22 research outputs found

    Experimental analysis of variability in WS2_2-based devices for hardware security

    Full text link
    This work investigates the variability of tungsten disulfide (WS2_2)-based devices by experimental characterization in view of possible application in the field of hardware security. To this aim, a preliminary analysis was performed by measurements across voltages and temperatures on a set of seven Si/SiO2_2/WS2_2 back-gated devices, also considering the effect of different stabilization conditions on their conductivity. Obtained results show appreciable variability in the conductivity, while also revealing similar dependence on bias and temperature across tested devices. Overall, our analysis demonstrates that WS2_2-based devices can be potentially exploited to ensure adequate randomness and robustness against environmental variations and then used as building blocks for hardware security primitives

    Design and Implementation of Low Power SRAM Using Highly Effective Lever Shifters

    Get PDF
    The explosive growth of battery-operated devices has made low-power design a priority in recent years. In high-performance Systems-on-Chip, leakage power consumption has become comparable to the dynamic component, and its relevance increases as technology scales. These trends are even more evident for SRAM memory devices since they are a dominant source of standby power consumption in low-power application processors. The on-die SRAM power consumption is particularly important for increasingly pervasive mobile and handheld applications where battery life is a key design and technology attribute. In the SRAM-memory design, SRAM cells also comprise the most significant portion of the total chip. Moreover, the increasing number of transistors in the SRAM memories and the MOSs\u27 increasing leakage current in the scaled technologies have turned the SRAM unit into a power-hungry block for both dynamic and static viewpoints. Although the scaling of the supply voltage enables low-power consumption, the SRAM cells\u27 data stability becomes a major concern. Thus, the reduction of SRAM leakage power has become a critical research concern. To address the leakage power consumption in high-performance cache memories, a stream of novel integrated circuit and architectural level techniques are proposed by researchers including leakage-current management techniques, cell array leakage reduction techniques, bitline leakage reduction techniques, and leakage current compensation techniques. The main goal of this work was to improve the cell array leakage reduction techniques in order to minimize the leakage power for SRAM memory design in low-power applications. This study performs the body biasing application to reduce leakage current as well. To adjust the NMOSs\u27 threshold voltage and consequently leakage current, a negative DC voltage could be applied to their body terminal as a second gate. As a result, in order to generate a negative DC voltage, this study proposes a negative voltage reference that includes a trimming circuit and a negative level shifter. These enhancements are employed to a 10kb SRAM memory operating at 0.3V in a 65nm CMOS process

    A Power-Gated 8-Transistor Physically Unclonable Function Accelerates Evaluation Speeds

    Get PDF
    \ua9 2023 by the authors.The proposed 8-Transistor (8T) Physically Unclonable Function (PUF), in conjunction with the power gating technique, can significantly accelerate a single evaluation cycle more than 100,000 times faster than a 6-Transistor (6T) Static Random-Access Memory (SRAM) PUF. The 8T PUF is built to swiftly eliminate data remanence and maximise physical mismatch. Moreover, a two-phase power gating module is devised to provide controllable power on/off cycles for the chosen PUF clusters in order to facilitate fast statistical measurements and curb the in-rush current. The architecture and hardware implementation of the power-gated PUF are developed to accommodate fast multiple evaluations of PUF Responses. The fast speed enables a new data processing method, which coordinates Dark-bit masking and Multiple Temporal Majority Voting (TMV) in different Process, Voltage and Temperature (PVT) corners or during field usage, hence greatly reducing the Bit Error Rate (BER) and the hardware penalty for error correction. The designs are based on the UMC 65 nm technology and aim to tape out an Application-Specific Integrated Circuit (ASIC) chip. Post-layout Monte Carlo (MC) simulations are performed with Cadence, and the extracted PUF Responses are processed with Matlab to evaluate the 8T PUF performance and statistical metrics for subsequent inclusion in PUF Responses, which comprise the novelty of this approach

    “Physical unclonable function”

    Get PDF
    The objective of the paper is to provide a complete introduction to the design of physical unclonable functions (PUF), devices used for applications such as low-cost authentication and generation of cryptographic keys. The distinctive feature of PUFs is that, being devices that take advantage of process variations, it is not possible to create a copy of the circuit that exactly replicates the behavior of the starting PUF, so it is intrinsically robust to any invasive physical attacks. Integrated circuit authentication and hardware encryption protocols play an important role in cyber security...Este documento proporciona una introducción completa sobre el diseño de seguridad, aplicaciones de autentificación y generación de claves de una PUF (Physical Unclonable Function). La característica distintiva de los PUF es que no se puede crear una copia del circuito, ya que es imposible controlar las variaciones del proceso de fabricación. La autenticación de circuitos integrados y protocolos criptográficos seguros basados en hardware proporcionan un papel importante en la seguridad del hardware..

    Stochastic Memory Devices for Security and Computing

    Get PDF
    With the widespread use of mobile computing and internet of things, secured communication and chip authentication have become extremely important. Hardware-based security concepts generally provide the best performance in terms of a good standard of security, low power consumption, and large-area density. In these concepts, the stochastic properties of nanoscale devices, such as the physical and geometrical variations of the process, are harnessed for true random number generators (TRNGs) and physical unclonable functions (PUFs). Emerging memory devices, such as resistive-switching memory (RRAM), phase-change memory (PCM), and spin-transfer torque magnetic memory (STT-MRAM), rely on a unique combination of physical mechanisms for transport and switching, thus appear to be an ideal source of entropy for TRNGs and PUFs. An overview of stochastic phenomena in memory devices and their use for developing security and computing primitives is provided. First, a broad classification of methods to generate true random numbers via the stochastic properties of nanoscale devices is presented. Then, practical implementations of stochastic TRNGs, such as hardware security and stochastic computing, are shown. Finally, future challenges to stochastic memory development are discussed

    Design for Test and Hardware Security Utilizing Tester Authentication Techniques

    Get PDF
    Design-for-Test (DFT) techniques have been developed to improve testability of integrated circuits. Among the known DFT techniques, scan-based testing is considered an efficient solution for digital circuits. However, scan architecture can be exploited to launch a side channel attack. Scan chains can be used to access a cryptographic core inside a system-on-chip to extract critical information such as a private encryption key. For a scan enabled chip, if an attacker is given unlimited access to apply all sorts of inputs to the Circuit-Under-Test (CUT) and observe the outputs, the probability of gaining access to critical information increases. In this thesis, solutions are presented to improve hardware security and protect them against attacks using scan architecture. A solution based on tester authentication is presented in which, the CUT requests the tester to provide a secret code for authentication. The tester authentication circuit limits the access to the scan architecture to known testers. Moreover, in the proposed solution the number of attempts to apply test vectors and observe the results through the scan architecture is limited to make brute-force attacks practically impossible. A tester authentication utilizing a Phase Locked Loop (PLL) to encrypt the operating frequency of both DUT/Tester has also been presented. In this method, the access to the critical security circuits such as crypto-cores are not granted in the test mode. Instead, a built-in self-test method is used in the test mode to protect the circuit against scan-based attacks. Security for new generation of three-dimensional (3D) integrated circuits has been investigated through 3D simulations COMSOL Multiphysics environment. It is shown that the process of wafer thinning for 3D stacked IC integration reduces the leakage current which increases the chip security against side-channel attacks
    corecore