.87 1496.18 1652.87 1496.30 1496.43 1496.48 1653.11 1652.88 1652.86

Gap N/A 9.48% 0.00% 9.473% 9.465% 9.462% 0.015% 0.001% 0.001%

(6, 10, 4)

Time – 2 3050.75 233.733

0.10

3.485 5.609 7.501 516.30 1580.03 1144.83

Optimal – 2511.84 664.877 2513.13 2513.98 2514.11 2555.45 2557.97 2551.01

Gap N/A N/A N/A N/A N/A N/A N/A N/A N/A

(10, 50, 5)

Time – – –

0.10

720.977 720.310 738.437 8444.37 8465.27 8461.92

Optimal – – – 3724.59 3724.59 3724.59 3726.43 3726.43 3726.43

Gap N/A N/A N/A N/A N/A N/A N/A N/A N/A

1The computation time of the largest dataset (10, 50, 5) is limited in 18000 sec. The other dataset is solved in 3600 sec.

2–: out of memory or timelimit.
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2.4.2 Sensitivity Analysis

In this section, we discuss the correlation between the assignment type and the assignment

penalty. To analysis the sensitivity of the total utilization of all patients, we change the

weight of the unpreferred assignment and penalty of the unsatisfied patient.

We run the Algorithm TB-LNS with date set (K = 4, L = 7, J = 3), the sensitivity

analysis result is shown in Figure 2.10. The weight of no assignment m0 has barely impact

on the solution, while the objective value has significantly positive correlation with the

weight of unpreferred assignment m2. We also compare two different stochastic programming

models, model (SPEL) and model (SPDC). To see which model is able to get higher patient

satisfaction, suppose we just replaced the physician allocation optimal decisions with discrete
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Figure 2.10: Sensitivity Analysis of Data Set: K = 4, L = 7, J = 3
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choice model by Equally Likely Scenarios decisions and solved that problem, then we define

the Value of Discrete Choice Model (VDC) as below:

V DC = zSPDC(x∗)− zSPDC(xo)

x∗ = arg max
x

zSPDC(x)

xo = arg max
x

zSPEL(x)

When the there is no penalty on unsatisfied assignmentm0 and the no difference on the weight

of preferred and unpreferred assignment m2, the value of discrete choice model V DC =

0. Figure 2.11a shows the VDC has negative correlation with the weight of unpreferred

assignment, except the allocation decision changed which shown in figure 2.11b.
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CHAPTER 3: REINFORCEMENT LEARNING IN

INFORMATION CASCADE BASED ON DYNAMIC USER

BEHAVIOR

In this project, we study the Influence Maximization problem based on Information Cascade

within a Random Graph, where the network structure is dynamically changed by the user’s

uncertain behavior. We use the Discrete Choice Model to build the probability distribution

of the directed arc between any two nodes in a random graph. In our problem, the Dis-

crete Choice Model provides a good description and prediction of user behavior in terms

of following or not following the neighbor node. To find the maximal influence at the end

of a finite time horizon, we model this problem by Multi-Stage Stochastic Programming,

which can help the decision maker to select the optimal seed node to broadcast messages

efficiently. Since the computation complexity grows exponentially with the network size and

time horizon, the original model is not solvable within a reasonable time. We have two

approaches for approximating the optimal decision: One is the Myopic Two-Stage Stochas-

tic Programming at each time period, while the other one is Reinforcement Learning using

the MDP. Computational experiments shows that the Reinforcement Learning method has

better performance than Myopic method does in a large-scale network.

3.1 Introduction

Cascading phenomena are typically characterized by a dynamic process of information prop-

agation between nodes in a network, where nodes can rebroadcast or repost information

from and to their neighbors. Moreover, the content and value of information may affect
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not only the reach (or depth) of a cascade but also the topology of the underlying network.

This is due to the effects whereby nodes may either sever their ties with neighboring nodes

where the transmitted information is deemed unreliable and/or malicious or form new ties

with nodes transmitting “reliable” information. In an information cascade, people observe

the choices of others and make decisions based on these observations while considering their

personal preference. This phenomenon usually arises in the field of behavioral economics and

other social sciences. For example, in Viral Marketing, information cascade is the process of

spreading information about a product with other people in their social networks, where the

objective is to promote a product using existing social networks. A recent study of social

networks suggests that such processes may occur in a “bursty” fashion, that is, the pat-

terns of network links change abruptly as a result of significant information cascades. Thus,

new information may create a burst of node activations and edge activations/deactivations

in a network. In a decentralized autonomous network, agents or nodes act independently

and behave according to their utility functions. To model their autonomous behaviors, we

implement the concepts of discrete choice models from behavioral economics.

3.1.1 Literature Review

In general, the nature of information cascades can be described as follows. When a node

of a network adopts certain information, it is “activated” [32]. The definition presented

in [27] states, an activation sequence is an ordered set of nodes capturing the order in

which the nodes of the network adopted a piece of information. The first node in the

activation sequence is seed node. Spreading cascade is a directed tree having as a root

the first node of the activation sequence. The tree captures the influence between nodes

(branches represent who transmitted the information to whom) and unfolds in the same

order as the activation sequence. There are two typical information diffusion models, namely,
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Independent Cascade [23] and Linear Threshold [25]. Our study is based on the assumption

of Independent Cascade model. Saito, Nakano, and Kimura [53] propose the Expectation

Maximization algorithm to predict the information diffusion probabilities in the Independent

Cascade model. Chen, Wang, and Wang [11] apply the Influence Maximization problem with

an Independent Cascade model in the prevalent viral marketing. Furthermore, Wang, Chen,

and Wang [60] has shown for the first time that the computing influence spread in the

Independent Cascade model is NP-Hard; these researches have designed a new heuristic

algorithm that can easily scale up compared with the greedy algorithm proposed by Kempe,

Kleinberg, and Tardos [32].

Distinct from the previous research on the Independent Cascade model, we consider the infor-

mation diffusion probabilities or the network topology probabilities as dynamically changing

with the user behavior. Oinas-Kukkonen [49] has introduced the concept of behavior change

support systems. Based on this work, Ploderer et al. [51] find ample evidence of the strong

influence exerted by social interaction on people’s behaviors. Yu et al. [63] conduct extensive

statistical analysis on large-scale real data and find that the general form of Exponential,

Rayleigh and Weibull distribution can well preserve the characteristics of behavioral dynam-

ics. From Yu et al. [63]’s paper, the Networked Weibull Regression model for behavioral

dynamics modeling significantly improves the interpretability and generality of traditional

survival models.

3.1.2 Our Contributions

To maximize the influence of the information provider within a limited time, we model

problem as an seed selection problem of information spreading in dynamic networks with

random graphs. In the social network, each user may has three roles, which are those of source
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user, message sender (followee of neighbors), and message receiver (follower of neighbors).

We decompose our problem into two process;

• Seed Selection: This can be controlled by the information provider, which selects a

proper set of initial seeds that will initialize the information diffusion process;

• Information Cascade: This includes two variables. One is the node activation status,

which describe the process that the user receives message from their followee. The

other one is the node repost decision, which is controlled by the message receiver. In

our model, the repost decision depends on the user preference and the received message

type.

In this project, we propose an information maximization model through independent cascade

with random graphs. For the network properties, the network size and node preference is

given and fixed, while the friendships between any two users (arc connection) are dynamically

changed. Our model can help the decision maker choose the optimal action when facing an

uncertain network topology. The stochastic formulation considers endogenous uncertainty,

which is represented by the binary choice probability distribution of arc connection between

any two nodes. To solve this problem, we design two problem-specific algorithms, one is

two-stage stochastic programming with a myopic policy, while the other is reinforcement

learning with the MDP.

We summarize the contributions of this project as follows:

• We introduce the discrete choice model in the information maximization problem,

where the distribution of network topology is dynamically changing during the Inde-

pendent Cascade;

• We develop the practical algorithms for solving the multi-stage stochastic programming

problem with endogenous uncertainty;
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• To avoid directly dealing with large state spaces of node activation, we take advantage

of the implicit Monte Carlo-Based Partially Observable Markov Decision Process (MC-

POMDP); and

• We compare the results using two algorithms and different sample size.

The rest of this chapter is structured as follows: We briefly describe the information maxi-

mization and information cascade problem in random graphs with a finite time horizon, and

we provide the original multi-stage stochastic programming models with several assump-

tions in Section 3.2. In Section 3.3, we design two algorithms to solve this problem. The

computational results are shown in Section 3.4.

3.2 Mathematical Models

In a social network, the information is transmitted between users. Initially, some nodes

will be selected as seed nodes, which are the source users for broadcasting messages in the

network. During the information cascade, each node may have two roles, that of message

receiver, who is activated with a certain message by a neighbor, and message sender, who

reposts the received message to the neighbor. Information providers have several messages

on hand, and they want to maximize their influence in a network. While the users of the

network may have different preferences on the different messages, which node is good to be

a seed node is a problem that the information provider faces.

For each period, the information provider will select the seed node to post a certain mes-

sage in the social network. Sometimes, it is the initial posting of a certain message, while

sometimes it is a repeated post to increase the network activity. Once the source user posts

the message, the followers of source user automatically receive the information. The follower
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make decisions message based on their preferences. As the user has multiple roles in the

social network, the follower also acts as the followee of other users. The information flows

are always from followee to follower. The track of the information transmission has an in-

fluence on the network topology, which means the user relationship or the arc connection

is dynamically changed. Since the influence maximization problem has uncertainty on the

network topology, we model this problem by stochastic programming, and the objective is

maximizing the total influence on the finite time horizon. The influence is measured by the

seed cost and node activation.

3.2.1 Problem Description

To show the information cascade process of our problem clearly, we give a simple example

here. Considering viral marketing in a random network G(n, p), a company wants to promote

two products in a network with uncertain topology. To maximize the company influence, the

company wants to select certain nodes as influencers to post the promotion message in the

network. Figures 3.1 and 3.2 give us an information cascade example in a 4-node network.

Before seed selection, we know the node preference in terms of the message type. During the

Figure 3.1: Given Network Properties
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information cascade, the network topology is dynamically changed and decision-dependent.

Assume there are two types of message, blue and green, and the initial arc probability of

the random graph p = 0.5. Some node may already know the messages before information

cascade. All the given network properties are shown in Figure 3.1.

Within one period, the information cascade usually includes four steps, as follows: seed selec-

tion, message transmission (node send messages), node activation (node receive messages),

and updating network topology probability. When the message provider selects the seed, the

message is broadcast by the seed node in the network, but it cannot guarantee all the other

nodes of the network will received the message. Only followers are able to receive the message

Figure 3.2: Information Cascade in Time Horizon |T | = 2
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Figure 3.2: Information Cascade in Time Horizon |T | = 2 (cont.)

from the message sender. After the information transmission, the network topology may be

changed. For a message receiver, it has a high chance of disconnecting the link from the

followee if the received message and follower’s preference is mismatched. This means some

directed arcs will break down even if it may be connected in the last time period, which is
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due to the uncertain topology. This uncertain topology is modeled by discrete choice model

with two alternatives. Figure 3.2 shows the information cascade of two messages in a 4-node

network within the time horizon T = 2.

At time t = 0, node i = 1 is selected as the seed node of message BLUE and node i = 2 is

selected as the seed node of message GREEN. Then, these two nodes will broadcast messages

in the network. The initial probability of the directed arc connection between any two nodes

is 0.5. When message transmission occurs, the real topology is as shown in the fourth picture

of Figure 3.2. The arc from node 1 to node 3 is disconnected, and the arc from node 2 to

node 4 is disconnected; this means node 3 cannot receive message BLUE and node 4 cannot

receive message GREEN. Since nodes 1 and 2 are seed nodes, they are activated alone. Node

2 is activated from message BLUE by node 1. Since node 2 dislikes message BLUE, it will

break the friendship from node 1 to node 2. We use the utility of measuring the friendship.

When the node initially receives the message, we assume it has double effect on the utility

changing. We reduce the 2 utility from node 1 to node 2, because it is the first time node

1 to receives this message. Node 4 is also activated with message BLUE by node 1. Since

node 4 likes this message and never receive this message in all the previous time periods,

node 4 will decide to repost this message in the network. The utility from node 1 to node 4

will be increased by 2.

The topology probability of the directed arc connection at the next time period is updated

by the utility changing. For example, the probability of a directed arc from note 1 to node

2 is updated as

Prob(at=1
12 = 1) = Prob(at=1

12 = 1|at=0
12 = 1)

=
1

1 + exp(−ut=0
12 )

= 0.1192
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where at12 is the directed arc connection status at time t and ut12 is the utility at time t if

at12 = 1. The details of probability updating are explained in Subsection 3.2.2.

3.2.2 Mathematical Formulation

We formulation the Independent Cascade within Random Graph (ICRG) problem by using

stochastic programming model. In our model, the independent cascade include 3 decision

variables, seed selection x, node activation y, message transmission z. The notation is shown

in Table 3.1.

The original stochastic programming model [SP] is shown below:

[SP] max
x,y,z

E (Q(x), R(y); ε) =
∑
s∈S

P s(a) · (Rs(y)−Qs(x)) (3.1a)

s.t. P s(aij) =
∏
t∈T

∏
i∈I

∏
j∈I\{i}

Prob(at,sij = 1) ∀ s ∈ S (3.1b)

Rs(y) =
∑
k∈K

∑
i∈I

wk · (2bki − 1) · (yt=|T |,ski − cki) ∀ s ∈ S (3.1c)

Qs(x) =
∑
t∈T

∑
k∈K

∑
i∈I

xt,ski ∀ s ∈ S (3.1d)

xt,s = xt,s+1 t ∈ T , s ∈ S \ S̄t (3.1e)

yt,ski = max{cki, xt,ski } ∀ t = 0, k ∈ K, i ∈ I (3.1f)

zt,ski = xt,ski ∀ t = 0, k ∈ K, i ∈ I (3.1g)

yt,ski = max
{
xt,ski , y

t−1,s
ki , max

j∈I\{i}
{at,sji · z

t−1,s
kj }

}
∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I

(3.1h)

zt,ski = max
{
xt,ski , bki · (y

t,s
ki − y

t−1.s
ki )

}
∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I

(3.1i)
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Table 3.1: Notation of Multi-Stage Stochastic programming Model

Symbol Definition

Indices and Sets

i ∈ I node

k ∈ K message

t ∈ T time

s ∈ S scenario

Parameters

at,sij the directed arc from node i to node j

bki the information preference of node i with respect to message k

cki the pre-activation, that node i has known or has not known the message k

before the seed selection

wk the influence weight of message k

Decision Variable

xtki binary variable, seed selection, whether the node i is selected as the seed node

of message k at time t

yt,ski binary variable, node activation, whether the node i is activated by message k

at time t and scenario s

zt,ski binary variable, message transmission, whether the node i decide to transmit

message k to its neighbor at time t and scenario s

x ∈ B, y ∈ B, z ∈ B

In objective function (3.1a), the total influence has two parts: one is the seed cost Q(x), the

other one is activation reward R(y). Constraint (3.1b) shows the probability of scenario s

depend on the probability of arcs between any two nodes. The directed arc aij from node i

to node j is random variable, which is following logit binary choice model with utility Uij.
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Utility Uij is a function to measure the user friendship or the strength of arc connection,

which includes two term: observed utility uij and unobserved utility εij. The observed utility

ut,sij at time t and scenario s is cumulative impact from node i to node j with all kinds of

message type. The current direct arc at,sij from node i to node j decide the impact happen

or not, the impact sign is decided by the preference bkj of message k and node j, and the

impact amount is decided by the transmission decision zt−1,ski of message k and node i at last

moment. The unobserved utility εt,sij is assumed to have a logistic distribution.

U t,s
ij = ut,sij + εt,sij ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

Ū t,s
ij = ut−1,sij + ε̄t,sij ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

at+1,s
ij =

1, U t,s
ij > Ū t,s

ij

0, U t,s
ij ≤ Ū t,s

ij

∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

εt,sij ∼ Logistic ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

Before the information cascade, there is no message transmission and each node doesn’t

know anything from the other nodes. Whether connect or disconnect, the observed utility

is always be 0.

ut,sij = ūt,sij = 0 ∀ t = −1, s ∈ S, i ∈ I, j ∈ I \ {i}

U t,s
ij = 0 + εt,sij ∀ t = −1, s ∈ S, i ∈ I, j ∈ I \ {i}

Ū t,s
ij = 0 + ε̄t,sij ∀ t = −1, s ∈ S, i ∈ I, j ∈ I \ {i}

Prob(at+1,s
ij = 1) = Prob(U t,s

ij > Ū t,s
ij ) = 0.5 ∀ t = −1, s ∈ S, i ∈ I, j ∈ I \ {i}

At the initial time period t = 0, seed node broadcast the message in the network, and some
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node may received message from the seed node.

ut,sij =
∑
k∈K

(2bkj − 1) · at,sij · x
t,s
ki ∀ t = 0, s ∈ S, i ∈ I, j ∈ I \ {i}

ūt,sij = 0 ∀ t = 0, s ∈ S, i ∈ I, j ∈ I \ {i}

U t,s
ij = ut,sij + εt,sij ∀ t = 0, s ∈ S, i ∈ I, j ∈ I \ {i}

Ū t,s
ij = 0 + ε̄t,sij ∀ t = 0, s ∈ S, i ∈ I, j ∈ I \ {i}

Prob(at+1,s
ij = 1) = Prob(U t,s

ij > Ū t,s
ij ) =

1

1 + exp(−ut,sij )
∀ t = 0, s ∈ S, i ∈ I, j ∈ I \ {i}

From time t = 1 to the end of time horizon t = T , except the seed node, the other node who

received message also involve in the message transmission.

ut,sij =
t∑

τ=0

∑
k∈K

(2bkj − 1) · at,sij · z
t,s
ki ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

ūt,sij =
t−1∑
τ=0

∑
k∈K

(2bkj − 1) · at,sij · z
t,s
ki ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

∆ut,sij = ut,sij − ū
t,s
ij =

∑
k∈K

(2bkj − 1) · at,sij · z
t,s
ki ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

U t,s
ij = ut,sij + εt,sij ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

Ū t,s
ij = ūt,sij + ε̄t,sij ∀ t ∈ T , s ∈ S, i ∈ I, j ∈ I \ {i}

Prob(at+1,s
ij = 1) = Prob(U t,s

ij > Ū t,s
ij ) =

1

1 + exp(−∆ut,sij )
∀ t = 0, s ∈ S, i ∈ I, j ∈ I \ {i}

The total seed cost equals to the number of seed node. The reward equals to the weighted

average of final active node amount. Constraint (3.1c) shows the activation reward depends

on message weight, node preference and node activation status y at end of the time horizon

t = |T |. Constraint (3.1e) is nonanticipativity constraint, the scenario subset S̄t define as
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below:

S̄t = {s ∈ S | s = |S| · τ

|A|t
∀ τ = 1, · · · , |A|t ∀ t ∈ T ∪ {0}

where the directed arc size is I · (I − 1), the combination of all arcs status is |A| = 2I·(I−1),

and the scenario set cardinality |S| = |A||T | = 2|I|·(|I|−1)·|T |.

The information cascade process is limited by 4 constraints. Constraints (3.1f, 3.1g) define

the initial node activation and transmission decision at time t = 0. Constraints (3.1h, 3.1i)

define the information diffusion rule from time t = 1 to the end t = |T |.

In constraint (3.1f), some node are active node at beginning because it has already known

this message cki or it is selected as seed xki. So the initial time period t = 0, node is not

active node if and only if it didn’t know the message before k and it is not selected as seed

node. Due to the binary property, constraint (3.1f) can be linearized by the equation below:

1− ytki = (1− cki) · (1− xtki) ∀ t = 0, k ∈ K, i ∈ I (3.1f-L)

The initial message transmission happen if and only if the node is selected as seed node,

shown in constraint (3.1g).

Except the seed selection, the node may also be activated by two causes from time t = 1 to

the end t = |T |, shown in constraint (3.1h). One is once node i was activated by message k

at previous time period t− 1, it will be active node in the future. The other one is at least

one of the followees transmit the message k at the previous time period t − 1. Constraint

(3.1h) can be linearized by the following inequalities:

yt,ski ≥ xtki ∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I (3.1h-L1)
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yt,ski ≥ yt−1,ski ∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I (3.1h-L2)

yt,ski ≥ at,sji · z
t−1,s
kj ∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I, j ∈ I \ {i}

(3.1h-L3)

yt,ski ≤ xtki + yt−1,ski +
∑

j∈I\{i}

at,sji · z
t−1,s
kj ∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I (3.1h-L4)

Constraint (3.1h-L3) is based on independent cascade assumption, that means the node will

be activated (yt,ski = 1) if the neighbor node (at,sji = 1) decide to transmit message (zt−1,skj = 1).

For node i, we define the number of all the neighbors as degree DEGi =
∑

j∈I\{i}
aji. Since one

of the neighbor transmit message, the receiver node will be activated, constraint (3.1h-L3)

for all neighbour node j can be aggregated by the receiver node i.

yt,ski ≥

∑
j∈I\{i}

at,sji · z
t−1,s
kj∑

j∈I\{i}
at,sji

∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I (3.1h-L3-A)

Constraint (3.1h-L4) shows the node is deactivated if all the possible activation causes are

failed.

Constraint (3.1i) shows node i has two motivation to transmit message k. One is node i

is selected as seed, the other one is node i is new active node of message k and like this

message. Constraint (3.1i) can be linearized by the following inequalities:

zt,ski ≥ xtki ∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I (3.1i-L1)

zt,ski ≥ bki · (yt,ski − y
t−1,s
ki ) ∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I (3.1i-L2)

zt,ski ≤ xtki + bki · (yt,ski − y
t−1,s
ki ) ∀ t ∈ T , s ∈ S, k ∈ K, i ∈ I (3.1i-L3)

Constraint (3.1i-L2) is based on independent cascade assumption, that means the node is
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willing to transmit message (zt,ski = 1) if it like this message (bki = 1) and it just activated

(yt,skj = 1) and never know this message before (yt−1,skj = 0). Constraint (3.1i-L3) shows the

node decide not to transmit message if all the transmission motivation are invalid.

The computation complexity of this model is O(2|K||I|·log|T ||S|·|T |). To reduce the complexity,

we add an assumption of seed selection, that the decision maker only allow to select one seed

node of each message within one time period. It is formulated by the following constraint:

∑
i∈I

xt,ski = 1 ∀ s ∈ S, t ∈ T ∪ {0}, k ∈ K (3.1d-A)

After adding this assumption, the computation complexity is reduced to O(|I||K|·log|T ||S|·|T |)

and the objective function (3.1a) can be simplified as below:

max
x,y,z

E (Q(x), R(y); ε) =
∑
s∈S

P s(a) · (Rs(y)−Qs(x)) = −|T + 1| · |K|+
∑
s∈S

P s(a) ·Rs(y))

(3.1a-A)

3.3 Solution Approaches

Since the network topology is dynamic changed, the decision maker is faced to an unstable

node friendship. The uncertain directed arc connection lead to the scenario size exponentially

growth with the network size |I| and time horizon |T |. To handle the large-scale scenarios,

we have two approaches to solve the information cascade in random graph problem:

• Myopic Policy: does not explicitly use any forecasted network topology and separate

the multi-stage into several two-stage problems (MYSP) by discrete time.

• Reinforcement Learning: reformulate the Stochastic programming model to Markov

Decision Process (MDP)
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3.3.1 Two-Stage Stochastic programming with Myopic Policy

Different to the original model, myopic model focus on current network topology and ignore

the future changing on arc. The seed selection(xt) is only based on current user connection

(at) and aims to find the local maximal influence on node activation of next time period

(yt+1).

xt = arg maxR(yt+1, at)

Table 3.2: Notation of Myopic Two-Stage Stochastic programming Model

Symbol Definition

Indices and Sets

i ∈ I node

k ∈ K message

s ∈ S scenario

Parameters

asij the directed arc from node i to node j

bki the information preference of node i with respect to message k

cki the pre-activation, that node i has known or has not known the message k

before the seed selection

dki the node repost decision, that node i will repost message k in the network

wk the influence weight of message k

Decision Variable

xki binary variable, seed selection, whether the node i is selected as the seed node

of message k at time t

yski binary variable, node activation, whether the node i is activated by message k

at time t and scenario s
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By using the myopic method, the multi-stage problem is decomposed to several two-stage

problem. The first stage variable is seed selection, and the second stage variable is node

activation and node repost decision. The given parameters are including the node prefer-

ence, the probability of current network, and the node repost decision of the previous time

period. Since we select seed to find the maximal expected influence at current time period,

the decision only happens within one time period. Then the time index and set can be

removed and the node repost decision of the previous time period should be added in the

known parameter. The notation of myopic model is shown in Table 3.2. The mathematic

formulation of myopic model is shown below:

[MYSP] max
x,y

E(R(y); ε) =
∑
s∈S

P s(a) ·Rs(y) (3.2a)

s.t. P s(a) =
∏
i∈I

∏
j∈I\{i}

Prob(asij = 1) ∀ s ∈ S (3.2b)

Rs(y) =
∑
k∈K

∑
i∈I

wk · (2bki − 1) · (yski − cki) ∀ s ∈ S (3.2c)

∑
i∈I

xki = 1 ∀ k ∈ K (3.2d)

yski ≥ cki ∀ s ∈ S, k ∈ K, i ∈ I

(3.2e)

yski ≥ xki ∀ s ∈ S, k ∈ K, i ∈ I

(3.2f)

yski ≥

∑
j∈I\{i}

asji · (dki + xkj − dki · xkj)∑
j∈I\{i}

asji
∀ s ∈ S, k ∈ K, i ∈ I

(3.2g)
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yski ≤ cki + xki +
∑

j∈I\{i}

asji · (dki + xkj − dki · xkj) ∀ s ∈ S, k ∈ K, i ∈ I

(3.2h)

x ∈ B, y ∈ B, z ∈ B

When time t > 0, some known parameters is given by the previous myopic model.

cki = ŷki ∀ k ∈ K, i ∈ I

dki = bki · (ŷki − ĉki) ∀ k ∈ K, i ∈ I

uij =
∑
k∈K

(2bkj − 1) · âij · (d̂ki + x̂kj − d̂ki · x̂kj) ∀ i ∈ I, j ∈ I \ {i}

Prob(asij = 1) =
1

1 + exp(−uij)
∀ i ∈ I, j ∈ I \ {i}

where ŷki is the activation status using the decision of previous seed selection x̂kj, ĉki is the

parameter of previous myopic model, and d̂ki is the node repost decision using the decision of

previous seed selection x̂kj. The parameter transition between two myopic models is shown

in Figure 3.3.

3.3.2 Reinforcement Learning with Markov Decision Process

Our problem can be defined as a Markov Decision Process (MDP), that how information

provider choose source user when facing the given information activation status of all user in

the network. We use the Reinforcement Learning to learn the policy based on state-action

pairs (s,a). The notation of reinforcement learning with Markov decision process model is

shown in Table 3.3. In general, MDP is described by a 4-tuple (S,A, P,R), which are the

states, actions, transitions, and reward. In our problem, these four terms are defined as

below.
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• S: the finite set of state, ie, activation status, s ∈ S

• A: the finite set of action, ie, source user selection, a ∈ A

• P : the probability of transition from s to s′ through action a, Pa(s, s
′)

• R: the expected reward of transition from s to s′ through action a, ie, weighted

information influence, Ra(s, s
′)

The probability function is not unknown since the network topology is uncertainty. The

reward function is shown below:

R(s, s′) =
∑
k∈K

∑
i∈I

wK · (s′ki − ski) (3.3a)

We will introduce the Q-learning algorithm to compute optimal policies, which includes

policy evaluation and policy inprovement.

Figure 3.3: Myopic Model: Parameter Transition
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Policy Evaluation

If we have a policy, the probability of actions taken at each state are known. Then the MDP

is turned into a Markov chain (with rewards). We can compute the expected total reward

collected over time using this policy. For given policy π(s), the state-value function Qπ(s,a)

is used the evaluated the policy value.

Qπ(s,a) = Eπ
(
R(s, s′) + γ ·

∑
a′∈A

π(s′,a′) ·Qπ(s′,a′)
)
∀ s ∈ S, a ∈ A (3.3b)

where γ is the discount factor and π(s,a)is the probability to take action a at state s.

Consider a network with node size |I| = 4 and information size |K| = 2. The size of state

Table 3.3: Notation of Reinforcement Learning with Markov Decision Process Model

Symbol Definition

Indices and Sets

i ∈ I node

k ∈ K message

Parameters

bki the information preference of node i with respect to message k

wk the influence weight of message k

ρij the probability of arc connection from node i to node j

Variable

σki the element of state matrix s ∈ S in row k and column i, that the activation

status of node i by message k

αki the element of action matrix a ∈ A in row k and column i, that the seed

selection of node i by message k
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set is |S| = 2|K|·|I| = 256 and the size of action set |A| = |I||K| = 16. Given initial state (no

activation) s, the information provider has a trivial policy π(s), that each node has equally

probability to be seed.

s =

 σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24︸ ︷︷ ︸
user i




in
fo
rm

a
tio

n
k

=

 0 0 0 0

0 0 0 0



π(s) =

 α11 α12 α13 α14

α21 α22 α23 α24︸ ︷︷ ︸
user i




in
fo
rm

a
tio

n
k

=

 0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25



We run several simulations of independent cascade with random actions and discount factor

γ = 1. The average final influence of each action is shown in Table 3.4. Figure 3.4 shows the

same policy is applied in different state to calculate the expected total reward, that is the

Table 3.4: Example of Policy Evaluation

state action influence

s a Qπ(s,a)

(
0 0 0 0

0 0 0 0

)

(
1 0 0 0

1 0 0 0

)
3.27869(

1 0 0 0

0 1 0 0

)
3.09836(

1 0 0 0

0 0 1 0

)
3.22414

...
...(

0 0 0 1

0 0 0 1

)
3.90909
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Figure 3.4: Reinforcement Learning: Policy Evaluation
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total activated node at end of the time horizon.

Policy Improvement

Based on the simulation result, we create a final reward (weighted total influence) list Q(s,a)

by state and action, which is used to improve the policy. π(s,a) and π′(s,a) are old policy

and new policy. The action set A is splitted to two subset. A1 is the set of all happened

action, A0 is the set of all unhappened action.

π′(s,a) =


(1−

∑
a∈A0

π(s,a)) · Q(s,a)− Q̂(s, a)∑
a∈A1

Qπ(s,a)− Q̂π(s,a)
, ∀ a ∈ A1, s ∈ S

π(s, a), ∀ a ∈ A0, s ∈ S

Q̂(s,a) = λ · min
a∈A1

Q(s,a)

Table 3.5: Example of Policy Improvement

state action inital policy updated policy

s a π(s,a) π′(s,a)

(
0 0 0 0

0 0 0 0

)

(
1 0 0 0

1 0 0 0

)
0.0625 0.0463788(

1 0 0 0

0 1 0 0

)
0.0625 0.0515202(

1 0 0 0

0 0 1 0

)
0.0625 0.0554653

...
...

...(
0 0 0 1

0 0 0 1

)
0.0625 0.0737093
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where λ is the stepsize, which is decided by the iteration number and policy improved value.

λ =
m

itrn
·
∑
s∈S

∑
a∈A

(
πitr(s,a) ·Qπitr(s,a)− πitr−1(s,a) ·Qπitr−1(s,a)

)

For the example of Policy Evaluation, the updated policy is shown in Table 3.5. If we

summarized the policy by information k and user i, it will be

π(s) =

 α11 α12 α13 α14

α21 α22 α23 α24︸ ︷︷ ︸
user i




in
fo
rm

a
tio

n
k

=

 0.2056 0.2086 0.2959 0.2899

0.2255 0.2505 0.2697 0.2542



3.4 Computational Results

Numerical experiments and results of different algorithms are presented in this section on

solving the information maximization problem. We randomly generate three data sets, small

size (2 message, 4 node), medium size (2 message, 7 node), and large size (3 message, 7 node).

The algorithms are coded in Microsoft Visual Studio 2019 C++ linked with CPLEX 12.9.

All the programs are run in Microsoft Windows 10 Professional operating system with Intel

Xeon CPU E-2186 2.90GHz and 32GB RAM.

In Figure 3.5 and Figure 3.5, we choose two sample sizes to test the algorithm of reinforcement

learning with Markov decision process. The result shows the policy learned from small sample

size cannot converge, because the policy evaluation using Monte Carlo simulation has low

accuracy with small sample size. The policy learned from large sample size is significantly

improved.

In Figure 3.7, we compare the algorithm of Two-Stage Stochastic programming with Myopic
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(a) Sample Size 10000 (b) Sample Size 1000000

Figure 3.5: Date Set (2,4) of Sample Size using RL-MDP

(a) Sample Size 10000 (b) Sample Size 1000000

Figure 3.6: Date Set (2,7) of Sample Size using RL-MDP

Policy (SP-MYOPIC) and the algorithm of Reinforcement Learning with Markov Decision

Process (RL-MDP) using the different data set. The RL-MDP method can provide better

performance for our influence maximization problem.
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(a) Date Set (2,4) (b) Date Set (2,7)

Figure 3.7: Algorithm Comparison, Sample Size 1000000
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CHAPTER 4: MULTI-STAGE STOCHASTIC

PROGRAMMING JOB-SHOP PROBLEM IN

SEMICONDUCTOR MANUFACTURING

In a semiconductor wafer fabrication, there are multiple product types that have different due

dates and different process flows. From all fabrication processes, photolithography process

can be considered as the bottleneck step of each photo layer in wafer production, our model

is designed to increase the efficiency of the production system by controlling the wafer flow

of photolithography process to meet target production quantity. The production scheduling

and dispatching of manufacturing can be modeled as a Job-Shop Scheduling Problem with

Limited Capacity, which is used to find the optimal resource allocation and job dispatching of

equipment and product lots. In the reality, the equipment capacity is unknown, because exact

time down time is not able to predicted before the real happens. To solve this problem, we

build the multi-stage stochastic programming model to plan the shift production scheduling

and dispatching which can reduce the violation of the shift target by increasing the utilization

of the equipment and increase the production efficiency.

4.1 Introduction

In information society, silicon microchips is required in a lot of area, such as computer,

mobile phones, human-like robots and vehicles. Since the commercialization of new tech-

nologies such as AI and big data is promoting the digital transformation of human life, the

integrated circuits (IC) are expected to evolve further in future intelligent society. The need

for electronic components is growing exponentially. The electronics industry is already facing
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Figure 4.1: Average Annual Growth Rates of Each IC Product Category, 2018-2023

several shortages and high volume demands for electronic components. The shortage was

caused by a classic case of demand far outstripping supply. Besides some market factors,

such as poorly-forecasted demands, new high-demand industries, and longer wait times on

raw material, the main reason is fabrication shortage. Components across the board are

going out of stock, such as small commodity type capacitors and resistors. For customer

integrated circuits (IC), it need longer lead times due to the customer complex design. The

McClean Report 2019 of IC Insights shows that the average annual growth rates from 2018

to 2023 is 6.8%, in Figure 4.1.

Since the supply is lower than the market demand, to get more customer order, efficient

scheduling and dispatching can increase the equipment utilization and productivity. For

higher performances, the modern electronic circuits have been designed into ultra-large-

scaled integrated (ULSI) circuits. In 2007, ‘45 nm’ commercial technology node is in volume

production which need a lithograph capability of 65nm half pitch(HP) for the metal lines of

DRAM. Photolithography (LITHO) can be considered as the bottleneck step of each photo
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layer in wafer production. In our study, we build model to control the wafer flow of LITHO

process to meet target production quantity.

Job-shop scheduling problem (JSP) is typical combinatorial optimization problems in oper-

ations research in which jobs are assigned to resources at particular times. In our job-shop

model, we use the maximum target production quantity as the objective function instead

of minimum makespan, which is converted by the product due date and order quantity.

Sometimes, it may not be able to reach the target production quantity due to the limited

equipment capacity, the objective is to find the optimal planing of entire product by allo-

cating the wafer to different equipment, which aims to minimize the shortage between the

expected production quantity and target production quantity. Since we cannot know the

equipment down time before the real happens, the equipment capacity is considered as the

uncertainty in the job-shop problem. Based the historical data, we build the equipment re-

liability distribution, which can give the probability of equipment work status in the future.

Based on the equipment reliability, we can build the time-based multi-stage stochastic pro-

gramming model. Since the scenarios is exponential increasing, deterministic equivalent of

the stochastic programming is still difficult to solve. We have 3 approaches to approximate

the optimal solution.

4.1.1 Literature Review

Graham [24] firstly define a multiprocessing system, then based on this system, Taillard

[57] build three basic models with makespan objective, that are job-shop scheduling, Open-

shop scheduling, and Flow shop scheduling. In our project, we focus on job-shop scheduling

problem. Job-shop problem (JSP) is an best known combinatorial optimization problem in

operations research in which jobs are assigned to resources at particular times [58], which is
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proved as NP-complete problem by Garey and Johnson [20]. Due to researchers efforts, many

effective algorithms are developed for the basic job-shop scheduling model [12, 13]. Adams,

Balas, and Zawack [2] gives an approximation method for solving the minimum makespan

problem, that is an O(n) longest path algorithm. Nakano and Yamada [47] find conventional

genetic algorithm is able to solve job-shop problem effectively.

In real world, as one of the most complex of manufacturing environments, manufacturing

scheduling problem in semiconductor fabrication facilities is more complex than the basic

job-shop problem. Reasons for this include tightly constrained production processes, re-

entrant process flows, expensive sophisticated equipment, variable demand, high levels of

automation [46]. The production of a single wafer requires about 1000 processing steps

and takes couple months [62]. With the emergence of highly automated wafer fabrication

facilities (fabs), there is a compelling trend to extend the traditional automation scope

to integrate with advanced decision technologies. Gupta and Sivakumar [30] give a brief

review of the scheduling techniques in scheduling the semiconductor manufacturing processes,

such as dispatching heuristics, mathematical programming techniques, neighborhood search

methods, and AI techniques. B lażewicz, Domschke, and Pesch [7] summarize several exact

or heuristic algorithm to solve the deterministic job-shop problem.

While the solution of deterministic job-shop problem is not suitable in real production, since

the scheduled job may be failed to allocation due to the broken machine. Foo and Takefuji

[18] define the job-shop problem by stochastic neural network, which is the first involve

the uncertainty in the machine scheduling. Then Buzacott and Shanthikumar [9] introduce

several stochastic models applied in the manufacturing systems. Tavakkoli-Moghaddam et

al. [58] develop the stochastic programming model to minimize the difference between the

delivery and the completion times of jobs. They also propose simulated annealing algorithm

while it is suitable to use in the large-scale problems. Li and Gao [40] propose a hybrid
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algorithm (HA) which hybridizes the genetic algorithm (GA) and tabu search (TS) in flexible

job-shop scheduling problem , which gives a method to solve the large-scale job-shop problem.

For manufacturing production planning and scheduling, equipment throughput is one of

the most critical parameters. We optimize equipment throughput by multiple performance

measures at the same time. There are two key performance indicators to show the wafer

production status, Work-In-Process(WIP) and Ideal Production Quantity (IPQ) [55]. WIP

shows the manufacturing lots in the factory not yet completed, which is waiting to process

in the assigned machine. IPQ is the concept based on the cycle time, which is defined by

Leachman, Kang, and Lin [39]. IPQ is used to calculate the production quantity needed

to bring the actual downstream WIP up to the target WIP level by the end of the shift,

considering that one more shift’s worth of fab outs must be added to the downstream WIP

to replace the fab outs due in the current shift [38]. In our problem, we use the IPQ as the

shift target production quantity, that gives the amount of units need to be completed by the

end of the shift to meet the target cycle time and the target fab outs. We schedule the job

allocation considering the uncertain equipment status.

4.1.2 Our Contributions

To increase the equipment utilization and maximize the total throughput, we model problem

as a problem of product lots to matched equipment. In the semiconductor manufacturing,

we assume the production environment of the LITHO process is fully automotive, that the

lot transportation time between two equipment and chemistry refill time can be ignored.

In this project, we propose an scheduling and dispatching model through semiconductor

fabrication LITHO process with one shift time period. In this production environment, the

operation sequence and the matching between operation and equipment are given and fixed.
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While the equipment capacity is changed, because some machines of the equipment type may

be broken, which will reduce the equipment capacity. Our model can help the production

planner to schedule the time to dispatch the certain product quantity to their matched

equipment. The stochastic formulation considers exogenous uncertainty, which represents

the probability of the equipment capacity level. We design a two-stage stochastic linear

programming to solve this production planning problem.

We summarize the contributions of this project as follows:

• We introduce the concept of uncertain equipment capacity in the manufacturing pro-

duction planning problem.

• We implicate the practical algorithms for solving the two-stage stochastic programming

with exogenous uncertainty.

• We compare the result of stochastic programming model with the deterministic model

and calculate the value of stochastic solution.

The rest of this chapter is structured as follows. We briefly describe the production plan-

ning production with uncertain equipment capacity by lot scheduling and dispatching in

finite time horizon, and provide the two-stage stochastic programming models with several

assumptions in Section 3.2. In Section 3.3, we use the sample average approximation (SAA)

to solve this problem with large-scale production plan. The computational results are shown

in the Section 3.4.

4.2 Mathematical Models

Different product are using same equipment type while the equipment capacity is limits. Now

we meet the problems: which product should be assigned and how many quantity should be
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dispatched? To solve these problems, we make a plan in order to reduce the shortage from

the production target by building the stochastic model. The target is defined by the shift

Ideal Production Quantity (IPQ) value of key operation of each layer. Since the Litho is

used as the first operation of each layer, our model only consider the LITHO operation to

schedule the start time of the layer. Let’s start with the scheduling and dispatching of single

product.

For example, consider single product planning with 4 operations in future 3 time periods. For

each time period, the released wafer quantity is shown in Table 4.1. Assume each operation

use the unique equipment (no capacity share). The process time and capacity is shown in

Table 4.2.

Table 4.1: Single Product: Released Wafer Quantity

Time 1 Time 2 Time 3

Operation 1 3 2 1

Operation 2 0 2 0

Operation 3 2 3 1

Operation 4 0 0 0

Table 4.2: Single Product: Operation Process Time and Equipment Capacity

Operation Process Time Equipment Capacity

Operation 1 1 2

Operation 2 1 3

Operation 3 2 3

Operation 4 1 1

The supply of equipment is fixed all the time, but the demand from the operation is changed
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(a) Before Decision

(b) After Decision

Figure 4.2: Single Product: Lot Scheduling and Dispatching

over time. Figure 4.2a shows the release time and quantity of different wafer lot. In Figure

4.2b, operation 1 has three lots waiting in the line, while the capacity only has two. So one

78



Table 4.3: Two Products: Matching between Operation and Equipment

Product 1 Product 2

Equipment 1
Operation 1

Operation 2

Operation 1

Operation 3

Equipment 2

Operation 2

Operation 3

Operation 4

Operation 2

Operation 3

lot will be hold for next available time to dispatch. These two lots is completed by operation

1 after one process time, then they are become new wafer lot of operation 2 at time 2.

Consider there are multiple products, some operations are using the same equipment. Since

the capacity is limited, the competition happens not only between products but also between

operations. For example, there are two product is currently produced by two equipment in

the fabrication. The product 1 has 4 operation and product 2 has operation. The matching

Figure 4.3: Two Products: Matching between Operation and Equipment
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between operation and equipment is shown in Table 4.3 and Figure 4.3.

4.2.1 Deterministic Model

We consider the problem within the discrete finite-time horizon which aims to improve the

production efficiency and equipment utilization. The objective can be measured by the total

quantity of the operation completed wafers. Assume for different operation it has different

Table 4.4: Notation of Deterministic Model

Symbol Definition

Indices and Sets

i ∈ I Product

k ∈ K Equipment

n ∈ Ni Operation, the set of the operation depends on product type

t ∈ T Time

Parameters

win the weight of the operation n in product i, which represent the priority

din the process time of the operation n in product i

bkin the matching between the operation n in product i and the equipment k

ct,k the capacity of equipment k at time t

atin the quantity of the product released to dispatch at time i

Decision Variable

xt,kin continuous variable, the quantity of operation n in product i allocated to

equipment k at time t

yin continues variable, the quantity completed at end of planning and partial

dispatched

ztin the quantity of product that is waiting to allocate from previous complete

operation
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time priority which is given from the concept of ideal production quantity (IPQ) and schedule

score (SS). The notation of deterministic model is shown in Table 4.4. The formulation of

the deterministic model is shown below:

[DP] max
x,y,z

∑
i∈I

∑
n∈Ni

win · yin (4.1)

s.t. yi,n =
∑

t∈T\T 3
in

∑
k∈K

xt,ki,n +
∑
t∈T 3

in

∑
k∈K

|T | − t
di,n

· xτ,ki,n ∀ i ∈ I, n ∈ Ni (4.2)

t∑
τ=0

∑
k∈K

xτ,ki,n ≤
t∑

τ=0

(
aτi,n + zτi,n

)
∀ i ∈ I, n ∈ Ni, t ∈ T (4.3)

zti,n = 0 ∀ i ∈ I, n ∈ Ni, t ∈ T 1
in (4.4)

zti,n =
∑
k∈K

x
t−di,n,k
i,n−1 ∀ i ∈ I, n ∈ Ni, t ∈ T \ T 1

in

(4.5)∑
i∈I

∑
n∈Ni

xt,ki,n ≤ ct,k ∀ i ∈ I, n ∈ Ni, t ∈ T (4.6)

x ∈ R+, y ∈ R+, z ∈ R+

where Time set is separated to three subsets T 1
in, T 2

in and T 3
in, depending on the process time

din, as shown in Figure 4.4.

• din - parameter, the process time of product i in operation n

• T 1
in - set, time period from the beginning to din

• T 3
in - set, time period from (|T | − din) to the end

• T 2
in - set, the absolute complement of set T 1

in ∪ T 3
in

The objective function (4.1) is maximizing the weighted quantity of operation completion,

which depends on the product importance and the final processed quantity. The constraint
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Figure 4.4: Partition of Time Set

(4.2) shows the final processed quantity of each product and operation at end of the planning,

it has two parts:

•
∑

t∈T\T 3
in

∑
k∈K

xt,ki,n is the total quantity of wafer which is fully completed with target layer

•
∑
t∈T 3

in

∑
k∈K

|T | − t
di,n

· xτ,ki,n is the partial completion with the percentage of processing time

The dispatching demand constraint (4.3) shows the wafer quantity availability for dispatch-

ing. It obtains two parts:

• atin - the quantity of the wafer released to dispatch at time i

• ztin - the quantity of the wafer from previous completed operation waiting to dispatch

With the same matching of operation and equipment in Figure 4.3, the dispatching decision

for equipment 1 is shown in Figure 4.5. In constraint (4.3), the left hand side is the cumulative

Figure 4.5: Two products with shared capacity
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quantity of dispatched wafer, the right hand side is the cumulative quantity of released wafers

and fresh wafers. There is a simple example (Table 4.5) shown how these constraints handle

the production decision for each time period.

Table 4.5: Example of Dispatching

Time 1 Time 2

Released Wafers 25 0

Fresh Wafers 50 10

Equipment 1 Capacity 50 50

Equipment 2 Capacity 50 50

Dispatched Wafers 50 35

Cumulative Available Wafers 75 85

Cumulative Dispatched Wafers 50 85

Waiting Wafers 25 0

Before operation time din, there is no fresh wafers produced, shown in constraint (4.4).Con-

straint (4.5) shows the product is going the next operation after it complete the previous

operation. If it start the previous operation n− 1 at time t, then it will be completed after

din unit time. For the operation n, all wafer completed the previous operation before time

t, is available to dispatch to matched equipment, which obtain three types:

• the fresh wafers zti,n just completed from the latest time period

• the released wafers from holding bank

• the waiting-in-line wafers ati,n due to the capacity limit

Constraint 4.6 shows the all dispatched wafer from different product and operation cannot

exceed the equipment capacity.
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4.2.2 Two-Stage Stochastic programming Model

The uncertainty of the stochastic model is the equipment capacity. Some equipment may

be unexpected broken or needmaintenance, then the capacity will be reduced due to the

shutdown equipment. For example, there are two equipment. The run status of equipment

k and its probability ptk at time t are shown in Table 4.6.

Table 4.6: Probability of Equipment Status

UP atk = 1 DOWN atk = 0

Equipment 1 0.7 0.3

Equipment 2 0.5 0.5

Table 4.7: Probability of Outcome

Equipment Status Probability

Outcome 1 UP/UP 0.35

Outcome 2 UP/DOWN 0.35

Outcome 3 DOWN/UP 0.15

Outcome 4 DOWN/DOWN 0.15

We define the combination of the equipment status as outcome. The size of outcomes is

2|K|. Table 4.7 shows there are four possible outcomes may happen at time t. The scenario

is including the situations of all the time period. Let consider 2 time periods in Figure 4.6.

The size of scenarios is 2|K|·|T |. Based on the equipment status atk and its probability ptk ,

the probability of the scenario can be formulated as below:

P s =
∏
t∈T

∏
k∈K

ptk(a
t,s
k = 1)
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Figure 4.6: Construction of Scenario Tree

The two stage stochastic programming model of production planning problem can be for-

mulated as,

[SP] max
δ,x,y,z

E
[
Qmax(x, y, z); θ

]
=
∑
s∈S

P s ·Qmax,s (4.7a)

s.t. Qmax,s = max
xs,ys,zs

∑
i∈I

∑
n∈Ni

win · ysin ∀ s ∈ S (4.7b)

ysi,n =
∑

t∈T\T 3
in

∑
k∈K

xt,k,si,n +
∑
t∈T 3

in

∑
k∈K

|T | − t
di,n

· xτ,k,si,n ∀ s ∈ S, i ∈ I, n ∈ Ni (4.7c)

t∑
τ=0

∑
k∈K

xτ,k,si,n ≤
t∑

τ=0

(
aτi,n + zτ,si,n

)
∀ s ∈ S, i ∈ I, n ∈ Ni, t ∈ T

(4.7d)

zt,si,n = 0 ∀ i ∈ I, n ∈ Ni, t ∈ T 1
in (4.7e)

zt,si,n =
∑
k∈K

x
t−di,n,k,s
i,n−1 ∀ i ∈ I, n ∈ Ni, t ∈ T \ T 1

in

(4.7f)∑
i∈I

∑
n∈Ni

xt,k,si,n ≤ ct,k,s ∀ i ∈ I, n ∈ Ni, t ∈ T (4.7g)
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x ∈ R+, y ∈ R+, z ∈ R+

4.3 Solution Approaches

Difficulty of Solving Stochastic Model is that the scenario size is exponential growth, which

lead to the computation time of solving stochastic model also increase exponentially. For

the same length of time horizon |T |, the computation complexity of deterministic model is

O(|I| · |K|), the computation complexity of stochastic model is O(2|I|·|K|). To handle this

large-scale scenarios, we implement sample average approximation (SAA) design a problem-

specific Algorithm 5 for our problem, which is similar to Algorithm 1 in Chapter 2.

Algorithm 5 Sample Average Approximation (SAA)

1: Initialization: given confidence level (CL), the significance level α = 1 − CL and confi-

dence interval (CI)

2: for each equipment index k ∈ K do . Calculate sample size for each patient choice

3: Calculate the variance σ2
k and the mean µk

4: Define the sample size Nk, that the interval
(
µk −

zα/2 · σk√
Nk

, µk +
zα/2 · σk√

Nk

)
is within

the confidence interval

5: return the minimal required sample size Nk ≥ Nk =
z2α/2 · σ2

k

CI2

6: end for

7: Define the sample set N , where the set size is equal to the minimal required sample size

for scenarios |N | = max
k∈K

Nk ≤ ||S|| . Find sample size for scenarios
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8: for each sample index n ∈ N do

9: Use Monte Carlo method randomly generate the equipment capacity matrix Cn

10: Update the parameters of model (SP)

11: Solve subproblem to get the objective value Qmax,n

12: end for

13: The objective value of all scenarios can be approximated by
1

|N |
∑
n∈N

Qmax,n

4.4 Computational Results

Numerical experiments and results are presented in this section on solving deterministic

model (DP) and stochatic model (SP). We randomly generate 3 data sets, small size (3

Product, 2 Equipment), medium size (4 Product, 2 Equipment), and large size (6 Product,

3 Equipment). The largest date set is similar to a 80% production quantity in a real semi-

conductor manufacturing. The algorithms are coded in Microsoft Visual Studio 2015 C++

linked with CPLEX 12.8. All the programs are run in Microsoft Windows 10 Professional

operating system with Intel Xeon CPU E3-1535M v63.10GHz and 16GB RAM. The compu-

tation time (sec) of these three data set is shown in Table 4.8. The confidence level of SAA

is 99% and the confidence interval is 0.01µ.

Table 4.8: Computation Time

Data set

(I,K)
Deterministic Model

Stochastic Model

using Direct Method

Stochastic Model

using SAA Method

(3, 2) 0.027 8.527 0.132

(4, 2) 0.038 34.622 3.940

(6, 3) 0.082 13577.986 801.573
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We also compare solution of these two different models, deterministic model (DP) and

stochastic model (SP). To see which model is able to get higher product throughput within

limited time, suppose we just replaced the decisions of wafer scheduling time and dispatch-

ing quantity from deterministic model solved that problem, then the Value of Stochastic

Solution (VSS) is defined as below:

V SS = zSP (x∗)− zSP (xo)

x∗ = arg max
x

zSP (x)

xo = arg max
x

zDP (x)

VSS is the area between the two lines in Figure 4.7. As the uncertainty variance increasing,

the production planner will get more benefits from stochastic model.
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Figure 4.7: Value of Stochastic Solution
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CHAPTER 5: CONCLUSION

This dissertation studied several stochastic optimization problems, applying the operations

research methodologies in different areas, namely, health care, information networks and

manufacturing.

Chapter 2 focused on a stochastic facility location problem considering customer preference,

helping a hospital manager improve efficiency by allocating the hospital resource (send-

ing physicians to local clinics), as well as matching the patient preference and maximizing

patient satisfaction. The two-stage stochastic programming model was proposed for the

physician/clinic facility location and patient assignment problem, where the patient pref-

erence was considered as endogenous uncertainty. To solve the model, we designed hybrid

algorithms via the combination of the Large Neighborhood Search and Tabu Search to solve

the location problem in the first stage, and Sample Average Approximation to estimate

the value function in the second stage. The computational experiments showed that the

proposed hybrid algorithms could outperform existing hill-climbing techniques, such as the

Guided Local Search and Gradient Descent method, in terms of both solution quality and

computational time.

Chapter 3 studied the network structure based on the user preference in a finite-time infor-

mation cascade. Information networks are usually composed of autonomous nodes that make

decisions when forming links with other nodes and transmitting information We used the

Discrete Choice Model to build the node preference distribution, and the dynamic changing

of network structure was modeled by Stochastic Dynamic Programming, which can be solve

by the Markov Decision Process (MDP). In our model, DCM provided a good description and

prediction of behavior for dynamic optimization under uncertainty. By solving our model,
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we can analysis the changing of network structure by controlling information flow, which can

be used in the Information maximization problem.

Chapter 4 studied the job-shop scheduling problem in semiconductor manufacturing. We

built a multi-stage stochastic programming model to provide the optimal planning to the

fabrication operation manager by allocating the product lot to the matched machine at the

proper time. In the production system, there are several product types processed in the

different operation steps, and they may share the same equipment. Thus, this problem

can be considered as a resource allocation problem and assignment problem with limited

capacity. The multi-stage stochastic programming model aims to make a shift production

plan that can increase the utilization of the equipment and increase the production efficiency

by reducing the violation of the shift target.

The contributions of this dissertation can be summarized as follows:

1. The dissertation presented three applications for stochastic optimization models in a

complex network system. Each model studied the problem from a different perspective.

2. The three projects studied the network flow with uncertainty. Two of them incorpo-

rated the discrete choice model with decision-dependent probability for each stochastic

programming model to faithfully model the real-world customer decision-making pro-

cess.

3. This dissertation developed solution approaches that applied the decomposition, ap-

proximation, simulation, meta-heuristic and reinforcement learning algorithm tech-

niques to reduce and solve real-world large-scale optimization problems.
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