28,404 research outputs found

    A phase field higher-order active contour model of directed networks

    Get PDF
    International audienceThe segmentation of directed networks is an important problem in many domains, e.g. medical imaging (vascular networks) and remote sensing (river networks). Directed networks carry a unidirectional flow in each branch, which leads to characteristic geometric properties. In this paper, we present a nonlocal phase field model of directed networks. In addition to a scalar field representing a region by its smoothed characteristic function and interacting non-locally so as to favour network configurations, the model contains a vector field representing the ‘flow' through the network branches. The vector field is strongly encouraged to be zero outside, and of unit magnitude inside the region; and to have zero divergence. This prolongs network branches; controls width variation along a branch; and produces asymmetric junctions for which total incoming branch width approximately equals total outgoing branch width. In conjunction with a new interaction function, it also allows a broad range of stable branch widths. We analyse the energy to constrain the parameters, and show geometric experiments confirming the above behaviour. We also show a segmentation result on a synthetic river image

    A theoretical and numerical study of a phase field higher-order active contour model of directed networks.

    Get PDF
    We address the problem of quasi-automatic extraction of directed networks, which have characteristic geometric features, from images. To include the necessary prior knowledge about these geometric features, we use a phase field higher-order active contour model of directed networks. The model has a large number of unphysical parameters (weights of energy terms), and can favour different geometric structures for different parameter values. To overcome this problem, we perform a stability analysis of a long, straight bar in order to find parameter ranges that favour networks. The resulting constraints necessary to produce stable networks eliminate some parameters, replace others by physical parameters such as network branch width, and place lower and upper bounds on the values of the rest. We validate the theoretical analysis via numerical experiments, and then apply the model to the problem of hydrographic network extraction from multi-spectral VHR satellite images

    Segmentation of networks from VHR remote sensing images using a directed phase field HOAC model.

    Get PDF
    We propose a new algorithm for network segmentation from very high resolution (VHR) remote sensing images. The algorithm performs this task quasi-automatically, that is, with no human intervention except to fix some parameters. The task is made difficult by the amount of prior knowledge about network region geometry needed to perform the task, knowledge that is usually provided by a human being. To include such prior knowledge, we make use of methodological advances in region modelling: a phase field higher-order active contour of directed networks is used as the prior model for region geometry. By adjoining an approximately conserved flow to a phase field model encouraging network shapes (i.e. regions composed of branches meeting at junctions), the model favours network regions in which different branches may have very different widths, but in which width change along a branch is slow; in which branches do not come to an end, hence tending to close gaps in the network; and in which junctions show approximate 'conservation of width'. We also introduce image models for network and background, which are validated using maximum likelihood segmentation against other possibilities. We then test the full model on VHR optical and multispectral satellite images

    Gap Filling of 3-D Microvascular Networks by Tensor Voting

    Get PDF
    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated

    Unsupervised Texture Segmentation using Active Contours and Local Distributions of Gaussian Markov Random Field Parameters

    No full text
    In this paper, local distributions of low order Gaussian Markov Random Field (GMRF) model parameters are proposed as texture features for unsupervised texture segmentation.Instead of using model parameters as texture features, we exploit the variations in parameter estimates found by model fitting in local region around the given pixel. Thespatially localized estimation process is carried out by maximum likelihood method employing a moderately small estimation window which leads to modeling of partial texturecharacteristics belonging to the local region. Hence significant fluctuations occur in the estimates which can be related to texture pattern complexity. The variations occurred in estimates are quantified by normalized local histograms. Selection of an accurate window size for histogram calculation is crucial and is achieved by a technique based on the entropy of textures. These texture features expand the possibility of using relativelylow order GMRF model parameters for segmenting fine to very large texture patterns and offer lower computational cost. Small estimation windows result in better boundarylocalization. Unsupervised segmentation is performed by integrated active contours, combining the region and boundary information. Experimental results on statistical and structural component textures show improved discriminative ability of the features compared to some recent algorithms in the literature

    Pheromone-based In-Network Processing for wireless sensor network monitoring systems

    Get PDF
    Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying and information gathering in large-scale WSNs is a challenging problem. In particular, we consider the case of how to query the sensor network information with the minimum energy cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal with this problem, we propose a Pheromone-based In-Network Processing (PhINP) mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to direct queries towards nodes with relevant information and query- and response-based in-network filtering to reduce the number of active nodes. Additionally, we apply reinforcement learning to improve the performance. The main contribution of this work is the proposal of a simple and efficient mechanism for information discovery and gathering. It can reduce the messages exchanged in the network, by allowing some error, in order to maximize the network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the query dissemination cost can be reduced by approximately 60% over flooding, with an error below 1%, applying the same in-network filtering strategy.Fil: Riva, Guillermo Gaston. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Dual approach to circuit quantization using loop charges

    Full text link
    The conventional approach to circuit quantization is based on node fluxes and traces the motion of node charges on the islands of the circuit. However, for some devices, the relevant physics can be best described by the motion of polarization charges over the branches of the circuit that are in general related to the node charges in a highly nonlocal way. Here, we present a method, dual to the conventional approach, for quantizing planar circuits in terms of loop charges. In this way, the polarization charges are directly obtained as the differences of the two loop charges on the neighboring loops. The loop charges trace the motion of fluxes through the circuit loops. We show that loop charges yield a simple description of the flux transport across phase-slip junctions. We outline a concrete construction of circuits based on phase-slip junctions that are electromagnetically dual to arbitrary planar Josephson junction circuits. We argue that loop charges also yield a simple description of the flux transport in conventional Josephson junctions shunted by large impedances. We show that a mixed circuit description in terms of node fluxes and loop charges yields an insight into the flux decompactification of a Josephson junction shunted by an inductor. As an application, we show that the fluxonium qubit is well approximated as a phase-slip junction for the experimentally relevant parameters. Moreover, we argue that the 00-π\pi qubit is effectively the dual of a Majorana Josephson junction.Comment: 20 pages, 11 figures. Version accepted for publication in PRB. Changes: introduction has become less technical and an example for the inclusion of offset charges has been adde
    corecore