432 research outputs found

    Prospects for ACT: simulations, power spectrum, and non-Gaussian analysis

    Full text link
    A new generation of instruments will reveal the microwave sky at high resolution. We focus on one of these, the Atacama Cosmology Telescope, which probes scales 1000<l<10000, where both primary and secondary anisotropies are important. Including lensing, thermal and kinetic Sunyaev-Zeldovich (SZ) effects, and extragalactic point sources, we simulate the telescope's observations of the CMB in three channels, then extract the power spectra of these components in a multifrequency analysis. We present results for various cases, differing in assumed knowledge of the contaminating point sources. We find that both radio and infrared point sources are important, but can be effectively eliminated from the power spectrum given three (or more) channels and a good understanding of their frequency dependence. However, improper treatment of the scatter in the point source frequency dependence relation may introduce a large systematic bias. Even if all thermal SZ and point source effects are eliminated, the kinetic SZ effect remains and corrupts measurements of the primordial slope and amplitude on small scales. We discuss the non-Gaussianity of the one-point probability distribution function as a way to constrain the kinetic SZ effect, and we develop a method for distinguishing this effect from the CMB in a window where they overlap. This method provides an independent constraint on the variance of the CMB in that window and is complementary to the power spectrum analysis.Comment: 22 pages, 11 figures. Submitted to New Astronomy. High resolution figures provided at http://www.princeton.edu/~khuffenb/pubs/prospects-act.htm

    Magnetic Fields in the 3C 129 Cluster

    Get PDF
    We present multi-frequency VLA observations of the two radio galaxies 3C 129 and 3C 129.1 embedded in a luminous X-ray cluster. These radio observations reveal a substantial difference in the Faraday Rotation Measures (RMs) toward 3C 129.1 at the cluster center and 3C 129 at the cluster periphery. After deriving the density profile from available X-ray data, we find that the RM structure of both radio galaxies can be fit by a tangled cluster magnetic field with strength 6 microGauss extending at least 3 core radii (450 kpc) from the cluster center. The magnetic field makes up a small contribution to the total pressure (5%) in the central regions of the cluster. The radio morphology of 3C 129.1 appears disturbed on the southern side, perhaps by the higher pressure environment. In contrast with earlier claims for the presence of a moderately strong cooling flow in the 3C 129 cluster, our analysis of the X-ray data places a limit on the mass deposition rate from any such flow of <1.2 Msun/yr.Comment: in press at MNRA

    The Cosmic Microwave Background & Inflation, Then & Now

    Get PDF
    Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance), especially when combined with data on high redshift supernovae (SN1) and large scale structure (LSS). There are ``7 pillars of Inflation'' that can be shown with the CMB probe, and at least 5, and possibly 6, of these have already been demonstrated in the CMB data: (1) a large scale gravitational potential; (2) acoustic peaks/dips; (3) damping due to shear viscosity; (4) a Gaussian (maximally random) distribution; (5) secondary anisotropies; (6) polarization. A 7th pillar, anisotropies induced by gravity wave quantum noise, could be too small. A minimal inflation parameter set, \omega_b,\omega_{cdm}, \Omega_{tot}, \Omega_Q,w_Q,n_s,\tau_C, \sigma_8}, is used to illustrate the power of the current data. We find the CMB+LSS+SN1 data give \Omega_{tot} =1.00^{+.07}_{-.03}, consistent with (non-baroque) inflation theory. Restricting to \Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s =0.97^{+.08}_{-.05}. The CDM density, \Omega_{cdm}{\rm h}^2 =.12^{+.01}_{-.01}, and baryon density, \Omega_b {\rm h}^2 = >.022^{+.003}_{-.002}, are in the expected range. (The Big Bang nucleosynthesis estimate is 0.019\pm 0.002.) Substantial dark (unclustered) energy is inferred, \Omega_Q \approx 0.68 \pm 0.05, and CMB+LSS \Omega_Q values are compatible with the independent SN1 estimates. The dark energy equation of state, crudely parameterized by a quintessence-field pressure-to-density ratio w_Q, is not well determined by CMB+LSS (w_Q < -0.4 at 95% CL), but when combined with SN1 the resulting w_Q < -0.7 limit is quite consistent with the w_Q=-1 cosmological constant case.Comment: 20 pages, 8 figures, in Theoretical Physics, MRST 2002: A Tribute to George Libbrandt (AIP), eds. V. Elias, R. Epp, R. Myer

    Deep Chandra and multicolor HST observations of the jets of 3C 371 and PKS 2201+044

    Full text link
    This paper presents multiwavelength imaging and broad-band spectroscopy of the relativistic jets in the two nearby radio galaxies 3C 371 and PKS 2201+044, acquired with Chandra, HST, VLA, and Merlin. Radio polarization images are also available. The two sources stand out as "intermediate'' between FRIs and FRIIs; their cores are classified as BL Lacs, although broad and narrow optical emission lines were detected at times. The multiwavelength images show jet morphologies with the X-ray emission peaking closer to the nucleus than the longer wavelengths. The jets are resolved at all wavelengths in a direction perpendicular to the jet axis. The jets SEDs are consistent with a single spectral component from radio to X-rays, interpreted as synchrotron emission. The SEDs show a progressive softening from the inner to the outer regions of the jet, indicating that the electron break energy moves to lower energies with distance from the core. Overall, the X-ray and multiwavelength properties of the jets of 3C 371 and PKS 2201+044 appear intermediate between those of FRIs and FRIIs.Comment: Accepted for publication in ApJ; 28 pages (emulateapj5), 17 figure

    Relativistic jet models for two low-luminosity radio galaxies: evidence for backflow?

    Full text link
    We show that asymmetries in total intensity and linear polarization between the radio jets and counter-jets in two lobed Fanaroff-Riley Class I (FR I) radio galaxies, B2 0206+35 (UGC 1651) and B2 0755+37 (NGC 2484), can be accounted for if these jets are intrinsically symmetrical, with decelerating relativistic outflows surrounded by mildly relativistic backflows. Our interpretation is motivated by sensitive, well-resolved Very Large Array imaging which shows that both jets in both sources have a two-component structure transverse to their axes. Close to the jet axis, a centrally-darkened counter-jet lies opposite a centrally-brightened jet, but both are surrounded by broader collimated emission that is brighter on the counter-jet side. We have adapted our previous models of FR I jets as relativistic outflows to include an added component of symmetric backflow. We find that the observed radio emission, after subtracting contributions from the extended lobes, is well described by models in which decelerating outflows with parameters similar to those derived for jets in plumed FR I sources are surrounded by backflows containing predominantly toroidal magnetic fields. These return to within a few kpc of the galaxies with velocities of roughly 0.25c and radiate with a synchrotron spectral index close to 0.55. We discuss whether such backflow is to be expected in lobed FR I sources and suggest ways in which our hypothesis can be tested by further observations.Comment: 22 pages, 17 figures, accepted for publication in MNRA

    A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of Boomerang

    Get PDF
    We report on observations of the Cosmic Microwave Background (CMB) obtained during the January 2003 flight of Boomerang . These results are derived from 195 hours of observation with four 145 GHz Polarization Sensitive Bolometer (PSB) pairs, identical in design to the four 143 GHz Planck HFI polarized pixels. The data include 75 hours of observations distributed over 1.84% of the sky with an additional 120 hours concentrated on the central portion of the field, itself representing 0.22% of the full sky. From these data we derive an estimate of the angular power spectrum of temperature fluctuations of the CMB in 24 bands over the multipole range (50 < l < 1500). A series of features, consistent with those expected from acoustic oscillations in the primordial photon-baryon fluid, are clearly evident in the power spectrum, as is the exponential damping of power on scales smaller than the photon mean free path at the epoch of last scattering (l > 900). As a consistency check, the collaboration has performed two fully independent analyses of the time ordered data, which are found to be in excellent agreement.Comment: 11 pages, 7 figures, 3 tables. High resolution figures and data are available at http://cmb.phys.cwru.edu/boomerang/ and http://oberon.roma1.infn.it/boomerang/b2

    Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis

    Get PDF
    A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems
    corecore