720 research outputs found

    VIVA: An Online Algorithm for Piecewise Curve Estimation Using ℓ\u3csup\u3e0\u3c/sup\u3e Norm Regularization

    Get PDF
    Many processes deal with piecewise input functions, which occur naturally as a result of digital commands, user interfaces requiring a confirmation action, or discrete-time sampling. Examples include the assembly of protein polymers and hourly adjustments to the infusion rate of IV fluids during treatment of burn victims. Estimation of the input is straightforward regression when the observer has access to the timing information. More work is needed if the input can change at unknown times. Successful recovery of the change timing is largely dependent on the choice of cost function minimized during parameter estimation. Optimal estimation of a piecewise input will often proceed by minimization of a cost function which includes an estimation error term (most commonly mean square error) and the number (cardinality) of input changes (number of commands). Because the cardinality (â„“0 norm) is not convex, the â„“2 norm (quadratic smoothing) and â„“1 norm (total variation minimization) are often substituted because they permit the use of convex optimization algorithms. However, these penalize the magnitude of input changes and therefore bias the piecewise estimates. Another disadvantage is that global optimization methods must be run after the end of data collection. One approach to unbiasing the piecewise parameter fits would include application of total variation minimization to recover timing, followed by piecewise parameter fitting. Another method is presented herein: a dynamic programming approach which iteratively develops populations of candidate estimates of increasing length, pruning those proven to be dominated. Because the usage of input data is entirely causal, the algorithm recovers timing and parameter values online. A functional definition of the algorithm, which is an extension of Viterbi decoding and integrates the pruning concept from branch-and-bound, is presented. Modifications are introduced to improve handling of non-uniform sampling, non-uniform confidence, and burst errors. Performance tests using synthesized data sets as well as volume data from a research system recording fluid infusions show five-fold (piecewise-constant data) and 20-fold (piecewise-linear data) reduction in error compared to total variation minimization, along with improved sparsity and reduced sensitivity to the regularization parameter. Algorithmic complexity and delay are also considered

    7th International Conference on Nonlinear Vibrations, Localization and Energy Transfer: Extended Abstracts

    Get PDF
    International audienceThe purpose of our conference is more than ever to promote exchange and discussions between scientists from all around the world about the latest research developments in the area of nonlinear vibrations, with a particular emphasis on the concept of nonlinear normal modes and targeted energytransfer

    The numerical simulation of nonlinear waves in a hydrodynamic model test basin

    Get PDF
    This thesis describes the development of a numerical algorithm for the fully nonlinear simulation of free-surface waves. The aim of the research is to develop, implement and investigate an algorithm for the deterministic and accurate simulation of twodimensional nonlinear water waves in a model test basin. The simulated wave field may have a broad-banded spectrum and the simulations should be carried out by an efficient algorithm in order to be applicable in practical situations. The algorithm is based on a combination of Runge-Kutta (for time integration), Finite Element (boundary value problem) and Finite Difference (velocity recovery) methods. The scheme is further refined and investigated using different models for wave generation, propagation and absorption of waves

    Statistical Inference via Convex Optimization

    Get PDF
    International audienceReverse mathematics is a new field that seeks to find the axioms needed to prove given theorems. Reverse mathematics began as a technical field of mathematical logic, but its main ideas have precedents in the ancient field of geometry and the early twentieth-century field of set theory. This book offers a historical and representative view, emphasizing basic analysis and giving a novel approach to logic. It concludes that mathematics is an arena where theorems cannot always be proved outright, but in which all of their logical equivalents can be found. This creates the possibility of reverse mathematics, where one seeks equivalents that are suitable as axioms. By using a minimum of mathematical logic in a well-motivated way, the book will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282
    • …
    corecore