
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2015

VIVA: An Online Algorithm for Piecewise Curve
Estimation Using ℓ0 Norm Regularization
Richard Benjamin Voigt
University of Pennsylvania, richardvoigt@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Applied Mathematics Commons, Electrical and Electronics Commons, and the
Operational Research Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1158
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Voigt, Richard Benjamin, "VIVA: An Online Algorithm for Piecewise Curve Estimation Using ℓ0 Norm Regularization" (2015).
Publicly Accessible Penn Dissertations. 1158.
http://repository.upenn.edu/edissertations/1158

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1158?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1158
mailto:libraryrepository@pobox.upenn.edu

VIVA: An Online Algorithm for Piecewise Curve Estimation Using ℓ0

Norm Regularization

Abstract
Many processes deal with piecewise input functions, which occur naturally as a result of digital commands,
user interfaces requiring a confirmation action, or discrete-time sampling. Examples include the assembly of
protein polymers and hourly adjustments to the infusion rate of IV fluids during treatment of burn victims.
Estimation of the input is straightforward regression when the observer has access to the timing information.
More work is needed if the input can change at unknown times. Successful recovery of the change timing is
largely dependent on the choice of cost function minimized during parameter estimation.

Optimal estimation of a piecewise input will often proceed by minimization of a cost function which includes
an estimation error term (most commonly mean square error) and the number (cardinality) of input changes
(number of commands). Because the cardinality (ℓ0 norm) is not convex, the ℓ2 norm (quadratic smoothing)
and ℓ1 norm (total variation minimization) are often substituted because they permit the use of convex
optimization algorithms. However, these penalize the magnitude of input changes and therefore bias the
piecewise estimates. Another disadvantage is that global optimization methods must be run after the end of
data collection.

One approach to unbiasing the piecewise parameter fits would include application of total variation
minimization to recover timing, followed by piecewise parameter fitting. Another method is presented herein:
a dynamic programming approach which iteratively develops populations of candidate estimates of increasing
length, pruning those proven to be dominated. Because the usage of input data is entirely causal, the algorithm
recovers timing and parameter values online. A functional definition of the algorithm, which is an extension of
Viterbi decoding and integrates the pruning concept from branch-and-bound, is presented. Modifications are
introduced to improve handling of non-uniform sampling, non-uniform confidence, and burst errors.
Performance tests using synthesized data sets as well as volume data from a research system recording fluid
infusions show five-fold (piecewise-constant data) and 20-fold (piecewise-linear data) reduction in error
compared to total variation minimization, along with improved sparsity and reduced sensitivity to the
regularization parameter. Algorithmic complexity and delay are also considered.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Electrical & Systems Engineering

First Advisor
Jonathan M. Smith

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1158

http://repository.upenn.edu/edissertations/1158?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages

Keywords
changepoint, curve fitting, denoising, joinpoint, regression, regularization

Subject Categories
Applied Mathematics | Electrical and Electronics | Operational Research

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1158

http://repository.upenn.edu/edissertations/1158?utm_source=repository.upenn.edu%2Fedissertations%2F1158&utm_medium=PDF&utm_campaign=PDFCoverPages

VIVA: AN ONLINE ALGORITHM FOR PIECEWISE CURVE ESTIMATION

USING `0 NORM REGULARIZATION

Richard B. Voigt

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2015

Supervisor of Dissertation

Jonathan M. Smith

Olga and Alberico Pompa Professor of Engineering and Applied Science

Graduate Group Chairwoman

Saswati Sarkar

Professor, Electrical and Systems Engineering

Dissertation Committee

Ali Jadbabaie, Alfred Fitler Moore Professor of Network Science, Electrical and Systems Engi-

neering

Jonathan M. Smith, Olga and Alberico Pompa Professor of Engineering and Applied Science,

Computer and Information Science

Saleem Kassam, Solomon and Sylvia Charp Professor, Electrical and Systems Engineering

Insup Lee, Cecilia Fitler Moore Professor, Computer and Information Science

George Kramer, Professor, Anesthesiology, University of Texas Medical Branch

VIVA: AN ONLINE ALGORITHM FOR PIECEWISE CURVE ESTIMATION
USING `0 NORM REGULARIZATION

COPYRIGHT

© 2015

Richard Benjamin Voigt

iii

Acknowledgements

Doctoral work is not performed in a vacuum (after all, even the mighty doctoral student
is not immune to asphyxiation), and mine has been no exception to that rule. I count many
blessings bestowed by the providential hand of a great God and His Son, the Lord Jesus Christ
– loving family and friends, innate abilities and the professors and colleagues in university and
industry who developed them, opportunities to use them – these have been no less essential to
my journey than breath itself. To name each individual who has guided, advised, encouraged, or
otherwise assisted me would eclipse any dissertation... and my memory is not up to the task in
any case. Nevertheless, I would like to offer special thanks to several who stand out.

From the very beginning I have been influenced by my mother Dr. Mary Voigt (PhD), who
taught me mathematics, reading, scientific methods, to always look for ulterior motives, and
that skepticism and understanding one’s relationship to God are not mutually exclusive and my
father Richard H. Voigt, who has never let me forget that honorifics and intelligence are worth
nothing without honor and integrity. I thank them for their unceasing love and all the ways
they’ve showed it. And if my grandparents and siblings have shown me less love, it is only in
degree and not in kind.

I thank my elementary and high school teachers for teaching me, as much about the expec-
tations of society as about the course topics, and particularly for a lesson in Pre-Calculus about
using extraordinary gifts to help those around me instead of alienating them (although it took
me a few more years to achieve passing competence). KSU EECE professors William Kuhn,
PhD and Don Gruenbacher, PhD, thank you for a first taste of engineering research, via poster
presentations hung on the walls of Rathbone Hall, and thanks to James DeVault, PhD and An-
drew Rys, PhD who convinced me to apply for graduate fellowships so I could perform research
myself. Also to Mr. George Beck and KSU professors Medhat Morcos, PhD and Steve War-
ren, PhD for seeing more potential in me than I could in myself... and whose recommendations
swayed the NDSEG fellowship and Penn admissions committees to agree. NASA flight surgeon
Dr. Douglas Hamilton, MD I thank for getting me interested in medical data and devices and
teaching me everything I know about cardiology (and Canada), in addition to no small amount
of personal mentoring. Drs. Don Hummels (PhD) and Russ Meier (PhD) I credit with focusing
me on practical engineering and real-time signal processing, and then Penn ESE professors Ali
Jadbabaie, PhD, George Pappas, PhD, and Srisankar Kunniyur, PhD took those tools to the
next level by adding a theoretic framework. Also Dr. Santosh Venkatesh (PhD), who installed
a healthy fear and awe of mathematics that most of my peers had acquired much earlier, and
whom I will never, ever bet against.

In addition, I would like to thank the administrators and staff of KSU Engineering and the
EECE department, Penn Engineering and the ESE department, and the UTMB Anesthesiol-
ogy department. Most probably these brave souls are responsible for making the sun rise each
morning; certainly they keep the doors open and the wheels turning smoothly, and have been of
particular benefit to my forgetful self. In addition, my friends and church family kept me from

ACKNOWLEDGEMENTS iv

sinking into despair as I dealt with the disintegration of a particularly important personal rela-
tionship, and helped me prioritize. Coworkers at Wyle, UTMB, and Sparx helped me maintain
balance while juggling work, school, church, and personal issues, backfilled for me when I needed
a more intense focus on academic work, and most recently courageously served, without pay, as
proofreaders.

Dr. George Kramer (PhD), professor of anesthesiology and director of the Resuscitation
Research Lab at UTMB, thank you for correcting all my prior misconceptions about what re-
search is (or at least, replacing them with your own), welcoming me into a medical research
environment and freely sharing project ideas and data, supporting conference travel and poster
presentations, introducing me to world-famous scientists, showing your dedication to personal
leadership through sharing proverb after (often completely fabricated and usually inappropriate)
anecdote, and always, ALWAYS being willing to buy me more beers than I was willing to drink.

To the other students of the Penn CIS Distributed Systems Laboratory, for fitting me into
your presentation schedule, listening to several half-baked and wholly disorganized slide sets over
the years, and always making me feel welcome, thank you. To all the researchers of the UTMB
Resuscitation Research Lab, postdocs, technicians, nurses, and staff anesthesiologists alike, I am
indebted for your efforts to put those half-baked ideas into practice in animal surgeries and collect
the data I requested, for enduring my total misconceptions about physiology and carefully (and
oh-so-patiently) setting me straight over many months, and for the friendships that grew.

I would also like to thank the LATEX developers, the MiKTeX package maintainers, the
tex.stackexchange.com community, and especially Dr. Christian Feuersänger for his pgfplots
package, without which this document would be far less attractive. A gift of Visual Studio from
the Microsoft MVP program has also been most helpful.

Finally, and most important, my advisor, dissertation supervisor, and friend, Dr. Jonathan
Smith (PhD), who taught me the art of turning priorities into actions, explained the brotherhood
of PhD engineers in terms even I could understand, gave invaluable feedback and direction on
this entire undertaking and kept me on track across more than a decade despite my inadequacies
and competing demands, deserves more thanks than I can express.

My successes I owe to all those named above as well as others who have labored without
recognition; mistakes and omissions are my own.

I also acknowledge the following sources of funding which made possible my doctoral studies,
research experiments which generated data for my use, and my analysis:

• National Defense Science and Engineering Graduate Fellowship, award years 2002-2005
• National Science Foundation, grant CNS-1040672 “FIA: NEBULA“
• Olga and Aberico Pompa Professorship, an endowed chair at the University of Penn-
sylvania

• Office of Naval Research, grant N00014-12-C-0556 “Decision Support and Closed Loop
Control Systems”

• U.S. Army Medical Research and Materiel Command, Cooperative Agreement
#09078006 “Titrated Bolus Resuscitation“

• National Institutes of Health, grant 1R01HL092253-01 “Decision-Assist and
Closed-Loop Resuscitation of Burn-Injured Patients”

• Sparx Engineering

http://tex.stackexchange.com

v

ABSTRACT

VIVA: AN ONLINE ALGORITHM FOR PIECEWISE CURVE ESTIMATION

USING `0 NORM REGULARIZATION

Richard B. Voigt

Jonathan M. Smith

Many processes deal with piecewise input functions, which occur naturally as a result of digital commands, user

interfaces requiring a confirmation action, or discrete-time sampling. Examples include the assembly of protein

polymers and hourly adjustments to the infusion rate of IV fluids during treatment of burn victims. Estimation

of the input is straightforward regression when the observer has access to the timing information. More work is

needed if the input can change at unknown times. Successful recovery of the change timing is largely dependent

on the choice of cost function minimized during parameter estimation.

Optimal estimation of a piecewise input will often proceed by minimization of a cost function which includes

an estimation error term (most commonly mean square error) and the number (cardinality) of input changes

(number of commands). Because the cardinality (`0 norm) is not convex, the `2 norm (quadratic smoothing) and

`1 norm (total variation minimization) are often substituted because they permit the use of convex optimization

algorithms. However, these penalize the magnitude of input changes and therefore bias the piecewise estimates.

Another disadvantage is that global optimization methods must be run after the end of data collection.

One approach to unbiasing the piecewise parameter fits would include application of total variation minimization

to recover timing, followed by piecewise parameter fitting. Another method is presented herein: a dynamic

programming approach which iteratively develops populations of candidate estimates of increasing length, pruning

those proven to be dominated. Because the usage of input data is entirely causal, the algorithm recovers timing

and parameter values online. A functional definition of the algorithm, which is an extension of Viterbi decoding

and integrates the pruning concept from branch-and-bound, is presented. Modifications are introduced to improve

handling of non-uniform sampling, non-uniform confidence, and burst errors. Performance tests using synthesized

data sets as well as volume data from a research system recording fluid infusions show five-fold (piecewise-constant

data) and 20-fold (piecewise-linear data) reduction in error compared to total variation minimization, along with

improved sparsity and reduced sensitivity to the regularization parameter. Algorithmic complexity and delay are

also considered.

vi

Contents

Acknowledgements iii

Abstract v

List of Tables ix

List of Illustrations x

Chapter 1. Background 1

1.1. The Value of Infusion Monitoring 1

1.2. Practical Measurement of Infusion Rate 4

1.3. Existing Methods for Denoising Piecewise Signals 5
1.3.1. Bicriterion Model 5
1.3.2. Inexact Methods 6
1.3.3. Convex Methods 6
1.3.4. Equivalent Mixed-Integer Models 9
1.3.5. Methods of Solving Integer Programs 10
1.3.6. Related Work in Dynamic Programming 12

1.4. Real-Time Implications 14

Chapter 2. Short History of the Project 15

Chapter 3. Piecewise Minimum Cardinality Curve Fitting
using Pruned Dynamic Programming 17

3.1. Optimality Criterion for Continuity-Constrained Piecewise Curve Fitting 17

3.2. Complexity Growth in Small Cases 20

3.3. Functional Description of VIVA Algorithm 23

3.4. Truncated Search Heuristics 24
3.4.1. “Freeze Old Segments” Heuristic 25
3.4.2. “Limited Branching” Heuristic 26

3.5. Case Study, Compression of Electrocardiogram Data 27

3.6. Evaluation of Signal Recovery Performance using Synthesized Data 29
3.6.1. Monte-Carlo Testing Methodology 29
3.6.2. Piecewise Constant 30
3.6.3. Piecewise Linear 32

Chapter 4. Confidence Weighting 36

4.1. Measurement Variance 36
4.1.1. Inclusion of Weighting Term in Bicriterion Regularization 37
4.1.2. Automatic Weighting by Variance Estimation 37

CONTENTS vii

4.2. Burst Noise and Denoising Performance 38
4.2.1. Unweighted Estimator Performance Degradation due to Burst Noise 40
4.2.2. Variance-Based Weighting Provides Robustness to Burst Noise 41
4.2.3. Impact of Variance-Based Weighting on Strictly White Noise 51
4.2.4. Spectrum of residual noise 56

4.3. Case Study, Load Cell Monitoring Resuscitation of Hemorrhagic Shock 57

Chapter 5. Error and Delay in Online Configurations 61

5.1. Zero-Delay Evaluation 61

5.2. Changepoint Detection Lag 62
5.2.1. Solution Stability Condition 62
5.2.2. Selecting Delay Based on Solution Stability 64
5.2.3. Selecting Delay Based on Observed Population Reduction 65

5.3. Online Denoising Performance 65
5.3.1. Piecewise-constant with additive i.i.d. Gaussian noise 65
5.3.2. Piecewise-constant with burst Gaussian noise 65
5.3.3. Piecewise-linear with i.i.d. Gaussian noise 66
5.3.4. Piecewise-linear with burst white Gaussian noise 66

Chapter 6. Conclusions 74

6.1. Summary 74

6.2. Impact 74

6.3. Whither? 75

Appendix A. Selected Matlab and C# Functions 76

A.1. Synthesis of test data for Monte Carlo analysis 76
A.1.1. gen piecewise constant.m 76
A.1.2. gen piecewise linear.m 77
A.1.3. gen iid white noise.m 77
A.1.4. gen burst white noise.m 78

A.2. Optimality Testing 79
A.2.1. Connected Piecewise-Linear Regression (Polyline fitting) 79

A.3. VIVA Implementation 81
A.3.1. Piecewise-Constant State Update and Branch 81
A.3.2. Piecewise-Linear State Update and Branch 84
A.3.3. Pruned Depth-First Search 90

Appendix B. Solutions to Least-Squares Subproblems 97

B.1. Minimum-Residual Constant Segment Estimate 97
B.1.1. Least-Squares Solution 97
B.1.2. Residual Error 98

B.2. Minimum-Residual Polyline Estimate 99
B.2.1. Least-Squares Solution 99

Appendix C. Summary of measurement statistics 104

C.1. Continuous time 104
C.1.1. Recursive update 104
C.1.2. Change of anchor time 104

CONTENTS viii

C.2. Discrete time 105
C.2.1. Recursive Update 105

Appendix D. Linear Relaxations 106

Appendix E. Small Polyline fitting examples 108

Bibliography 118

ix

List of Tables

1 Comparison of residual error and sparsity of trend-filter estimates 8

2 Residual error and optimality, by segment count, for the S&P 500 log(price) excerpt
polyline approximations 22

3 Heuristics’ Influence on ECG Polyline Approximation (Compression) Performance 29

A.1 Size of Monte Carlo datasets 76

E.1 Residual error and bicriterion-optimality, by segment count, for the noiseless “sloop”
polyline approximations of Figure E.2 109

E.2 Residual error and bicriterion-optimality, by segment count, for the “sloop with
measurement noise” polyline approximations of Figure E.5 111

E.3 Residual error and bicriterion-optimality, by segment count, for the noiseless “gaff
cutter” polyline approximations of Figure E.9 114

E.4 Residual error and optimality, by segment count, for the noisy “gaff cutter” signal
of Figure E.12 116

x

List of Illustrations

1 In Total Variation Minimization, the penalty function biases the estimate for
extreme segments 7

2 Stairsteps form in Total Variation Minimization, because the penalty function
assigns zero incremental cost to segments which lie between neighbors 7

3 `1 Trend Filter is systematically biased toward shallow changes in slope 8

4 The binary sequence bj segments the measurement sequence yj into independent
constant segments 9

5 Cancel common term, yielding necessary condition for prefix of optimal segmentation 19

6 Exact polyline search algorithms’ complexity, considering first 600 data of S&P 500
log(price) data (Little and Jones, 2010) 21

7 Optimal polyline approximations for first 600 samples of S&P 500 log(price) data
(Little and Jones, 2010) 22

8 Model of many conjoined piecewise-linear segments 25

9 Model of many conjoined piecewise-linear segments with segment freeze heuristic 26

10 Excerpt of ECG data compression example data, with vertical offset added for ease
of comparison 27

11 Close zoom into ECG data compression example data 28

12 The signal piecewise constant.mat with and without noise 30

13 Performance of offline estimators evaluated using piecewise constant signal (strongly
white noise), N = 240 31

14 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise constant signal (strongly white noise), N = 240 31

15 Sparsity using Pruned Dynamic Programming on Piecewise Constant Signal 32

16 Performance of offline estimators evaluated using piecewise linear signal (strongly
white noise), N = 500, analysis of value estimate 33

17 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise linear signal (strongly white noise), N = 500, analysis of
value estimate 33

18 Performance of offline estimators evaluated using piecewise linear signal (strongly
white noise), N = 500, analysis of rate estimate 34

19 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise constant signal (strongly white noise), N = 500, analysis
of rate estimate 34

20 Comparison of Sparsity Achieved by all offline methods with piecewise linear signal
(strongly white noise), N=500 35

LIST OF ILLUSTRATIONS xi

21 The signal piecewise constant bursty.mat with and without noise 38

22 “Transmitted” Signal 39

23 “Received” Signal corrupted by burst noise 39

24 Performance degradation of offline estimators when burst noise is introduced into
piecewise constant signal 40

25 Performance degradation in stable regions (transition bands excluded) of offline
estimators when burst noise is introduced into piecewise constant signal 40

26 Effect of Burst Noise on Estimate Sparsity 41

27 Performance degradation of offline value estimates when burst noise is introduced
into piecewise linear signal 42

28 Performance degradation in stable regions (transition bands excluded) of offline
value estimates when burst noise is introduced into piecewise linear signal 42

29 Performance degradation of offline rate estimates when burst noise is introduced
into piecewise linear signal 43

30 Performance degradation in stable regions (transition bands excluded) of offline rate
estimates when burst noise is introduced into piecewise linear signal 43

31 Performance of offline estimators evaluated using piecewise constant signal (burst
noise), N = 100 44

32 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise constant signal (burst noise), N = 100 44

33 Sparsity achieved by offline estimators evaluated using piecewise constant signal
(burst noise), N = 100 45

34 Performance of offline estimators evaluated using piecewise linear signal (burst
noise), N = 500, analysis of value estimate 46

35 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise linear signal (burst noise), N = 500, analysis of value
estimate 47

36 Performance of offline estimators evaluated using piecewise linear signal (burst
noise), N = 500, analysis of rate estimate 48

37 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise linear signal (burst noise), N = 500, analysis of rate
estimate 49

38 Comparison of Sparsity Achieved by all offline methods with piecewise linear signal
(burst noise), N=500 50

39 Performance of offline estimators evaluated using piecewise constant signal (strongly
white noise), N = 240 51

40 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise constant signal (strongly white noise), N = 240 51

41 Sparsity achieved by offline estimators evaluated using piecewise constant signal
(strongly white noise), N = 240 52

42 Performance of offline estimators evaluated using piecewise linear signal (strongly
white noise), N = 500, analysis of value estimate 53

43 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise linear signal (strongly white noise), N = 500, analysis of
value estimate 53

LIST OF ILLUSTRATIONS xii

44 Performance of offline estimators evaluated using piecewise linear signal (strongly
white noise), N = 500, analysis of rate estimate 54

45 Performance in stable regions (transition bands excluded) of offline estimators
evaluated using piecewise constant signal (strongly white noise), N = 500, analysis
of rate estimate 54

46 The signal piecewise linear.mat with and without noise 55

47 Signal corrupted by sporadic noise and recovered using inverse-variance auto-
weighting 56

48 Sporadic noise and residual error after recovery using inverse-variance auto-weighting 56

49 Power spectral density of sporadic noise and residual error 57

50 Load cell data monitoring pig hemorrhage and resuscitation 58

51 Piecewise linear estimate obtained to denoise load cell channel 2, Figure 50 59

52 Flow rates obtained from piecewise linear estimate 60

53 Total flow rate from multiple load cells, comparison to electronic Doppler flowmeter 60

54 Excerpt from ’piecewise constant.mat’ and corresponding zero-delay estimate
(Uniformly weighted, ζ = 25) 61

55 Excerpt from ’piecewise linear bursty.mat’ and corresponding zero-delay
estimate (Variance auto-weighted, ζ = 25) 62

56 Cost function within bk = 0 branch 63

57 Cost function within bk = 1 branch 64

58 Denoising piecewise constant.mat using conventional lowpass filters and VIVA 66

59 Performance of online estimators evaluated using piecewise constant signal (strongly
white noise), N = 240 67

60 Performance in stable regions (transition bands excluded) of online estimators
evaluated using piecewise constant signal (strongly white noise), N = 240 67

61 Denoising piecewise constant bursty.mat using conventional lowpass filters and
Variance Auto-Weighted VIVA 68

62 Performance of online estimators evaluated using piecewise constant signal (burst
noise), N = 100 69

63 Performance in stable regions (transition bands excluded) of online estimators
evaluated using piecewise constant signal (burst noise), N = 100 69

64 Performance of online estimators evaluated using piecewise linear signal (i.i.d. white
noise), N = 500, analysis of value estimate 70

65 Performance in stable regions (transition bands excluded) of online estimators
evaluated using piecewise linear signal (i.i.d. white noise), N = 500, analysis of value
estimate 70

66 Performance of online estimators evaluated using piecewise linear signal (i.i.d. white
noise), N = 500, analysis of rate estimate 71

67 Performance in stable regions (transition bands excluded) of online estimators
evaluated using piecewise linear signal (i.i.d. white noise), N = 500, analysis of rate
estimate 71

68 Performance of online estimators evaluated using piecewise linear signal (burst
noise), N = 500, analysis of value estimate 72

LIST OF ILLUSTRATIONS xiii

69 Performance in stable regions (transition bands excluded) of online estimators
evaluated using piecewise linear signal (burst noise), N = 500, analysis of value
estimate 72

70 Performance of online estimators evaluated using piecewise linear signal (burst
noise), N = 500, analysis of rate estimate 73

71 Performance in stable regions (transition bands excluded) of online estimators
evaluated using piecewise linear signal (burst noise), N = 500, analysis of rate
estimate 73

B.1 Fit using many conjoined piecewise-linear segments 99

E.1 Signal with “sloop” shape, with accompanying “measurement noise” 108

E.2 Noiseless signal with “sloop” shape and minimum-MSE polyline approximations by
segment count 109

E.3 Comparison of computational complexity of residual minimization using fixed
segment count and bicriterion regularization with and without pruning, signal is the
noiseless “sloop” shown in Figure E.1 110

E.4 Comparison of computational complexity of bicriterion regularization via pruned
dynamic programming, with and without truncation heuristics, applied to the
noiseless “sloop” shown in Figure E.1 110

E.5 Minimum-MSE polyline approximations for “sloop with measurement noise” signal 111

E.6 Comparison of computational complexity of residual minimization using fixed
segment count and bicriterion regularization with and without pruning, signal is the
“sloop with measurement noise” shown in Figure E.1 112

E.7 Comparison of computational complexity of bicriterion regularization via pruned
dynamic programming, with and without truncation heuristics, applied to the
“sloop with measurement noise” shown in Figure E.1 112

E.8 Signal with “gaff cutter” shape, with accompanying “measurement noise” 113

E.9 Noiseless signal with “gaff cutter” shape and minimum-MSE polyline approximations
for several segment counts 114

E.10 Comparison of computational complexity of residual minimization using fixed
segment count and bicriterion regularization with and without pruning, signal is the
noiseless “gaff cutter” shown in E.8 115

E.11 Comparison of computational complexity of bicriterion regularization via pruned
dynamic programming, with and without truncation heuristics, applied to the
noiseless “gaff cutter” shown in Figure E.8 115

E.12 Optimal polyline approximations for “gaff cutter” signal with added noise and with
fixed segment count 116

E.13 Comparison of computational complexity of residual minimization using fixed
segment count and bicriterion regularization with and without pruning, signal is the
“gaff cutter with measurement noise” shown in E.8 117

E.14 Comparison of computational complexity of bicriterion regularization via pruned
dynamic programming, with and without truncation heuristics, applied to the “gaff
cutter with measurement noise” shown in Figure E.8 117

1

CHAPTER 1

Background

This chapter describes the medical scenario that motivated development of a novel online
denoising algorithm. Shock, defined as “a life-threatening, generalized maldistribution of blood
flow resulting in failure to deliver and/or utilize adequate amounts of oxygen” (Antonelli et al.,
2007) occurs acutely in victims of trauma, infection, and burn. Resuscitation of shock requires
individualized care that accounts for patient-specific responses, as responses that differ from the
“textbook case” are prevalent. Computers can assist with provision of fluid and drug therapies
used to resuscitate shock, as well as decision support and alarming. However, hemodynamic
optimization requires accurate and timely measures of both therapy delivered and patient re-
sponse. The harried environments in which medicine is practiced make obtaining these signals
quite challenging. Existing methods of noise removal are poorly suited to the task.

1.1. The Value of Infusion Monitoring

1.1.1. Shock is a Major Factor in Preventable Deaths. Traumatic injuries cause more deaths
of patients aged 40 and under than any other cause (Spinella and Holcomb, 2009), causing approx-
imately 90,000 deaths annually in the USA alone. Of these, Spinella and Holcomb estimate that
10,000 or more result from inadequate treatment of hemorrhagic shock resulting from survivable
injuries. Amongst battlefield injuries, the prevalence of traumatic hemorrhage is even higher,
with one fifth of fatalities occurring following injuries classified as potentially survivable, due to
exsanguination before reaching a medical treatment facility (Eastridge et al., 2012). According
to Newgard et al. (2010), receiving care from an experienced trauma team at a major trauma
center is crucially important to outcome, while time spent pre-hospital and in transport is not,
but this considered only transport times up to two hours and assumes that adequate resources
are available to keep the casualty stable, something that often is not true on the battlefield.

The US military has proposed to address this need by (1) using electronics to bring exper-
tise to combat medics (2) evacuate casualties to definitive care earlier (3) improve care during
transport . Several key initiatives include use of unpiloted drones, having delivered supplies to
forward troops, to perform timely medical evacuation through environments too dangerous to
hazard human care providers (ONR BAA 12-004 CONOPs). An autonomous critical care system
(ACCS) is under development by the Office of Naval Research. The ACCS will provide decision
support to a corpsman in the field to help stabilize and prepare a patient for transport, then
manage a patient during medical evacuations, either autonomously or with the help of remote
guidance from telemedicine caregivers (ONR BAA 11-012). The ACCS can also be used in med-
ical facilities as a force multiplier by aiding in hemodynamic management, thus requiring less
medical provider time per patient.

Shock resulting from severe sepsis has a mortality rate from 28% to 50% (Wood and Angus,
2004), killing over 100,000 hospital patients annually (Martin et al., 2003). Burn patients also
are at risk of hypotensive shock, either from fluid loss induced by the burn, or resulting from
secondary infections.

The need for improvements in treatment and prevention of shock is clear.

1.1. THE VALUE OF INFUSION MONITORING 2

1.1.2. Shock is Treated by Optimum Fluid Therapy. Infusion of fluid to increase circulating
blood volume (Sanford and Herndon, 2001) is essential to resuscitation of shock victims because
it sequentially increases venous return, cardiac stroke volume, and volumetric flow rate (“car-
diac output”) (Gagnon, 2009; Antonelli et al., 2007; Kramer et al., 2007a). Increased cardiac
output will, ceteris paribus, both increase the net oxygen delivered to tissues and increase tissue
perfusion. However, fluid infusion is a two-edged sword, as fluid overload also puts the patient
at risk (Perel, 2008; Spinella and Holcomb, 2009). Increased vascular pressure increases effluent
flow rates, making it more difficult for clots to form (coagulation), and also increases strain on
newly formed clots, which may cause them to fail and internal bleeding to resume (Spinella and
Holcomb, 2009). Dilution of blood with infusate also reduces the concentration of oxygen carriers
and clotting factors (Spinella and Holcomb, 2009).

Additional effects are related to characteristics of the particular fluid used (Guha et al.,
1996; Kramer et al., 2007a). Use of saline solutions causes a decrease in protein concentrations,
reduced colloid osmotic pressure, and increased leakage of water into the surrounding tissues
(Saffle, 2007; Kramer et al., 2007a), causing swelling (“edema”), while solutions of hypertonic
saline or colloids have the opposite effect Guha et al. (1996); Fodor et al. (2006). If this occurs in
the lungs (“pulmonary edema”), the increased aveolar wall thickness will reduce the effectiveness
of gas exchange (Holm et al., 2004), and may result in lower arterial oxygen saturation. If
swelling occurs inside the abdomen, pressure may be exerted on vital abdominal organs, causing
collapse of veins and impeding blood flow and organ function. This condition is known as
“intra-abdominal hypertension” and if unchecked leads to organ failure designated “abdominal
compartment syndrome” (Saggi et al., 2001; Pham et al., 2008; Salinas et al., 2008; Cancio, 2014).
Edema also increases the risk that a burn injury will become septic (Hoskins et al., 2006; Salinas
et al., 2008); conversely sepsis increases edema (van der Heijden et al., 2009). If the infusate is not
warmed to body temperature, it can contribute to hypothermia, negatively affecting coagulation
that may already be compromised by acidosis (Tsuei and Kearney, 2004).

For all these reasons it is desirable to infuse the minimal volume needed to achieve clinical
goals (Cancio, 2014). Yet providers continue to infuse burn patients with significantly more fluid
(Kramer et al., 2007b; Salinas et al., 2008; Oda et al., 2006) than called for by consensus rec-
ommendations (Pham et al., 2008), and these large fluid volumes are implicated in development
of abdominal compartment syndrome (ACS) (Oda et al., 2006; Saffle, 2007). Resuscitation fluid
is associated with ACS in non-burn patients as well (Balogh, 2003; Sugrue, 2005). According to
Sugrue (2005), 5% of intensive care patients suffer from ACS. Mortality varies between 25% and
75% (Balogh et al., 2003).

1.1.3. Goal-Directed Therapy Achieves Better Outcomes. One possible explanation for the
persistence of burn care providers in choosing to err on the side of extra fluid is that under-
resuscitation represents acute risk, while harm resulting from over-resuscitation manifests multi-
ple hours if not days in the future. Often the providers are convinced that fluid volumes exceeding
the formulaic calculations are truly needed in these patients. Yet evidence shows that when fluid
is systematically managed using objective goal-directed rules, fluid volumes are generally less
than predicted by the Parkland formula without leading to under-resuscitation (Salinas et al.,
2011; Oda et al., 2006; Arlati et al., 2007), and in fact achieve better outcomes (Salinas et al.,
2008).

The advantages of goal-directed (explicit feedback loop) therapy are not limited to burn
patients either. Outcomes in sepsis patients improved following implementation of goal-directed
therapy (Otero, 2006; Perel, 2008). A meta-analysis performed by Hamilton et al. (2011) found
significant improved outcomes in a broad range of high risk surgical and critical care patients.

In addition, adherence to clinical guidelines based on published evidence and expert con-
sensus leads to better and more consistent outcomes than achieved by care providers making
decisions individually (Fakhry et al., 2004; Levy et al., 2010; Morris et al., 2011; Krinsley, 2004).

1.1. THE VALUE OF INFUSION MONITORING 3

Fortunately, both knowledge-based treatment and feedback control are amenable to computer
automation.

1.1.4. Research Demonstrates that Decision Support and Closed-Loop Control of Hemody-
namics is Possible. In fact, there have already been successes in implementation of closed-loop
management of fluid (Rafie et al., 2004; Ying et al., 2002; Hoskins et al., 2006; Salinas et al.,
2008; Kramer et al., 2008; Vaid et al., 2006; Rinehart et al., 2011, 2012; Meador, 2014; Cancio,
2014), vasodilators for relief of hypertension (Hammond et al., 1979; Ying et al., 1992), and
vasoconstrictors for correction of normovolemic hypotension (Yu et al., 1992; Rao et al., 1999,
2003; Ngan Kee et al., 2008) in large mammals and human patients. Automatic sedation has
been demonstrated as well (Bibian et al., 2005; Hemmerling, 2009; Struys et al., 2001). These
closed-loop control studies have been performed during a variety of surgical and intensive care
scenarios as well as first responder / point of injury simulations. Even though the computer does
not have knowledge of upcoming surgical actions and consequences, the responsiveness of silicon
processors results in making decisions about new data more quickly; reaching targets faster, with
less overshoot; and managing endpoint variables more precisely than can a human provider with
multiple responsibilities.

1.1.5. Limitations of Automated Fluid Delivery using a Fixed Control Law. While the suc-
cessful closed-loop tests demonstrate the potential rewards of using computers to automatically
manage hemodynamics, these studies are limited in scope and it would be premature to believe
that the algorithms are ready for broad deployment. In particular, the research animals were
healthy apart from the intentionally inflicted injury and patients were selected using criteria that
excluded complications. While these restrictions are perfectly understandable considering the
research goals of reproducibility and cohort comparison, and the ethical goal of patient safety,
they do not address questions about safety and efficacy on a broader population. Inter-patient
variability that was largely excluded by study criteria may lead to poor outcomes. For example,
controlling fluid infusion to sepsis patients based on a target of central venous pressure may cause
overinfusion (Perel, 2008). According to Preisman (2005), single-variable optimization of cardiac
output may lead to fluid overload; as many as 50% of patients may be unresponsive (in the sense
of increasing stroke volume) to fluid.

In extreme cases, the negative effects of fluid infusion could adversely affect the feedback
variable, setting up a positive feedback loop that demands fluid therapy more insistently even as
it drives the patient ever further from the target. In their work on closed-loop sedation, Bibian
et al. (2005, 2004); Zikov and Bibian (2014) explain the importance of bounding the uncertainty
of patient response and defining the controller’s region of convergence and stability. A key insight
comes from Haddad and Bailey (2009), “[...] it has been assumed that stability follows from the
pharmacokinetic/pharmacodynamic model. However, this is not the case since these controllers
do not account for full model uncertainty, unmodeled dynamics, exogenous disturbances, and
system nonlinearities.”

1.1.6. Controllers Benefit from Automated Response Analysis. Individualization of models
through observing output response for the purpose of per-patient parameter identification, even
if only a subset of parameters can be determined (partial parameter identification), can be used
to improve controller performance (Bibian et al., 2004). Some control techniques, such as model
adaptive control, explicitly use the subject-specific parameter values. Other controllers may be
able to account for reduced uncertainty by gain adjustment.

According to Haddad and Bailey (2009), robust controllers sacrifice performance for stabil-
ity, while adaptive control seeks both performance and stability. This presents a design tradeoff,
since both present risks: Overdamping used to increase controller robustness causes slow con-
vergence and increases the time a patient is left in a dangerous physiologic state. Additionally
the overdamped control loop is less capable of opposing the effect of large disturbances. On the
other hand, adaptive control is heavily reliant on the fidelity of parameter estimates, and can
become unstable if those estimates become corrupted.

1.2. PRACTICAL MEASUREMENT OF INFUSION RATE 4

1.1.7. “Electronic Doctor” Diagnosis and Prescription will Rely on Automated Response
Analysis. Like the human decision process (Kahneman, 2011), autonomous critical care systems
of the future will consist of a slow “reasoning” expert system performing diagnosis and selection
of therapies and drugs, with fast “reacting” closed-loop controllers carrying out these therapies.
Several closed-loop controllers have already been mentioned. Gholami et al. (2012) states that

It is important to note that expert systems are already in widespread use
in other branches of medicine, more prominently in disease diagnosis, where
the system inputs are the patient’s details and symptoms, and the system
outputs are probable diagnoses, recommended treatments or drugs which may
be prescribed. Such systems are typically open-loop and may be regarded as
rule-based search engines to help the clinician in his/her mapping of a given
set of symptoms to a possible cause (disease).

and furthermore provides a framework for application of Bayesian expert systems in the fast
closed-loop portion of the system. This is typically seen as initial encoding of care provider
knowledge heuristics, which are later replaced by robust and adaptive controllers as dynamical
system models are developed.

One key element that remains is the forwarding of performance information from the reac-
tion layer to the reasoning layer, which may take actions such as alarming, swapping controller
implementations for one expected to yield better performance on the particular patient, or discon-
tinuation of an ineffective therapy. Parameter estimation using Kalman filters has been described
in Luspay and Grigoriadis (2014). This and similar adaptive techniques will provide the reasoning
system with the information needed to manage inter-patient variability.

1.2. Practical Measurement of Infusion Rate

1.2.1. Effects of Erroneous Infusion Rate. Because assessment of response to fluid bolus is
intended for computer-assisted diagnosis, computerized alarming, closed-loop controllers checking
preconditions that assure controllability and stability, and eventually for automated planning of
patient care, the hazard of basing this assessment on invalid input data has potential to lead
to harm. The assessment aggregates infusion and response data over a time interval, providing
reduced sensitivity to small or transient errors in the input signal, so the input signal (infusion
rate) must be known within these tolerances.

1.2.2. Need for Independent Rate Measurement. When the infusion rates of IV pumps are
set by computerized control, it is tempting to accept the control signal as a perfectly accurate
input signal. However, actual flow rates vary from requested rates due to variations in resistance,
source pressure, and backpressure, as well as automatic safety shutdown if air or occlusion is
detected. Hospital pumps controlled via front panel may or may not report the currently set
rate via a computer interface. Moreover, care providers give some fluids without the aid of
pumps. Manually delivered fluids are particularly common in operating rooms. Furthermore,
some infusers offer relative control of flow without providing accurate flow rate information.
Controllers which fail to account for actual flow rates lead to windup and improper adaptation
(Haddad and Bailey, 2009). For these reasons, having an independent measure of infusion rate
is helpful.

In a research laboratory, flow rates can be accurately and continuously measured using
electronic flow probes (e.g. transit time or Doppler-derived rate). But these devices are expensive
and require exact calibration and careful handling to protect the transducer crystals, making
them unsuitable for routine use. A simple, lightweight, and inexpensive method for monitoring
infusions is to weigh the IV bag or other source reservoir using a load cell. Effectiveness for
response assessment depends on the accuracy of flow rate estimates derived from the load cell

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 5

signals. Environments with significant mechanical vibration pose particular obstacles to using
load cells for infusion monitoring. Even in fixed settings, small errors in weight measurements
lead to large uncertainty in rate calculations. For example, an error of only 0.1 g, if the time
resolution is 10 seconds, leads to a flow rate error of 0.6mL/min or 36mL/h. And the problem
increases with higher time resolution.

1.2.3. Infusion Monitoring System Prototype. A four channel “smart IV pole” IV bag moni-
toring system to use load cells to continuously measure the weight of IV bags has been conceived
in the UTMB Resuscitation Research Laboratory (Galveston, TX) and designed and built by
Sparx Engineering (Manvel, TX). UTMB researchers developing smart hemodynamic resusci-
tation components for the Navy ACCS have used this load cell system to record infusion data
during fluid resuscitation studies of hemorrhagic and burn shock in animal models. The Texas
Instruments LMP90099 analog-to-digital converter used in this system samples load cell readings
53.66 times per second with a system error of ±1 g (0.2 g after averaging). The system undergoes
two-point offset and gain calibration before each use. Data collected using this system consists
of periods of valid readings with additive limited measurement noise, interspersed with short-
duration burst noise caused by mechanical forces on either side of the load cell (IV pole or IV
bag). In addition, following manipulation of the IV bag, the data are frequently observed to
exhibit underdamped oscillation due to pendulum action of the IV bag.

Several different approaches may be taken to denoising the flow rate estimate. Classical
lowpass filtering trades time resolution for reduced error. Regularization methods rooted in
optimization theory attempt to achieve low errors and good time resolution by finding the simplest
signal that is consistent with the measured data. A regularization problem was stated which
encodes the domain knowledge that care providers infrequently change the infusion rate. I
developed the Viterbi-Inspired Variation Assessment (VIVA) method to efficiently perform this
`0 norm regularization. Further development of the VIVA method added time-varying weighting
to reduce sensitivity to burst noise.

Denoising is less critical for other applications of the load cell data, such as detection of IV bag
depletion or calculation of cumulative delivered fluid, which are impacted less by measurement
noise. But these too benefit from identification of bag changes and rejection of burst noise from
mechanical impacts on the IV pole.

1.3. Existing Methods for Denoising Piecewise Signals

1.3.1. Bicriterion Model

In the search for the maximum-likelihood estimate {x̃k} of the underlying signal {xk}, it is
natural to use a bicriterion objective function which seeks both agreement with the observations
{yk} and simplicity of description. Simplicity may be motivated by domain knowledge that
control actions are few or because a short (compressed) representation is desired to simplify
communication, storage, and further analysis. Then

(1.1) x̃ = argmin
x′

ε(x′) + ζf(x′)

where ε(x′) represents a goodness of fit “distance” from the observation sequence, f(x′)
represents the control burden, and ζ is a weighting coefficient controlling a tradeoff between the
two.

The usual metric for goodness of fit is integral-square residual error, which for sampled
measurements becomes a discrete sum:

(1.2) ε(x′) =

N∑
k=1

(x′
k − yk)

2

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 6

This corresponds to negative log-likelihood in the case of additive i.i.d. Gaussian noise
(AWGN). In the case of non-stationary noise, a weighting function may be included:

(1.3) ε(x′) =

N∑
k=1

ck (x
′
k − yk)

2

For control actions which act on either value or rate of observations, the control burden may
be expressed as the number (cardinality) of non-zero control inputs

(1.4) f(x′) = card (∆px′)

where p expresses the controller-observer relationship, with particular interest in the values

(1.5) p ∈
{
2 rate control

1 value control

This problem is relevant to many areas of operations research, with related work appearing in
the changepoint, linear programming, integer programming, dynamic programming, and convex
optimization literature. Existing work falls into several classifications:

• In-exact solutions, typified by greedy algorithms
• Convex relaxations
• Exact solutions with poor scaling
• Dynamic programming

1.3.2. Inexact Methods

1.3.2.1. “Greedy” Step-Fitting Algorithms. Another active research area in biology which
requires denoising piecewise-constant data is the study of protein regulation of microtubule as-
sembly (Kerssemakers et al., 2006). In 2008, Carter et al. used artificial data sets analogous to
kinesin motion to compare four methods for automatic resolution of individual steps, concluding
that the best of these was the chi-squared minimization method developed by Kerssemakers et al.
(2006). This method uses a fractal-like procedure whereby the entire dataset is split into two
at the point which minimizes residual chi-square measure. The procedure is then repeated on
each segment found, and the new step which reduces residual chi-square the most is accepted.
The algorithm also provides a quality measure which terminates the iteration. In the developers’
own words, “Once found, the step-locations do not change anymore, although the associated step
sizes continue to change as they depend on the location of the neighboring steps” making this a
greedy algorithm. This approach is similar to the Binary Segmentation method described in the
changepoint literature (Killick et al., 2012), but the Kerssemakers et al. method incorporates an
additional termination condition designed to prevent overfitting.

1.3.3. Convex Methods

1.3.3.1. Total Variation Minimization. Little and Jones sought to overcome the limitations of
the greedy step-fitting algorithms using a global `1 regularization solved using convex optimiza-
tion techniques. They demonstrated that their lasso filter based on total variation minimization
yields results with lower noise for synthesized piecewise constant data than classical median filters
used to preprocess data for the greedy step-fitting algorithms. Their algorithm also performed
well on bacterial motor rotation data. The recent development of Little’s approach and its supe-
rior performance compared to the methods in Carter et al. (2008) establishes it as the baseline to
beat for piecewise-constant models. However, the total variation minimization approach yields
two types of systematic error. As seen in Figure 1, segments which lie to the same side of both
neighbors are systematically estimated with a bias toward the neighboring levels, underestimating
step magnitude. Furthermore, segments which lie between neighboring levels carry no penalty
at all, resulting in stairstep output (Figure 2).

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 7

0 2 4 6 8 10

−10

−5

0

5

10

Sample Number (thousands)

Measured
Original Signal
TVM λ = 80

Figure 1. In Total Variation Minimization, the penalty function biases the
estimate for extreme segments

0 2 4 6 8 10

−10

−5

0

5

10

Sample Number (thousands)

Measured
Original Signal
TVM λ = 80

Figure 2. Stairsteps form in Total Variation Minimization, because the penalty
function assigns zero incremental cost to segments which lie between neighbors

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 8

2000 2001 2002 2003 2004 2005 2006 2007
6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

Year

log price

Source Data
VIVA, High Sparsity
VIVA, Tight Fit
`1 Trend Filtering (Kim 2009)

Figure 3. `1 Trend Filter is systematically biased toward shallow changes in slope

Table 1. Comparison of residual error and sparsity of trend-filter estimates

Method RMS residual Segmentation

Changepoints Slope Threshold

`1 Trend Filtering 0.0314 12 10−4

(Kim et al., 2009) 42 10−6

VIVA (Tight Fit) 0.0283 9 10−10

VIVA (Sparse) 0.0319 6 10−10

1.3.3.2. Trend Filtering. Kim et al. demonstrated use of global `1 bicriterion regularization
for fitting polyline models. These models are used extensively in a variety of financial and
biological applications (Kim et al., 2009). Considering the stock price curve fitting problem which
appeared as Figure 2 in Kim et al. (2009), comparison of the `1 trend filtering result to two other
piecewise-linear curves shows that this relaxation exhibits the same systematic sub-optimality as
total variation minimization, manifesting as underestimation of changes in slope and failure to
obtain a truly sparse description (Figure 3, Table 1).

1.3.3.3. Other Interior Point Methods. Julian et al. (1998) performs fitting of piecewise-affine
multidimensional surfaces to sample data by proposing partition boundaries and performing
descent using a Newton-Gauss algorithm to exponentially converge to a local minimum. When
the conditions for global optimality are not met, the algorithm attempts to escape local minima by
restarting the algorithm from new initial partitions. Problems with larger numbers of hyperplanes
are addressed by optimizing using a smaller number to obtain an initial partitioning for the larger
problem. This method is avoided for data with large numbers of segments due to its poor scaling
with facet count.

Xu et al. (2011) fits images with a reduced variation cardinality using an iterative algorithm
that alternates between identifying edges and then smoothing between them. Their method
performs simultaneous optimization across the entire dataset and works only for the piecewise-
constant case. Since less expensive methods exist for finding exact solutions in the one dimen-
sional case, no attempt will be made to adapt it for real-time use.

1.3.3.4. Advantages of `0 Regularization. It is interesting that, aside from its convexity, the
most valuable attribute of `1 norm regularization is that it approximates finding solutions to the
`0 norm regularization problem (Boyd and Vandenberghe, 2004; Ramirez et al., 2013; Kim et al.,
2009), or even exactly finds sparse solutions (Donoho, 2006). Chartrand (2007) uses a `p norm
with p < 1, in order to get closer to `0, making the observation “The resulting optimization

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 9

tA ti tB
−10

−5

0

5

10

15

Measurement
bi = 0
bi = 1

Figure 4. The binary sequence bj segments the measurement sequence yj into
independent constant segments

problem will not be convex, and is described in the literature as intractable.” Undissuaded,
Chartrand then goes on to show that using descent methods with this non-convex `p norm is
statistically likely to find a solution with the globally optimal sparsity pattern, and that even
local minima generate better reconstructions of sparsely sampled signals than found using the `1

norm. Furthermore Xu et al. (2011) constructs signals for which the `1 norm heuristic fails to
find the optimal sparse solution.

1.3.4. Equivalent Mixed-Integer Models

Another expression of the maximum likelihood estimation problem is as a mixed-integer
quadratic program (Roll et al., 2004). Augment the problem with additional binary variables,
which segment the measurement sequence (Figure 4):

(1.6) bk =

{
1 ∃i, (k − 1)Tv < Ti − t1 ≤ kTv

0 otherwise

where Tv is the time resolution with which it is desired to locate step changes.
The complete MIQP model for piecewise-constant estimation with the `0 norm (variation

cardinality minimization) objective function is:

(1.7)

minimize (x′ − y)
T
(x′ − y) + ζ1Tb′

subject to −x′
k + x′

k+1 −Mb′k ≤ 0 ∀k
x′
k − x′

k+1 −Mb′k ≤ 0 ∀k
b′k ∈ { 0, 1 } ∀k

The piecewise-linear estimate with `0 norm objective function and continuity constraints has
a similar canonical MIQP form:

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 10

(1.8)

minimize (x′ − y)
T
(x′ − y) + ζ1Tb′

subject to (ti − ti+1)x
′
k−1 + (ti+1 − ti−1)x

′
k + (ti−1 − ti)x

′
k+1 −Mb′k ≤ 0 ∀k

(ti+1 − ti)x
′
k−1 + (ti−1 − ti+1)x

′
k + (ti − ti−1)x

′
k+1 −Mb′k ≤ 0 ∀k

b′k ∈ { 0, 1 } ∀k

So too is this piecewise-linear estimation problem with the continuity constraints removed
(periodic sampling assumed for simplicity of notation):

(1.9)

minimize (x′ − y)
T
(x′ − y) + ζ1Tb′

subject to −x′
k−1 + 2x′

k − x′
k+1 −Mb′k−1 −Mb′k ≤ 0 ∀k

x′
k−1 − 2x′

k + x′
k+1 −Mb′k−1 −Mb′k ≤ 0 ∀k
b′k ∈ { 0, 1 } ∀k

Although it is easier to solve exactly, the model is more complex.
In contrast, the `1 norm (total variation minimization) formulation is (piecewise-constant,

mutatis mutandis for piecewise-linear with continuity):

(1.10)
minimize (x′ − y)

T
(x′ − y) + ζ1Td′

subject to −x′
k + x′

k+1 − d′k ≤ 0 ∀k
x′
k − x′

k+1 − d′k ≤ 0 ∀k

which is a quadratic program (with linear constraints).
If instead of minimizing the integral-square residual error, the integral absolute residual error

(`1 norm) is minimized,

(1.11) ε(x′) =

N∑
k=1

|x′
k − yk|

then the objective function becomes linear, forming a mixed-integer linear program (MILP):

(1.12)

minimize 1T r′ + ζ1Tb′

subject to −x′
k + x′

k+1 −Mb′k ≤ 0 ∀k
x′
k − x′

k+1 −Mb′k ≤ 0 ∀k
−x′

k + y′k − r′k ≤ 0 ∀k
x′
k − y′k − r′k ≤ 0 ∀k

b′k ∈ { 0, 1 } ∀k

Naturally it is also possible to use the `1 norm for both goodness of fit and simplicity
of description, in which case a linear program is obtained. Another related linear program is
obtained from the minimax residual:

(1.13) ε(x′) =
∑
i

max
Ti≤kTv≤Ti+1

|x′
k − yk|

1.3.5. Methods of Solving Integer Programs

Branch-and-bound is a standard technique for solving mixed integer programs: linear and
quadratic programs with integer or binary variables. However, the presence of Big-M in con-
straints leads to relaxations with infeasible optimal solutions and weak bounds (Bertsimas and
Shioda, 2007; Toriello and Vielma, 2012). In some cases Big-M can be replaced by a finite value,
for example in piecewise-constant curve fitting, no step will ever be greater than the range of the
observations. But these bicriterion regularization problems still produce weak relaxations as a
rule, leading to excessive branching.

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 11

1.3.5.1. Symmetry reduction. Symmetry (when mapping between descriptive parameters and
solution is not injective, for example when permutations of the parameters are equally valid) poses
a particular problem for branch-and-bound, since even the optimal cost is not strong enough to
prune subproblems that contain another optimum (Barnhart et al., 1998).

The binary variables are paired with observations in the MIQP models given, so if the obser-
vation times are distinct, there is no symmetry. In case of multiple observations at a single time,
this could become problematic. Especially when there is no continuity constraint, if observations
occur simultaneously with a jump discontinuity (to within measurement time precision), the
wrong partition of observed values could lead to suboptimality. However rather than introducing
symmetry, one need only consider two orderings, corresponding to either ascending or descending
sort of the observations.

A similar approach is used by Roll et al. (2004) to address estimation of a monotonic
piecewise-affine function (jump discontinuities allowed, provided they are in the direction pre-
serving monotonicity) serving as the non-linear output mapping of a Wiener model. Roll et al.,
not having knowledge of the abscissa, breaks symmetry by sorting observations by the ordinate,
resulting in computational complexity which is combinatorial – polynomial in the length of the
input data, but exponential in the number of changepoints. This ordering could prove problem-
atic if the effect of noise swaps two (or more) observations which lie either side of a changepoint.
Due to this concern and the high complexity, this approach would not be used for the simpler
case of finding piecewise functions of time.

1.3.5.2. Bound strengthening methods. Because branching increases complexity exponen-
tially, effort is often expended on further constraining the linear / convex relaxation to produce a
feasible solution. Branch-and-cut and branch-and-price (Barnhart et al., 1998) are complemen-
tary methods that tighten the bounds of the relaxed problem. Gomory cuts specifically tighten
subproblems by adding bounds on a variable whose integrality is violated by the relaxed opti-
mum. For MILP problems (linear objective function), various cutting planes including Gomory
cuts, lifted-cover inequalities, flow cover inequalities, and gub-cover inequalities can be automat-
ically added by such solvers as bc-opt (Cordier et al., 1999), MPSARX, MINTO, and MIPO.
While not directly applicable to the MIQP models, it is likely that commercial solvers such as
CPLEX (IBM) and would be able to apply cuts to reduce the required branching.

Branch-and-price aids in the optimization of problems with many variables (as these MIQP
models have) by optimizing using a small basis set. Other integer variables are exchanged with
the basis set (“priced in”) depending on the residual cost associated with them.

Branch-and-reduce Ryoo and Sahinidis (1996), implemented in the BARON solver (Sahinidis,
1996) also performs automated bounds tightening.

Although these methods lead to more efficient solution than exhaustive brute-force search,
they do not take full advantage of the problem structure and require solving numerous subprob-
lems each of similar complexity to the best dynamic programming approaches. They remain
useful approaches for MILP and MIQP such as the hinging hyperplane fitting algorithm of Roll
et al. (2004) and Toriello and Vielma (2012)’s models for grid tesselation using triangles and
surface fitting using convex piecewise-affine functions.

For even more difficult mixed-integer programs, where objective and/or constraints are non-
convex, bounds tightening is still a desirable approach. Belotti et al. (2009) describes use of a
convex hull around non-linear constraints to define a relaxed sub-problem. A variation on this
theme is offered by Leyffer et al. (2008): use of piecewise polyhedral envelopes; these enveloping
polyhedrons are rebuilt using increased detail as the search region becomes reduced via pruning.
Unlike Belotti et al.’s convex hull approach, the polyhedrons are not necessarily convex. Nei-
ther of these techniques are needed for variation cardinality minimization using integral-square
residual error. However, if the goodness-of-fit formula were changed to a non-convex function,
perhaps to account for a bimodal noise distribution, then such methods would be needed.

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 12

1.3.6. Related Work in Dynamic Programming

1.3.6.1. Curve Estimation in the Dynamic Programming Literature. Dynamic programming
found applications to piecewise curve estimation quite early. Bellman (1961) described a simple
approach to finding the sequence of N disjoint segments that most closely approximated, in a
minimum integral-square residual error sense, an integrable function over a fixed interval. For
this method the abscissa of each end-point is constrained to a discretization of the interval. The
state space was defined by the coordinate pair (right edge of interval, number of segments used).
The computational complexity therefore is O(u2

NN) comparisons, where uN is the number of
discrete steps quantizing the interval. If memoization is used, uN coefficient-search steps may be
performed in O(uN) time.

Continuity between segments was considered in Bellman and Roth (1969), where a polyline of
N (joined) segments is used to approximate an arbitrary continuous curve, where all join points
are required to lie on lattice points (both abscissa and ordinate are quantized). The state space
is the triple (abscissa of end point, ordinate of end point, number of segments used) leading to
a complexity of O(h2v2N) comparisons, where ordinate and abscissa are quantized into v and h
discrete steps, respectively. Bellman and Roth uses a somewhat unusual cost function, the sum
of per-segment maximum absolute error.

Both these algorithms exhibit poor scaling, but motivated further use of dynamic program-
ming.

Another pioneer in use of curve fitting via dynamic programming was Guthery (1974), whose
notation of k for the number of partitions and n for the number of data samples, shall be used
going forward due to its clarity. He first offers the insight that, given sufficient space, memoization
reduces the number of coefficient-search steps in the disjoint piecewise estimation problem to
O(n2) from O(n2k) (and the number of residual calculations in the piecewise-continuous problem
is likewise reduced by a factor of k), although the number of comparisons remains linear in N .
Then Guthery introduces Partition Regression, which estimates models for sampled data using
piecewise parameterized curves. The first-order auto-regressive models used for curve segments
permit dynamics which are exponential in time and non-linear in the coefficients. The method
is unsuitable for high sample rate data, not because of scaling complexity, which is quadratic in
number of samples, but because the pairwise treatment of data amplifies high frequency noise.
Use of higher order auto-regression models is clearly possible but the modeling of individual
segments might then become expensive. Recognizing that combining the individual partition
models into a single continuous curve might be sub-optimal, Guthery recommends adopting the
selected partition boundaries and performing concurrent reoptimization of the parameters.

1.3.6.2. Reception of Digital Codes. Maximum likelihood recovery of signals from noisy mea-
surements using log-likelihood as the goodness-of-fit metric and exploration of a tree dates to
Fano’s sequential decoder. In the sequential decoder (Fano, 1963), which is applicable to digital
signals which are members of a discrete set of levels and with a known symbol duration, the
n-ary tree representing the signals is explored depth-first, with one one branch fully expanded,
and backtracking is used to trigger exploration of other branches based on a mutual information
heuristic. The backtracking distance is bounded either by finite memory in the decoder, or the
desire to make a decision after a finite delay.

In his asymptotically optimal decoding algorithm for convolutional codes, Viterbi (1967)
guaranteed optimality while eliminating the dependence of time and storage requirements on
the input data. The linear feedback shift register defines a Markov chain, because the next
state of the register depends only on the prior state and the transmitted signal, without regard
for the specifics of the historical path leading to that state (Markov property). The algorithm
visits each transition on the Markov chain, computing the likelihood of each path from the
likelihood of the “survivor” path associated with the prior state and the correlation of the possible
transmission with the actual received signal. Then as a consequence of the Markov property, only
the highest-likelihood path terminating in each state is preserved, becoming the new “survivor”

1.3. EXISTING METHODS FOR DENOISING PIECEWISE SIGNALS 13

path for that state. (Highest likelihood corresponds to dominance unless the noise properties
of the channel are correlated in ways that Viterbi termed “pathological”) Because the number
of survivor paths is limited by the number of encoder states, the storage requirements do not
depend on signal length, and decoding computational requirements are linear in signal length.

Although they did not use the term “memoization”, the technique was applied by both Fano
and Viterbi, who noted that the log-likelihood of independent symbols shared terms between
multiple paths, and computed metrics using the partial sums and new samples. And Viterbi’s
survivor-selection is, in all but name, Bellman’s “Principle of Optimality”.

In these decoders the timing is assumed to be known. More likely is the case when the
time between steps is known but the time of the first bit is not, in which case clock recovery
is employed to determine the phase, and the decoding results are processed by a synchronizer
to find which symbol is the first in a message. Clock recovery circuits may themselves employ
maximum likelihood techniques (Kobayashi, 1971).

1.3.6.3. Pruned dynamic programming. While the state enumeration methods used by the
Viterbi decoder and subsolution enumeration for curve fitting on a lattice (Bellman and Roth,
1969) are powerful for guaranteeing optimality, they require imposing coarse quantization on the
signal to restrict the number of potential states.

The approximation method used by Bellman (1961) and later given the name “Segment
Neighborhood” eliminates quantization error by changing the ordinate from part of the sub-
solution identifier to an attribute of the solution. The subsolutions are instead identified by
the number of input data points included and the number of segments used. Computation re-
quires O(kn2) cost evaluations. For analysis in order of data arrival, the storage requirement is
for O(kn) subsolutions identified by sample index and number of segments. For retrospective
analysis when the iteration order can be reversed, only O(n) subsolutions need to be stored.

Rigaill (2010) improves this situation considerably, by making the abscissa part an attribute
as well, and identifying subsolutions by number of segments used and set of ordinate intervals
over which the particular subsolution is optimal. When the optimal set for any prior subsolution
becomes empty, that subsolution is dropped from consideration. In this “Pruned Dynamic Pro-
gramming” algorithm, the total number of intervals which must be tracked is observed to remain
relatively constant in many realistic datasets, although degenerate cases such as monotonically
increasing measurements yield no pruning and once again lead to O(kn) growth in the number of
stored subsolutions. Rigaill completely commits to in-order data processing and notes that this
permits real-time applications, although no evaluation of online estimation error performance is
conducted.

Meanwhile, Yao (1984) showed that when the likelihood of a change in any single sample
interval is time-invariant (leading to geometrically distributed segment durations) and the rela-
tionship between its probability and the probability distribution of noise is known, then recursion
and induction may be applied (reinventing dynamic programming) to find the maximum likeli-
hood signal estimate in O(n2) steps and O(n) storage, with no dependence on the number of
segments. This method was later given the name “Optimal Partitioning”.

Killick et al. (2012) improves on Optimal Partitioning by using a variable-sized set of sub-
solutions like Rigaill. Unlike Rigaill’s Pruned DP, this is done without changing addressing of
subsolutions – the time of the last change remains the unique identifier of a subsolution. Instead,
a dominance condition is implemented leaving zero “survivor” paths at some addresses. Killick
et al. provides statistical conditions on segment count and spacing under which the number of
survivor paths is bounded and the overall computation time is O(n), earning the name “Pruned
Exact Linear Time” algorithm.

1.4. REAL-TIME IMPLICATIONS 14

1.4. Real-Time Implications

The greedy chi-squared minimization and total variation minimization algorithms have excel-
lent time complexity. However, both require the entire data set to be available; the final iteration
of residual chi-squared minimization can introduce a step anywhere in the entire dataset, while
each iteration of total variation minimization updates the entire estimate vector. Therefore, to
use these algorithms in near real-time requires running the entire O(n) algorithm at each of
O(n) data points. Note that convergence speed of total variation minimization is improved by
using the prior result as an initial value, but this only lowers the constant factor – running the
algorithm online still has quadratic overall complexity.

Integer Programming methods would be extremely expensive to repeat on an ever-expanding
dataset. The optimal solution to the prefix data would lead directly to a known feasible solution
and bound on the optimal cost; however due to the weakness of the relaxation, a large search
space would still need to be explored.

The previously discussed dynamic programming methods are capable of processing data in-
order, so running them online during measurement is efficient. However the Rigaill (2010) pruned
DP method requires that the number of segments be bounded a-priori. Allowing both incoming
data and growth in the number of segments would be prohibitive in storage complexity. Yet
not knowing how many segments to reserve for fitting future changepoints precludes producing
estimates in real-time with a fixed bound on segment count, since which of the currently-optimal
(for different segment counts) solutions to use cannot be determined.

Killick et al. (2012)’s PELT method lends itself very well to in-order evaluation on causal
datasets. Indeed, the simplest form of the VIVA algorithm, although independently developed
using a different proof, is an instantiation of PELT. However PELT is inapplicable to connected
piecewise-linear estimation and also lacks some refinements that will be shown to reduce online
estimation error.

Since none of this prior work showed any results for running their step-fitting algorithms on
partial datasets, the delay in identifying steps in newly collected data using existing methods
remains unknown.

15

CHAPTER 2

Short History of the Project

When we started using load cells at the UTMB Resuscitation Research Lab, one goal was
to overcome the impracticality of deploying large numbers of ultrasonic flowmeters, I tried using
traditional low-pass filters to reject the measurement noise, but it quickly became apparent that
using frequency domain filtering would not be viable. The level of filtering needed to reduce
noise sufficiently for flow rate calculations with acceptable accuracy would both introduce many
minutes of group delay and also blur control events such as start and stop of bolus unacceptably.
Because the Boyd and Vandenberghe text described preservation of step changes as one of the key
advantages of total variation denoising, I determined to try it with the infusion data. I intended
to implement it myself to permit customization, but in order both to determine how effective it
would be and to serve as a known good result to use for testing my code, I first downloaded and
ran an implementation, tvdip, written by Little and Jones (2010).

After running tvdip on several of my infusion data sets, I observed that, with appropriate
values of the λ parameter, it yielded results that were stable and noise-free. However, the rate re-
sulting from processing short duration boluses was consistently underreported. After considering
the total variation minimization cost function, I concluded that this was a result of penalizing
the size of variations. If instead the cost function penalized residual error and cardinality of
variations, the optimum solution would become an unbiased estimate. Unfortunately Boyd and
Vandenberghe also detailed reasons why using `0 norm regularization for finding the sparsest
solution was intractable and engineers use the `1 norm for basis pursuit instead. This led to
the concept of using tvdip to identify timing, and use linear regression for the flow rate in each
interval. But I had another idea as well.

Viterbi decoding (Viterbi, 1967) has intrigued me ever since I first encountered its use with
convolution code lattices in my undergraduate Communication Systems course. I previously
considered using it for ECG beat classification; the limited number of progressions through
the cardiac cycle have some similarities to the possible sequences which a linear feedback shift
register can generate. Two factors prevented me from developing that idea: First, that it is a
very saturated research topic with large amounts of corporate funding, and second, that it didn’t
align with the primary research goals of the lab.

It was natural, then, that when faced with denoising flow rate signals, I should consider my
favorite optimum estimator. While a Viterbi-like approach would be key to efficient exploration
of what Boyd and Vandenberghe recognized as essentially an exponential number of possibilities
for a binary sequence representing basis membership, one key feature of convolutional codes was
missing: Viterbi relies on mapping potential signals onto a finite Markov chain, with multiple
sequences ending in exactly the same state, then discarding all but the best. With piecewise
curve fitting, the number of possible states is essentially unbounded, as it must summarize the
history in a way that satisfies the Markov condition. Clearly, then, domination of multiple paths
terminating in a common state would not be possible.

Still, binary programs such as basis pursuit, and mixed-integer programs in general, are not
doomed to brute-force search. The technique of branch-and-bound rapidly reduces the search
space which must be enumerated. Better still, the branch-and-bound technique allows me to
choose the order in which variables are fixed, giving me the flexibility to process data in order of

2. SHORT HISTORY OF THE PROJECT 16

arrival. The solution to the relaxed problem is also trivial (Theorem 2), and its cost is independent
of the actual values of future data. Still, because this solution was not feasible, it had limited
utility toward reducing the search space.

Another insight was needed to achieve a tractable method of computation: Just as the
regularization parameter represents the cost including a jump between levels in the piecewise
constant curve fit, that same parameter is the cost of jumping between states of the Markov
chain. The feasible solution that had not been revealed by the usual method of linear constraint
relaxation would now be provided by the unknown global optimum curve itself. The current
lowest-cost path could be spliced to the latter portion of the optimum curve to create a feasible
solution and therefore a bound (Theorem 1).

To understand the implications on the size of the search space, it is helpful to return to the
perspective of Viterbi decoding on a Markov chain. While the states reached by extending curve
segments scatter throughout a state space that would be infinite save for the precision-limited
digital representation of measurements, there is a single state encompassing all solutions which
include a discontinuity at the current instant. Of these solutions, only one needs to be kept, the
rest are dominated and discarded. Therefore the population of solutions grows by at most one
each time step, and a worst-case complexity of O(n2). The paths being extended maintaining
continuity are also subject to being pruned, but domination requires a cost disadvantage equal to
the discontinuity cost. Again, this complexity is achieved for online processing which produces
estimates during data processing.

Note that the above discussion was presented in terms of piecewise constant signals, but
actually applies broadly to the general case of fitting piecewise disconnected curve segments.
(Certain additional conditions must be met which enable splicing – the jump between segments
needs to be unlimited, and any pre-truncation of a legal segment needs to result in a legal
segment of lower cost. This disallows, for example, a minimum segment duration constraint.)
For models requiring connected segments, such as the piecewise linear curve fits described in
section 3.4, splicing arbitrary paths requires twice the segmentation cost, to form a zero-width
segment bridging the gap.

The foundations of VIVA are therefore:

• Explore an exponentially-large space of binary sequences in the order of data arrival.
• Express fit and residual error of individual segments recursively using a low dimensional
state, to avoid reprocessing prior samples of the noisy measured signal.

• Prune candidate solutions which are inferior to a spliced solution using the lowest cost
candidate

To this base algorithm are added several refinements.
The best live estimate generated online is faulty. The criterion developed in subsection 5.2.1

provides that true segment boundaries will be passed over as sub-optimal until sufficient evidence
exists from both sides of the boundary. Therefore it is useful to report k-step behind estimates in
near real-time. The same criterion relates the time lag, step resolving power, and regularization
parameter. I compute and compare k-step behind estimates for several lag values.

To address burst noise, I noted that periods where the noise is minimal are more trustworthy
than during burst noise. To weight the curve fit in favor of low noise regions without relying
on external information, I introduced a confidence measure into the norm of the residual error,
weighting each measurement inversely proportional to the local variance of the measured data,
a concept borrowed from the noise variance measure used in Kalman filtering.

I also perform additional pruning of candidate solutions in the connected piecewise-linear
case. These aggressive heuristics sacrifice the guarantee of finding the true optimum in exchange
for greatly reduced runtime. Performance testing provides the justification for this tradeoff.

The following material develops the mathematical underpinnings of the VIVA method,
presents the denoising algorithm itself, and tests its performance using synthesized data and
datasets recorded during actual porcine studies.

17

CHAPTER 3

Piecewise Minimum Cardinality Curve Fitting
using Pruned Dynamic Programming

The `0 bicriterion regularization formulation for variation cardinality minimization is restated
and illustrated. Graphical and mathematical representations of the splicing argument are pre-
sented. It is shown that application of the splicing argument to piecewise-constant curve fitting
leads directly to the same pruning condition and dynamic programming algorithm used in the
PELT method of Killick et al. (2012), but the splicing argument also provides a corresponding
pruning condition to piecewise curve fitting with continuity constraints.

An automatic weighting function based on the local variance of the sampled data is developed.
This weighting function improves signal recovery in the presence of burst noise.

Two heuristics for truncated search are introduced which provide near-optimal estimation
of connected piecewise-linear curve fits, with the same complexity as the piecewise disconnected
case (linear, if the PELT conditions on segment duration are met).

Introduction of a limited time delay, comparable to the online delay of traditional linear and
median filtering methods, is added.

The weighting function, truncated search method, and delay are validated empirically using
a synthesized dataset for Monte-Carlo analysis as well as infusion data from trauma and burn
resuscitation research studies in a porcine model. Results for a financial dataset appeared above
(Figure 3, Table 1).

3.1. Optimality Criterion for Continuity-Constrained
Piecewise Curve Fitting

Development of an optimality criterion using the splicing argument will be demonstrated
first using the simplest case, piecewise-constant curve fitting, before moving on to more complex
models.

Recall the (mixed-integer quadratic program) model augmented by binary variables identi-
fying changepoints, Equation 1.7.

(3.1)

minimize (x′ − y)
T
(x′ − y) + ζ1Tb′

subject to −x′
k + x′

k+1 −Mb′k ≤ 0 ∀k
x′
k − x′

k+1 −Mb′k ≤ 0 ∀k
b′k ∈ { 0, 1 } ∀k

The following bound on prefix path deficit is known as a necessary condition for optimality
due to Killick et al. (2012), who present this pruning criterion after using independence between
segments to apply Bellman’s Principle of Optimality. The following approach does not rely on
independence between segments, so it is not limited to fitting of disjoint curves.

Theorem 1. If x∗,b∗ is any optimal solution to Equation 1.7, then the prefix cost along the
path

3.1. OPTIMALITY CRITERION FOR CONTINUITY-CONSTRAINED PIECEWISE CURVE FITTING 18

(3.2)

c∗κ = c≤κ(x
†,b∗)

=

κ∑
k=0

(
x†
k − yk

)2
+ ζ

κ−1∑
k=0

b∗k

is bounded by the path costs of all feasible solutions x′,b′:

(3.3) c∗κ ≤ c≤κ(x
′,b′) + ζ(1− b∗κ), ∀κ,x′,b′

Proof. Construct the spliced solution

(3.4a) xs
k =

{
x′
k k ≤ κ

x∗
k k > κ

(3.4b) bsk =


b′k k < κ

1 k = κ

b∗k k > κ

This solution xs,bs is also feasible for Equation 1.7, with total cost

(3.5)

cs =

N∑
k=0

(xs
k − yk)

2
+ ζ

N−1∑
k=0

bsk

=

κ∑
k=0

(xs
k − yk)

2
+

N∑
k=κ+1

(xs
k − yk)

2
+ ζ

κ−1∑
k=0

bsk + ζbsκ + ζ

N−1∑
k=κ+1

bsk

=

κ∑
k=0

(x′
k − yk)

2
+ ζ

κ−1∑
k=0

b′k +

N∑
k=κ+1

(x∗
k − yk)

2
+ ζ + ζ

N−1∑
k=κ+1

b∗k

= c≤κ(x
′,b′) + ζ +

N∑
k=κ+1

(x∗
k − yk)

2
+ ζ

N−1∑
k=κ+1

b∗k

The optimal cost is

(3.6)

c∗ =

N∑
k=0

(x∗
k − yk)

2
+ ζ

N−1∑
k=0

b∗k

=

κ∑
k=0

(x∗
k − yk)

2
+

N∑
k=κ+1

(x∗
k − yk)

2
+ ζ

κ−1∑
k=0

b∗k + ζb∗κ + ζ

N−1∑
k=κ+1

b∗k

≥
κ∑

k=0

(
x†
k − yk

)2
+ ζ

κ−1∑
k=0

b∗k +

N∑
k=κ+1

(x∗
k − yk)

2
+ ζb∗κ + ζ

N−1∑
k=κ+1

b∗k

= c∗κ + ζb∗κ +

N∑
k=κ+1

(x∗
k − yk)

2
+ ζ

N−1∑
k=κ+1

b′k

noting that x†
k differs from x∗

k only in the segment wherein κ lies, for which x∗
κ is the minimizer

over the whole segment, while x†
κ is the minimizer over the truncated segment.

By the optimality of x∗,b∗,

(3.7a) c∗ ≤ cs

3.1. OPTIMALITY CRITERION FOR CONTINUITY-CONSTRAINED PIECEWISE CURVE FITTING 19

κ

c∗ ≤ c≤κ(x
′,b′) + ζ + c>κ(x

∗,b∗)

c∗ ≥ c≤κ(x
†,b∗) + c>κ(x

∗,b∗)

ĉ≤κ(x
†,b∗) + c>κ(x

∗,b∗) ≤ c≤κ(x
′,b′) + ζ + c>κ(x

∗,b∗)

c≤κ(x
†,b∗) ≤ c≤κ(x

′,b′) + ζ

Figure 5. Cancel common term, yielding necessary condition for prefix of op-
timal segmentation

and therefore

(3.7b)

c∗κ + ζb∗κ +

N∑
k =κ+1

(x′
k − yk)

2
+ ζ

N−1∑
k =κ+1

b′k ≤ c≤κ(x
′,b′) + ζ +

N∑
k=κ+1

(x′
k − yk)

2
+ ζ

N−1∑
k=κ+1

b′k

After cancellation of like terms,

(3.8) c∗κ ≤ c≤κ(x
′,b′) + ζ(1− b∗κ)

�

Figure 5 provides a graphical illustration of the path splicing approach. It should be im-
mediately apparent that path splicing is also viable for connected piecewise curves, such as the
polyline (piecewise-linear) model Equation 3.9 (given earlier as Equation 1.8).

(3.9)

minimize (x′ − y)
T
(x′ − y) + ζ1Tb′

subject to (ti − ti+1)x
′
k−1 + (ti+1 − ti−1)x

′
k + (ti−1 − ti)x

′
k+1 −Mb′k ≤ 0 ∀k

(ti+1 − ti)x
′
k−1 + (ti−1 − ti+1)x

′
k + (ti − ti−1)x

′
k+1 −Mb′k ≤ 0 ∀k

b′k ∈ { 0, 1 } ∀k

Splicing leads to the feasible piecewise-linear solution

3.2. COMPLEXITY GROWTH IN SMALL CASES 20

(3.10a) xs
k =

{
x′
k k ≤ κ− 1

x∗
k k ≥ κ

(3.10b) bsk =


b′k k < κ− 1

1 k = κ− 1

1 k = κ

b∗k k > κ

and using the same argument, the optimality condition used to perform pruning during
continuous piecewise-linear curve fitting is:

(3.11) c∗κ ≤ c≤κ(x
′,b′) + ζ(2− b∗κ−1 − b∗κ), ∀κ,x′,b′

Although the branch-and-bound method cannot be applied directly without a feasible solu-
tion to the entire problem, this bound on partial path costs permits pruning suboptimal solutions
at each timestep. In particular, in the case of disjoint curve segments, only one candidate with
bκ = 1 needs to be preserved to achieve optimality. Applying pruning to breadth-first search
yields a search algorithm very similar to Viterbi decoding.

3.2. Complexity Growth in Small Cases

For disjoint piecewise curve fits, the pruning criterion guarantees that the population growth
cannot exceed one new candidate per time step. Growth in the polyline (or generalized connected
curve segments) case, where independence between parameters across changepoints does not
apply, remains problematic.

Using the first 30% of the S&P 500 dataset used in Little and Jones (2010) for trend filtering,
dynamic programming was used to find the estimates with k segments, k ∈ 2, 3, 4 having minimum
mean squared residual error. The complexity growth of this approach is shown in Figure 6 and
the results in Figure 7 and its accompanying table. Identification of the optimal estimate with k
segments in a dataset of N points requires analysis of the N points at each of the

(
N−2
k−1

)
possible

breakpoints. The total computational cost is somewhat better than
(
N−1
k

)
due to memoization

of intermediate results. This agrees with Boyd and Vandenberghe (2004, p. 310).
Bicriterion regularization was also performed using pruned dynamic programming with the

optimality criterion (Equation 3.11) and ζ = 0.13, which found the three segment solution. Its
complexity growth as a function of N is also shown in Figure 6.

Initially, there appears to be no benefit to using the bicriterion formulation and pruned DP,
since the cost was higher (and scaling worse) than the cost of the combinatorial search that
found the same result. However, the combinatorial search fails to ensure that the result is an
optimum in the bicriterion sense. For example, the four segment path, although a minimal mean-
square residual error result, is not optimum for any value of ζ: it dominates the three segment
path for ζ < 0.0701, but a five segment solution (1, 7.1732)–(356, 7.2989)–(479, 7.1659)–(511,
7.0211)–(531, 7.1565)–(600, 7.0796) dominates both for ζ < 0.0755. Using combinatorial methods

to show that three segments are optimal for ζ = 0.13 would require evaluating
⌊
MMSE

ζ

⌋
further

cases – up to a seven segment polyline – at the cost of substantial additional computation.
Additional comparisons of exact polyline fitting using combinatorial methods and bicriterion

regularization via pruned dynamic programming may be found in Appendix E.

3.2. COMPLEXITY GROWTH IN SMALL CASES 21

100 200 300 400 500 600 700 800 900 1,000
100

101

102

103

104

105

106

107

108

Any Segmentation
Any 3-Segmentation
Any 4-Segmentation
Any 5-Segmentation
Pruned Bicriterion ζ = 0.13

Figure 6. Exact polyline search algorithms’ complexity, considering first 600
data of S&P 500 log(price) data (Little and Jones, 2010)

3.2. COMPLEXITY GROWTH IN SMALL CASES 22

0 100 200 300 400 500 600
7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

Input Data
Segment Count = 2
Segment Count = 3
Segment Count = 4

Figure 7. Optimal polyline approximations for first 600 samples of S&P 500
log(price) data (Little and Jones, 2010)

Table 2. Residual error and optimality, by segment count, for the S&P 500
log(price) excerpt polyline approximations

Segments Solution Cost Optimal When

2 (1, 7.1730) – (342, 7.2944) – (600, 7.0592) 0.7257 + ζ 0.15 < ζ < 1.71

3
(1, 7.1726) – (363, 7.3027)
– (506, 7.1041) – (600, 7.1124)

0.5794 + 2ζ 0.07 < ζ < 0.15

4
(1, 7.1722) – (365, 7.3043) – (515, 7.0793)
– (541, 7.1560) – (600, 7.0738)

0.5093 + 3ζ Never

3.3. FUNCTIONAL DESCRIPTION OF VIVA ALGORITHM 23

3.3. Functional Description of VIVA Algorithm

3.3.1. Dense State Encoding. Implementation of the VIVA algorithm leverages the least-
squares fit and residual expressions developed in Appendix B and recursive update techniques
given in Appendix C.2.

Define a function for highest element set in a binary sequence:

(3.12) h(b, n) =


−1 bn = 0 ∩ n = 0

h(b, n− 1) bn = 0 ∩ n > 0

n bn = 1

Using the usual definition of list:

(3.13) list ′T = Nil | ′T :: list ′T

Define a state-space for candidate solutions, consisting of a 5-tuple:

(3.14) A = R ? R+ ? R+ ? Z++ ? (list (Z++ ? R))

Each state is a dense representation at time κ of a candidate solution x,b evaluated using
input data y with the invariant

(3.15)
κ ? x′ ? b′ →

 κ−1∑
k=h(b′)+1

yk

 ?

 κ−1∑
k=h(b′)+1

y2k

 ?

h(b′)∑
k=0

(x′
k − yk)

2
+ ζ

h(b′)∑
k=0

b′k


? (κ− h(b′)) ?

(
(∆t̃i ? x̃i) :: · · · :: (∆t̃0 ? x̃0)

)
Accessor functions give symbolic names to the components of the tuple:

(3.16a)
sum : A → R

is (first : R) ? (R+) ? (R+) ? (Z++) ? (list (Z++ ? R) → first

(3.16b)
energy : A → R+

is (R) ? (second : R+) ? (R+) ? (Z++) ? (list (Z++ ? R) → second

(3.16c)
path cost : A → R+

is (R) ? (R+) ? (third : R+) ? (Z++) ? (list (Z++ ? R) → third

(3.16d)
age : A → Z++

is (R) ? (R+) ? (R+) ? (fourth : Z++) ? (list (Z++ ? R) → fourth

(3.16e)
path : A → list (Z++ ? R)

is (R) ? (R+) ? (R+) ? (Z++) ? (fifth : list (Z++ ? R) → fifth

In particular, this state representation allows simple computation of the cost c≤κ(x,b)

(3.17)
cost : A → R+

is (a : A) → (path cost a) + (energy a)− (sum a)2

age a

Functions for inclusion of one additional sample (in arrival order) are straightforward.

(3.18)
branch0 : R → A → A

is (sample : R) → (a : A) → ((sum a) + sample) ? ((energy a) + sample2)
? (path cost a) ? ((age a) + 1) ? (path a)

(3.19)
branch1 : R → A → A

is (sample : R) → (a : A) → (sample) ? (sample2) ? (cost a+ ζ) ? (1)
? (cons ((age a) ? (sum a

age a)) (path a))

3.4. TRUNCATED SEARCH HEURISTICS 24

Several other useful list operations:

(3.20a)

reduce : ′S ? (′S ? ′T → ′S) ? list ′T → ′S

is (accum : ′S) ? (′S ? ′T → ′S) ?Nil → accum
(accum : ′S) ? (op : ′S ? ′T → ′S) ? ((head : ′T) :: (tail : list ′T))

→ op head (reduce accum op tail)

(3.20b)

min : (′T → R) ? list ′T → ′T

is (selector : ′T → R) ? ((head : ′T) :: (tail : list ′T))
→ reduce head (λbest.λelem.(if ((selector elem) < (selector best)) elem best)) tail

(3.20c)
map filter

: (′T → Bool) ? (′T → ′T) ? list ′T → list ′T

is (′T → Bool) ? (′T → ′T) ?Nil → Nil
(pred : ′T → Bool) ? (f : ′T → ′T) ? (items : list ′T)

→ let selected : Bool = pred (head items) in
let rest : list ′T = (map filter pred f (tail items)) in
if selected (cons (f (head items)) rest) rest

The population of candidate solutions will be initialized as

(3.21) P0 : list A ⇐ cons (branch0 sample (0 ? 0 ? 0 ? 0 ?Nil)) Nil

At each incoming sample, the population update algorithm is

(3.22)
timestep : R ? list A → list A

is (sample : R) ? (population : list A)
→ let min cost : A = min cost population in

let threshold : R+ = ζ + (cost min cost) in
cons (branch1 sample min cost)

(map filter λa.((cost a) < threshold) (branch0 sample) population)

3.4. Truncated Search Heuristics

Although performing bicriterion regularization using pruned dynamic programming scales
better than using combinatorial enumeration of changepoint basis sets, finding exact solutions in
the presence of continuity constraints remains prohibitively expensive for larger datasets.

In many cases performing optimal recovery is not warranted, if the difference between optimal
and near-optimal fits is insignificant compared to the noise floor resulting from other confounding
factors. Heuristics for truncated search seek to trade guaranteed optimality for reduced estima-
tion cost. Two heuristics are proposed which accept a small increase in bicriterion residual but
achieve tractability for problems with millions of data points.

The first of these heuristics observes that, in the subproblem of finding optimal polyline
vertex ordinates for a fixed sequence of abscissas, measurements have little effect on vertices
more than two segments away. By assuming the accumulated effect is trivial, segment vertices,
and therefore also the associated residuals, become fixed as additional segments are added to the
path. Because the residuals become fixed, so does their ordering, allowing many paths up to a
particular segment to be reduced to one as that segment becomes frozen.

The second heuristic admits only one branch per measurement interval.

3.4. TRUNCATED SEARCH HEURISTICS 25

t1
χ1

t2
χ2

t3
χ3

t4
χ4

t5
χ5

Figure 8. Model of many conjoined piecewise-linear segments

3.4.1. “Freeze Old Segments” Heuristic

Consider that the N-segment least-squares optimization step (shown in Figure 8) described
by Equation 3.23 can be performed efficiently using the tridiagonal matrix algorithm (Thomas,
1949) which exhibits linear scaling, as does calculation of the residual ε(χ̃).

(3.23a)



d1 a2 0 · · · 0

a2 d2 a3 0
...

0
. . .

. . .
. . . 0

...
. . . aN−1 dN−1 aN

0 · · · 0 aN dN


χ̃ =



S(t1, t2)−
R(t1, t2)

N(t1, t2)

S(t2, t3)−
R(t1, t2)

N(t2, t3)
...

S(tN−1, tN)− R(tN−1, tN)

N(tN−1, tN)
0


+



0
R(t1, t2)

N(t1, t2)
R(t2, t3)

N(t2, t3)
...

R(tN−1, tN)

N(tN−1, tN)


where

(3.23b)

dk =

1 k = 1
(N(tk−1, tk) + 1) (2N(tk−1, tk) + 1)

6N(tk−1, tk)
k > 1

+


(N(tk, tk+1)− 1) (2N(tk, tk+1)− 1)

6N(tk, tk+1)
k < N

0 k = N

(3.23c) ak =
(N(tk−1, tk)− 1) (N(tk−1, tk) + 1)

6N(tk−1, tk)
∀k > 1

and

(3.23d) ε(χ̃) =

N∑
k=2

S2(tk−1, tk)− χ̃T





S(t1, t2)−
R(t1, t2)

N(t1, t2)

S(t2, t3)−
R(t1, t2)

N(t2, t3)
...

S(tN−1, tN)− R(tN−1, tN)

N(tN−1, tN)
0


+



0
R(t1, t2)

N(t1, t2)
R(t2, t3)

N(t2, t3)
...

R(tN−1, tN)

N(tN−1, tN)





3.4. TRUNCATED SEARCH HEURISTICS 26

ta
χa

tb
χb

t1
χ1

t2
χ2

t3
χ3

Figure 9. Model of many conjoined piecewise-linear segments with segment
freeze heuristic

The previous method incurs increased complexity as the number of segments increases. In
addition, although arriving data have ever-diminishing impact on the first ramp estimate, the
global optimal fit cannot be computed until all data are available.

The VIVA algorithm implements a “freeze old segments” heuristic to sacrifice global opti-
mality for reduced latency. Two ramps are considered, then the first of these is fixed in place and
fitting of the second and third ramps proceeds. The method repeats by fixing the first of these
(the second ramp overall) and optimizing the two following, and so on. In this manner, all opti-
mization steps concerning the third and subsequent segments have identical form, as illustrated
in Figure 9.

A consequence of freezing an old vertex each time a path is branched, to maintain exactly two
segments subject to optimization at all times, is that the cumulative cost of frozen segments, and
therefore also their ordering, becomes fixed as well. Therefore, although there be many candidate
paths permitted to branch by the criterion (3.11), all being frozen at the same time coordinate
may be compared and only the best of these allowed to branch. In this way, population growth
(branches per timestep) is reduced from combinatorial (all ways of distributing ζ surplus residual
error around prior changepoints) to linear.

3.4.2. “Limited Branching” Heuristic

Even with the frozen-path-domination branch generation logic ensuring at most linear popu-
lation growth, accumulated population size (and therefore memory usage) has a quadratic bound,
which may exceed resources available in an embedded environment. Therefore VIVA implements
a stronger version of this heuristic as a runtime option, permitting only a constant number of new
branches at each timestep (and therefore linear memory usage and quadratic runtime), resulting
in modest additional estimation error.

Notably, when the change timing conditions described by Killick et al. (2012) are met, mem-
ory usage reduces to O(1) and runtime to O(n). This heuristic is particularly well suited to
online implementation (see chapter 5) where delay and unavailability of future data, not this
heuristic, are the dominant factors contributing to estimation error.

3.5. CASE STUDY, COMPRESSION OF ELECTROCARDIOGRAM DATA 27

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.6

−0.4

−0.2

0

0.2

0.4

seconds

mV

Measured
Using Both Heuristics
Using First Heuristic Only

Figure 10. Excerpt of ECG data compression example data, with vertical offset
added for ease of comparison

3.5. Case Study, Compression of Electrocardiogram Data

Telemedicine allows medical experts to assist in patient care regardless of geographic sepa-
ration. For the doctor to clearly diagnose and manage the patient, vital signs such as electrocar-
diograms must be collected and transmitted to the expert. Telemedicine is particularly valuable
when local resources are lacking, either because the injury occurred in an austere environment
with minimal medical support, or because the local support is overwhelmed by a large number of
patients (battlefields and natural disasters both result n mass casualty scenarios). In either case,
communication bandwidth may be scarce as well, in which case efficient compression is needed
in order to maximize the amount of clinically useful data that can be sent through the link. In
addition, hospital staff are increasingly requesting the ability to forward patient data to wireless
mobile devices, often on metered data plans.

An excerpt of slightly longer than an hour was taken from an electrocardiogram recording
from a swine hemorrhage and resuscitation experiment conducted in the Resuscitation Research
Laboratory, Department of Anesthesiology, University of Texas Medical Branch (Galveston, TX).
Polyline fitting was conducted using the “Freeze Old Segments” heuristic, alone and in combi-
nation with the “Limited Branching” heuristic, to investigate the deviation from optimality
introduced by these heuristics. The original recorded and compressed signals are displayed in
Figures 10 and 11, and results given in Table 3.

Although the signal was sufficiently large to make exact search infeasible even using pruned
dynamic programming, the truncated search methods produced an excellent approximation. In
Figure 10, an intentional offset has been introduced into the fitting results to prevent the signals
from overlying each other and obscuring the shape of the estimate; exactly how well the signals
coincide may be seen in Figure 11.

After developing the polyline estimates using truncated search, the changepoint timings from
this estimate were used to perform least-squares minimization, the method suggested for basis

3.5. CASE STUDY, COMPRESSION OF ELECTROCARDIOGRAM DATA 28

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

−0.6

−0.4

−0.2

0

0.2

0.4

seconds

mV

Measured
Using Both Heuristics
Using First Heuristic Only

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
100

101

102

103

104

105

seconds

Population

Size

Figure 11. Close zoom into ECG data compression example data

pursuit using heuristics in Boyd and Vandenberghe (2004, p. 334). The difference in maximum
residual between the global least-squares and the direct results from the VIVA implementation
is as much as 5%, but the RMS residual increases less than 0.5% with addition of the second
heuristic, and varies less than 0.1% between the direct result and the global least-squares using
the same timing. The bicriterion cost metrics are not directly comparable because the VIVA algo-
rithm used variance-based weighting (to be introduced in subsection 4.1.2) and the least-squares
minimization did not.

Additional evaluation of complexity advantages of truncated search heuristics vs exact solu-
tions may be found in Appendix E.

3.6. EVALUATION OF SIGNAL RECOVERY PERFORMANCE USING SYNTHESIZED DATA 29

Table 3. Heuristics’ Influence on ECG Polyline Approximation (Compression)
Performance

Metric “Freeze Old Segments” Heuristic Both Heuristics

Input Sample Rate 1000/s

Input Sample Count 4 000 001

QRS Complexes 5809

Bicriterion Weight ζ 1× 10−4 1× 10−4

Output Vertex Count 195 654 194 510

Compression Ratio 20.44 20.56

Mean Population Size 3296.7 61.8

Reported Bicriterion Cost1 210.0810 210.4589

Global Bicriterion Cost2 132.5600 133.3471

Heuristic Residual Max1 µV 26.5 25.5

Global Residual Max2 µV 25.2 24.9

Heuristic Residual RMS1 µV 5.3172 5.3387

Global Residual RMS2 µV 5.3150 5.3361

1 Timing and values obtained from VIVA

2 Timing obtained from VIVA; values obtained from global least-squares

3.6. Evaluation of Signal Recovery Performance
using Synthesized Data

3.6.1. Monte-Carlo Testing Methodology

Studying how the algorithms behave under noxious conditions is useful as a design exercise,
but for real-world use it is necessary to evaluate their average performance. For this purpose,
and to prevent inadvertently designing inputs to favor a particular algorithm, Monte Carlo sim-
ulation has been conducted on a large dataset of randomly generated signals. Scripts used for
construction of the signals are provided in Appendix A.

For each record in the input dataset, the competing algorithms process the “measured”
signal. The “original” signal parameters and noise are separately known to the test harness, but
not provided to the algorithms. The error vector is then computed as the difference between
the estimated signal recovered using each algorithm and the original signal. The algorithms
are assessed according to the distribution of the originals, characterized by the maximum, 90th
percentile, root-mean-square, and mean absolute value metrics. The values are plotted using a
logarithmic scale in order to clearly show relative differences at all performance levels.

For piecewise linear signals, both value and rate of change are evaluated. All piecewise-linear
results indicated as “VIVA” were obtained using both search truncation heuristics: ordinates
were frozen for all except the last two vertices, and only a single branch was allowed at each
timestep.

In some cases, a second analysis of the error vector is done, excluding intervals around
changepoints, in order to evaluate steady-state error performance.

3.6. EVALUATION OF SIGNAL RECOVERY PERFORMANCE USING SYNTHESIZED DATA 30

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
−8

−6

−4

−2

0

2

4

6

8

10

12

Measured Signal

Figure 12. The signal piecewise constant.mat with and without noise

3.6.2. Piecewise Constant

The test signals were generated calling gen_piecewise_constant.m (Appendix A.1.1) using
the default settings. There are therefore 10 steps and a total of 10,000 samples, corrupted by
AGWN, σ = 1 obtained using gen_iid_white_noise.m (Appendix A.1.3). A typical signal
developed using this method is shown in Figure 12.

When estimation and denoising are performed as an offline postprocessing step, use of non-
causal global optimization algorithms is viable. Figures 39 and 40 quantify performance of the
globally minimum `0 norm path found using VIVA, as well as regularization using the `1 norm:
total variation minimization, a convex optimization approach to regularization presented by Boyd
and Vandenberghe (2004, p. 308) as seeking sparsity. The complex optimization is performed
using a dual interior-point method implementation by Little and Jones (2010).

VIVA always processes data in order. In offline usage the algorithm runs to completion and
reports results based on the entire data set. In this piecewise-constant case without any optional
features enabled, retrospective application of VIVA becomes identical to the PELT method of
Killick et al. (2012).

The Little and Jones implementation efficiently finds the optimal solution to the `1 norm
regularization problem. Figures 13 and 41 show that bicriterion regularization using the `0 norm
outperforms total variation minimization on all performance metrics, and does so with a simpler
(more sparse) estimate. This is because the `1 norm penalizes step size, biasing the estimate,
and creates sparsity as a synergistic effect. In contrast, `0 norm regularization directly rewards
sparsity.

The maximum absolute vertical error metric is particularly unfair to low sparsity estimators,
because of the step changes in the input signal. An estimate that misses the step timing by
even one sample has a vertical error equal to the entire step in the input signal, despite a low
Mahalanobis distance. Meanwhile, a smoothed estimate tends to cross near the midpoint of the
step, yielding half as much maximum error. The RMS error also emphasizes occasional large
errors.

3.6. EVALUATION OF SIGNAL RECOVERY PERFORMANCE USING SYNTHESIZED DATA 31

0.03 0.3 3

Uniformly Weighted VIVA
(PELT) ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

0.1 1 10

Max Error

0.02 0.05 0.1

RMS Error

0.02 0.05 0.2

Uniformly Weighted VIVA
(PELT) ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

0.1

90th Percentile Error

0.02 0.050.01 0.1

Mean Absolute Error

Figure 13. Performance of offline estimators evaluated using piecewise con-
stant signal (strongly white noise), N = 240

0.02 0.05 0.2 0.5

Uniformly Weighted VIVA
(PELT) ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

0.1

Max Error

0.02 0.050.01 0.1

RMS Error

Figure 14. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise constant signal (strongly white noise), N =
240

3.6. EVALUATION OF SIGNAL RECOVERY PERFORMANCE USING SYNTHESIZED DATA 32

8 9 10
0

20

40

60

80

%

VIVA (PELT) ζ = 25

30 40 50 60 70
0

2

4

6

8

10

Total Variation Minimization

λ = 25
λ = 40

Figure 15. Sparsity achieved by pruned exact search compared to total varia-
tion minimization estimators evaluated using piecewise constant signal (strongly
white noise), N = 240

The 90th percentile and mean absolute vertical error plots tell a different story. Yes, the
sparse estimate produced by VIVA may momentarily have a very large error, right near a transi-
tion. But these large errors are very few, and PELT-VIVA estimation error away from transitions
(Figure 14) is far superior to that yielded by other methods.

3.6.3. Piecewise Linear

We return to the comparison of the final estimate made by VIVA with both weighting schemes
after all data are considered, to results obtained using the convex total variance minimization
method. However, while the direct application of total variance minimization to the signal does
mitigate the white noise as seen in Figure 16 as “Total Variation Min on Value”, it produces a
stairstep estimate; this results in an extremely erratic rate estimate (Figure 18).

In order to get a more accurate rate signal, a different approach is taken. The rate signal
is calculated using a discrete derivative and then smoothed using total variation minimization.
This technique is labeled as “Total Variation Min on Rate” in Figures 16 and 18. “TVM first
Value, then Rate” will be discussed in conjunction with burst noise.

As previously seen with the piecewise-constant test signals, the rate estimates generated by
VIVA have maximum error similar to results from `1 norm minimization. But VIVA encounters
these large residual errors only transiently, and as a direct result of slight errors in recovery of
transition timing. Away from transitions, VIVA has a large advantage.

The piecewise-linear VIVA algorithms apply pruning heuristics which sacrifice global opti-
mality for greatly reduced runtime. Residual error levels for “Global Regression” vs “Paired
Segment Fit” show that freezing vertexes two (detected) segments in the past has virtually no
effect on the residual error. However, between “Original Timing” and “AW-VIVA Timing”, some
performance degradation is apparent. Although a factor of 500 increase in maximum error seems
excessive, it should be noted that the “Original Timing” does not always correspond to the min-
imizer of the regularization problem due to the added noise. The 30x increase in RMS error
and 2x increase in 90th percentile error are more descriptive of the actual cost of the aggressive
pruning heuristic.

For clarity, the error plots show only the best instances of each application of total variation
minimization. The sparsity chart (Figure 20) shows all tested parameter values. Recall that the
signals have all been generated with 10 segments.

3.6. EVALUATION OF SIGNAL RECOVERY PERFORMANCE USING SYNTHESIZED DATA 33

0.3 3

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

0.1 1 10

Max Error

0.03 0.3 30.01 0.1 1 10

RMS Error

0.03 0.3 3

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

0.1 1 10

90th Percentile Error

0.03 0.3 30.01 0.1 1 10

Mean Absolute Error

Figure 16. Performance of offline estimators evaluated using piecewise linear
signal (strongly white noise), N = 500, analysis of value estimate

0.3 3

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

0.1 1 10

Max Error

0.03 0.3 30.01 0.1 1 10

RMS Error

Figure 17. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise linear signal (strongly white noise), N =
500, analysis of value estimate

These data suggest that for the strongly white (i.i.d.) Gaussian noise case, chained TVM,
performed on value and followed by a derivative and second instance of TVM, is nearly equivalent
to TVM performed directly on the derivative of the input.

3.6. EVALUATION OF SIGNAL RECOVERY PERFORMANCE USING SYNTHESIZED DATA 34

10−1 100

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

10−1 100

Max Error

10−3 10−2 10−110−3 10−2 10−1

RMS Error

10−5 10−4 10−3 10−2 10−1

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

10−4 10−3 10−2 10−1

90th Percentile Error

10−4 10−3 10−2 10−110−4 10−3 10−2 10−1

Mean Absolute Error

Figure 18. Performance of offline estimators evaluated using piecewise linear
signal (strongly white noise), N = 500, analysis of rate estimate

10−4 10−3 10−2 10−1 100

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

10−4 10−3 10−2 10−1 100

Max Error

10−5 10−4 10−3 10−2 10−110−4 10−3 10−2 10−1

RMS Error

Figure 19. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise constant signal (strongly white noise), N =
500, analysis of rate estimate

3.6. EVALUATION OF SIGNAL RECOVERY PERFORMANCE USING SYNTHESIZED DATA 35

8 9 10
0

20

40

60

80

%

VIVA

Uniform Weighting
Variance Auto-Weighting

1 10 100 1,000 10,000

Uniformly Weighted VIVA
Variance Weighted VIVA

Total Variation Min on Value, λ = 25
Total Variation Min on Value, λ = 40
Total Variation Min on Value, λ = 70

Total Variation Min on Value, λ = 100
Total Variation Min on Rate, λ = 1
Total Variation Min on Rate, λ = 2
Total Variation Min on Rate, λ = 3
Total Variation Min on Rate, λ = 4
Total Variation Min on Rate, λ = 5
Total Variation Min on Rate, λ = 6
Total Variation Min on Rate, λ = 7
Total Variation Min on Rate, λ = 8
Total Variation Min on Rate, λ = 9

Total Variation Min on Rate, λ = 10
Total Variation Min on Rate, λ = 25
Total Variation Min on Rate, λ = 35
Total Variation Min on Rate, λ = 40
Total Variation Min on Rate, λ = 50
Total Variation Min on Rate, λ = 60
Total Variation Min on Rate, λ = 70
Total Variation Min on Rate, λ = 80
Total Variation Min on Rate, λ = 100

Total Variation Min on Value, then Rate λ = 1
Total Variation Min on Value, then Rate λ = 2
Total Variation Min on Value, then Rate λ = 3
Total Variation Min on Value, then Rate λ = 4
Total Variation Min on Value, then Rate λ = 5
Total Variation Min on Value, then Rate λ = 6
Total Variation Min on Value, then Rate λ = 7
Total Variation Min on Value, then Rate λ = 8
Total Variation Min on Value, then Rate λ = 9
Total Variation Min on Value, then Rate λ = 10
Total Variation Min on Value, then Rate λ = 25
Total Variation Min on Value, then Rate λ = 35
Total Variation Min on Value, then Rate λ = 40
Total Variation Min on Value, then Rate λ = 50
Total Variation Min on Value, then Rate λ = 60
Total Variation Min on Value, then Rate λ = 70
Total Variation Min on Value, then Rate λ = 80

Total Variation Min on Value, then Rate λ = 100
`1 Trend-Filtering, λ = 200
`1 Trend-Filtering, λ = 500
`1 Trend-Filtering, λ = 1000
`1 Trend-Filtering, λ = 2000
`1 Trend-Filtering, λ = 5000

Estimate Cardinality (number of distinct rate segments)

Figure 20. Comparison of Sparsity Achieved by all offline methods with piece-
wise linear signal (strongly white noise), N=500

36

CHAPTER 4

Confidence Weighting

In many systems, noise characteristics are not stationary. Radio devices operating in shared
unlicensed spectrum transmit intermittently. Physical vibrations coupled into load cells from
their mounting brackets respond to contact from users. Vehicle-mounted measurement equipment
is subjected to widely varying road conditions and radio paths. Detectors operating under these
conditions often benefit from adaptive noise rejection.

In this chapter, the bicriterion cost function is shown to correspond to stationary Gaussian
noise. A time-varying weight term is introduced to address non-stationary noise, and a weighting
formula is proposed. Monte-Carlo analysis shows that inclusion of the weighting term results in
significantly lower estimation error.

4.1. Measurement Variance

Recall that the choice of integral-square error in the bicriterion cost function (Equation 1.2)
was motivated by negative log-likelihood of i.i.d. Gaussian noise. The Gaussian probability
distribution function is

(4.1)
f(x, µ, σ) =

1

σ
√
2π

e−
(x−µ)2

2σ2 − log f(x, µ, σ)

= log(σ) + log(
√
2π) +

(x− µ)2

2σ2

The second term is a constant; the first is a property of external influences on the mea-
surement process. Therefore the entire likelihood is maximized when the third term of the log
likelihood is minimized.

(4.2) minimize
x′

∑
k

(yk − x′
k)

2

2σ2

If the noise variance is time-invariant, the denominator may be factored out of the sum and
blended into the bicriterion balance ζ. (This is a case of special interest for Kalman filters as
well, where time-invariant process and measurement noise covariance matrices cause convergence
to a time-invariant Kalman gain.)

Otherwise, the 1
2 may be factored out but the noise variance should be preserved in a weight-

ing term, serving as a measure of the confidence of the system in any single observation:

(4.3) minimize
x′

∑
k

ck(yk − x′
k)

2

Even if the noise variance is not specifically known, it may be useful to derive weighting
coefficients from quantitative indicators of noise. For example, load cells are sensitive to mo-
tion, which data from a co-located accelerometer would indicate. Directional communication
systems (radio or optical) might measure ambient power levels received off-axis as an indicator
of background noise.

4.1. MEASUREMENT VARIANCE 37

4.1.1. Inclusion of Weighting Term in Bicriterion Regularization

The weighting coefficients are easily integrated into the optimization problems 1.7 and 1.8
by allowing the cost function to become the quadratic form of a diagonal matrix:

(4.4)

minimize (x′ − y)
T
diag(c) (x′ − y) + ζ1Tb′

subject to −x′
k + x′

k+1 −Mb′k ≤ 0 ∀k
x′
k − x′

k+1 −Mb′k ≤ 0 ∀k
b′k ∈ { 0, 1 } ∀k

or for continuous piecewise-linear,

(4.5)

minimize (x′ − y)
T
diag(c) (x′ − y) + ζ1Tb′

subject to (ti − ti+1)x
′
k−1 + (ti+1 − ti−1)x

′
k + (ti−1 − ti)x

′
k+1 −Mb′k ≤ 0 ∀k

(ti+1 − ti)x
′
k−1 + (ti−1 − ti+1)x

′
k + (ti − ti−1)x

′
k+1 −Mb′k ≤ 0 ∀k

b′k ∈ { 0, 1 } ∀k
In practice it is never necessary to form the matrix diag(w). Rather, the system of equations

defining stationary points is rewritten with the weights included, yielding a solution of the same
form as the original system of equations; only the computation of the state variables changes:

(4.6a) Nc(tA, tB) =
∑

i|tA<ti≤tB

ci

(4.6b) Tc(tA, tB) =
∑

i|tA<ti≤tB

ci(ti − tA)

(4.6c) T 2
c (tA, tB) =

∑
i|tA<ti≤tB

ci(ti − tA)
2

(4.6d) Sc(tA, tB) =
∑

i|tA<ti≤tB

ciyi

(4.6e) S2
c (tA, tB) =

∑
i|tA<ti≤tB

ciy
2
i

(4.6f) Rc(tA, tB) =
∑

i|tA<ti≤tB

ci(ti − tA)yi

These remain amenable to recursive computation:

(4.7a) Nc(tA, ti) = Nc(tA, ti−1) + ci
(4.7b) Tc(tA, ti) = Tc(tA, ti−1) + ci(ti − tA)

(4.7c) T 2
c (tA, ti) = T 2

c (tA, ti−1) + ci(ti − tA)
2

(4.7d) Sc(tA, ti) = Sc(tA, ti−1) + ciyi

(4.7e) S2
c (tA, ti) = S2

c (tA, ti−1) + ciy
2
i

(4.7f) Rc(tA, ti) = Rc(tA, ti−1) + ci(ti − tA)yi

The full derivation is provided in Appendix B.

4.1.2. Automatic Weighting by Variance Estimation

If no independent indicator of noise variance is available, then the observed signal itself may
be the best estimator. One possibility is to use the local variance of the measurement sequence.
For resilience to time-varying noise power, VIVA implements the following weighting formula:

Using a sliding window with support 2s+ 1

(4.8a) c−1
k = 1 +

1

2s+ 1

(
k+s∑

i=k−s

y2i

)
−

(
1

2s+ 1

k+s∑
i=k−s

yi

)2

4.2. BURST NOISE AND DENOISING PERFORMANCE 38

Although the window variance is influenced by the trend in the true data (for segment models
other than piecewise-constant), if any timing errors exist in the observations, then the window
variance has the desirable effect of counteracting the difference between integral-square residual
error and Mahalanobis distance.

Window variance also increases in the neighborhood of changepoints, where it helps to ac-
commodate parameter changes which are not precisely instantaneous and may occur over several
measurements.

4.2. Burst Noise and Denoising Performance

To simulate conditions where individual interfering symbols have shorter duration that the
sampling interval, but arrive as pulse trains affecting a sequence of measurements, noise is gen-
erated such that samples are individually Gaussian and statistically uncorrelated, but not statis-
tically independent, nor stationary. Each block of 10 samples has

(4.9) w ∼

{
N (0, 1) with probability 95%

N (0, 162) with probability 5%

The result is white noise in the weak sense, exemplified by Figure 21. A script for generating
burst noise is included in Appendix A.1.4.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000−60

−40

−20

0

20

40

60
Measured Signal

Figure 21. The signal piecewise constant bursty.mat with and without noise

4.2. BURST NOISE AND DENOISING PERFORMANCE 39

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

−40

−20

0

20

40

Figure 22. “Transmitted” Signal

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
−100

−50

0

50

100

Figure 23. “Received” Signal corrupted by burst noise

Burst noise is not specifically associated with disjoint signal models. To visualize the effect on
polyline signals, the “transmitted” signal from piecewise_linear.mat is again considered, but
instead of strongly white noise, burst noise has been generated using gen_burst_white_noise.m.
Figures 22 and 23 show the result.

This test represents the most realistic simulation of a load cell signal performed. The
piecewise-linear signal approximates the volume moved by an IV pump, and the burst noise
represents motion of the IV pole following accidental physical contact, while the noise floor in-
cludes the aggregation of many vibration sources, EM radiation picked up in the signal cables,
and thermal noise in the acquisition circuit. Figure 23 shows an example synthesized signal.

4.2. BURST NOISE AND DENOISING PERFORMANCE 40

0.03 0.3 3 30

i.i.d. – Uniformly Weighted VIVA
(PELT) ζ = 1400

burst – Uniformly Weighted VIVA
(PELT) ζ = 25

i.i.d. – Total Variation Min.
λ = 25

burst – Total Variation Min.
λ = 25

i.i.d. – Total Variation Min.
λ = 40

burst – Total Variation Min.
λ = 40

0.1 1 10 100

Max Error

0.02 0.05 0.2 0.5 20.1 1

RMS Error

0.02 0.05 0.2 0.5

i.i.d. – Uniformly Weighted VIVA
(PELT) ζ = 1400

burst – Uniformly Weighted VIVA
(PELT) ζ = 25

i.i.d. – Total Variation Min.
λ = 25

burst – Total Variation Min.
λ = 25

i.i.d. – Total Variation Min.
λ = 40

burst – Total Variation Min.
λ = 40

0.01 0.1 1

90th Percentile Error

0.02 0.05 0.2 0.50.01 0.1

Mean Absolute Error

Figure 24. Performance degradation of offline estimators when burst noise is
introduced into piecewise constant signal

0.03 0.3 3 30

i.i.d. – Uniformly Weighted VIVA
(PELT) ζ = 1400

burst – Uniformly Weighted VIVA
(PELT) ζ = 25

i.i.d. – Total Variation Min.
λ = 25

burst – Total Variation Min.
λ = 25

i.i.d. – Total Variation Min.
λ = 40

burst – Total Variation Min.
λ = 40

0.1 1 10 100

Max Error

0.02 0.05 0.2 0.5 20.01 0.1 1

RMS Error

Figure 25. Performance degradation in stable regions (transition bands ex-
cluded) of offline estimators when burst noise is introduced into piecewise con-
stant signal

4.2.1. Unweighted Estimator Performance Degradation due to Burst Noise

The burst noise has nearly 14 times as much the energy as the i.i.d. noise, and the effect of
this increase on estimation of piecewise-constant signals is readily seen in Figure 24.

Figure 26 reveals the reason for lackluster performance of PELT and the uniformly weighted
VIVA estimator – it is tricked into thinking some of the noise bursts represent actual input steps.
Note that bicriterion balance factor ζ was increased to achieve approximately the correct median
sparsity, however the range of sparsity has greatly increased; there is no value of ζ that can
restore correct operation. (Compare to the effect of confidence weighting, Figure 33) Meanwhile

4.2. BURST NOISE AND DENOISING PERFORMANCE 41

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20

40

60

80

%

Piecewise Constant

i.i.d Noise
Burst Noise

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Piecewise Linear

Figure 26. Burst noise prevents uniformly weighted VIVA from achieving the
correct sparsity pattern for most signals

all configurations of total variation minimization yield increased error commensurate with the
RMS increase in noise.

For piecewise linear signals (Figures 27 through 30), the situation is not much different,
although uniformly weighted VIVA no longer falls into last place overall, the performance of all
estimators has suffered greatly. The range of sparsity (Figure 26) also increased somewhat less for
piecewise linear signals than for piecewise constant. Overall, though, static tuning of denoising
algorithms is ineffective against time-varying interference.

4.2.2. Variance-Based Weighting Provides Robustness to Burst Noise

While burst noise proved extremely challenging for static uniform weighting, adaptive denois-
ing using the Equation 4.8a weighting formula has no trouble at all. The offline estimator results,
Figures 31 and 32, reveal that variance-based weighting achieves the lowest-noise estimate by a
wide margin, a result which will be repeated among the online estimators.

Increasing the variation penalty λ of total variation minimization makes it more tolerant of
noise. However, Figure 33 shows that excessive numbers of changepoints are still being accepted.

Moving to piecewise-linear signals, Figure 34 contains a remarkable result: The final result
from variance auto-weighted VIVA has not only surpassed the other estimates of the value signal
by all error measures, it also outperforms the globally optimal solution to the regularization
problem. This paradox comes about because the minimum mean-square error fit sought by
regularization is not the maximum-likelihood predictor of the original signal under burst noise
conditions.

While the AW-VIVA estimate does not outright beat the rate estimate found by global
least-squares, it still is the best of the practical estimators. Meanwhile the chained application
of TVM generates better rate estimates than single application, but still exhibits average error
an order of magnitude worse than VIVA. `1 trend filtering (Kim et al., 2009) offers significant
improvement over TVM by adding a second-order difference term directly to the convex cost
function, and TVM might also benefit from pairing with a different lowpass pre-filter. However,
in light of the results on piecewise-constant data for which the TVM implementation is designed,
it seems impossible that improved `1 methods should provide an estimate which is simultaneously
accurate and sparse.

4.2. BURST NOISE AND DENOISING PERFORMANCE 42

0.03 0.3 3 30

i.i.d. – Uniformly Weighted VIVA

burst – Uniformly Weighted VIVA

i.i.d. – `1 Trend Filtering λ = 500

burst – `1 Trend Filtering λ = 500

i.i.d. – `1 Trend Filtering λ = 1000

burst – `1 Trend Filtering λ = 1000

i.i.d. – `1 Trend Filtering λ = 5000

burst – `1 Trend Filtering λ = 5000

0.1 1 10 100

Max Error

0.03 0.30.01 0.1 1

RMS Error

0.03 0.3

i.i.d. – Uniformly Weighted VIVA

burst – Uniformly Weighted VIVA

i.i.d. – `1 Trend Filtering λ = 500

burst – `1 Trend Filtering λ = 500

i.i.d. – `1 Trend Filtering λ = 1000

burst – `1 Trend Filtering λ = 1000

i.i.d. – `1 Trend Filtering λ = 5000

burst – `1 Trend Filtering λ = 5000

0.1 1

90th Percentile Error

0.03 0.30.01 0.1

Mean Absolute Error

Figure 27. Performance degradation of offline value estimates when burst noise
is introduced into piecewise linear signal

0.03 0.3 3 30

i.i.d. – Uniformly Weighted VIVA

burst – Uniformly Weighted VIVA

i.i.d. – `1 Trend Filtering λ = 500

burst – `1 Trend Filtering λ = 500

i.i.d. – `1 Trend Filtering λ = 1000

burst – `1 Trend Filtering λ = 1000

i.i.d. – `1 Trend Filtering λ = 5000

burst – `1 Trend Filtering λ = 5000

0.1 1 10 100

Max Error

0.03 0.30.01 0.1 1

RMS Error

Figure 28. Performance degradation in stable regions (transition bands ex-
cluded) of offline value estimates when burst noise is introduced into piecewise
linear signal

4.2. BURST NOISE AND DENOISING PERFORMANCE 43

10−2 10−1 100 101 102

i.i.d. – Uniformly Weighted VIVA

burst – Uniformly Weighted VIVA

i.i.d. – `1 Trend Filtering λ = 500

burst – `1 Trend Filtering λ = 500

i.i.d. – `1 Trend Filtering λ = 1000

burst – `1 Trend Filtering λ = 1000

i.i.d. – `1 Trend Filtering λ = 5000

burst – `1 Trend Filtering λ = 5000

10−2 10−1 100 101 102

Max Error

10−3 10−2 10−1 10010−3 10−2 10−1 100

RMS Error

10−5 10−4 10−3 10−2

i.i.d. – Uniformly Weighted VIVA

burst – Uniformly Weighted VIVA

i.i.d. – `1 Trend Filtering λ = 500

burst – `1 Trend Filtering λ = 500

i.i.d. – `1 Trend Filtering λ = 1000

burst – `1 Trend Filtering λ = 1000

i.i.d. – `1 Trend Filtering λ = 5000

burst – `1 Trend Filtering λ = 5000

10−4 10−3 10−2

90th Percentile Error

10−4 10−3 10−210−4 10−3 10−2

Mean Absolute Error

Figure 29. Performance degradation of offline rate estimates when burst noise
is introduced into piecewise linear signal

10−4 10−3 10−2 10−1 100 101 102

i.i.d. – Uniformly Weighted VIVA

burst – Uniformly Weighted VIVA

i.i.d. – `1 Trend Filtering λ = 500

burst – `1 Trend Filtering λ = 500

i.i.d. – `1 Trend Filtering λ = 1000

burst – `1 Trend Filtering λ = 1000

i.i.d. – `1 Trend Filtering λ = 5000

burst – `1 Trend Filtering λ = 5000

10−4 10−3 10−2 10−1 100 101 102

Max Error

10−5 10−4 10−3 10−2 10−1 10010−4 10−3 10−2 10−1 100

RMS Error

Figure 30. Performance degradation in stable regions (transition bands ex-
cluded) of offline rate estimates when burst noise is introduced into piecewise
linear signal

4.2. BURST NOISE AND DENOISING PERFORMANCE 44

0.03 0.3 3 30

Uniformly Weighted VIVA
ζ = 1400

Variance-Weighted VIVA
ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

Total Variation Min.
λ = 70

Total Variation Min.
λ = 100

0.1 1 10 100

Max Error

0.02 0.05 0.2 0.5 20.1 1

RMS Error

0.02 0.05 0.2 0.5

Uniformly Weighted VIVA
ζ = 1400

Variance-Weighted VIVA
ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

Total Variation Min.
λ = 70

Total Variation Min.
λ = 100

0.1 1

90th Percentile Error

0.02 0.05 0.2 0.50.01 0.1

Mean Absolute Error

Figure 31. Performance of offline estimators evaluated using piecewise con-
stant signal (burst noise), N = 100

0.03 0.3 3 30

Uniformly Weighted VIVA
ζ = 1400

Variance-Weighted VIVA
ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

Total Variation Min.
λ = 70

Total Variation Min.
λ = 100

0.1 1 10 100

Max Error

0.02 0.05 0.2 0.5 20.01 0.1 1

RMS Error

Figure 32. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise constant signal (burst noise), N = 100

4.2. BURST NOISE AND DENOISING PERFORMANCE 45

6 8 10 12 14 16 18
0

20

40

60

%

VIVA

Uniform Weighting (PELT)
Variance Auto-Weighting

50 100 150 200
0

5

10

15

Total Variation Minimization

λ = 25
λ = 40
λ = 70
λ = 100

Figure 33. Sparsity achieved by offline estimators evaluated using piecewise
constant signal (burst noise), N = 100

4.2. BURST NOISE AND DENOISING PERFORMANCE 46

0.3 3 30

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

0.1 1 10 100

Max Error

0.03 0.3 3 300.01 0.1 1 10

RMS Error

0.03 0.3 3 30

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

0.1 1 10 100

90th Percentile Error

0.03 0.3 3 300.01 0.1 1 10 100

Mean Absolute Error

Figure 34. Performance of offline estimators evaluated using piecewise linear
signal (burst noise), N = 500, analysis of value estimate

4.2. BURST NOISE AND DENOISING PERFORMANCE 47

0.03 0.3 3 30

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

0.1 1 10 100

Max Error

0.03 0.3 3 300.01 0.1 1 10 100

RMS Error

Figure 35. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise linear signal (burst noise), N = 500, analysis
of value estimate

4.2. BURST NOISE AND DENOISING PERFORMANCE 48

10−4 10−3 10−2 10−1 100 101 102

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

10−4 10−3 10−2 10−1 100 101 102

Max Error

10−4 10−3 10−2 10−1 100 10110−4 10−3 10−2 10−1 100 101

RMS Error

10−5 10−4 10−3 10−2 10−1

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

10−4 10−3 10−2 10−1

90th Percentile Error

10−5 10−4 10−3 10−2 10−1 10010−4 10−3 10−2 10−1 100

Mean Absolute Error

Figure 36. Performance of offline estimators evaluated using piecewise linear
signal (burst noise), N = 500, analysis of rate estimate

4.2. BURST NOISE AND DENOISING PERFORMANCE 49

10−4 10−3 10−2 10−1 100 101 102

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

Total Variation Min on Value, λ = 40

Total Variation Min on Value, λ = 70

Total Variation Min on Rate, λ = 3

Total Variation Min on Rate, λ = 4

Total Variation Min on Rate, λ = 5

TVM first Value, then Rate λ = 1

TVM first Value, then Rate λ = 2

TVM first Value, then Rate λ = 3

10−4 10−3 10−2 10−1 100 101 102

Max Error

10−5 10−4 10−3 10−2 10−1 100 10110−4 10−3 10−2 10−1 100 101

RMS Error

Figure 37. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise linear signal (burst noise), N = 500, analysis
of rate estimate

4.2. BURST NOISE AND DENOISING PERFORMANCE 50

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

%

VIVA

Uniform Weighting
Variance Auto-Weighting

1 10 100 1,000 10,000

Uniformly Weighted VIVA
Variance Weighted VIVA

Total Variation Min on Value, λ = 25
Total Variation Min on Value, λ = 40
Total Variation Min on Value, λ = 70

Total Variation Min on Value, λ = 100
Total Variation Min on Rate, λ = 1
Total Variation Min on Rate, λ = 2
Total Variation Min on Rate, λ = 3
Total Variation Min on Rate, λ = 4
Total Variation Min on Rate, λ = 5
Total Variation Min on Rate, λ = 6
Total Variation Min on Rate, λ = 7
Total Variation Min on Rate, λ = 8
Total Variation Min on Rate, λ = 9

Total Variation Min on Rate, λ = 10
Total Variation Min on Rate, λ = 25
Total Variation Min on Rate, λ = 35
Total Variation Min on Rate, λ = 40
Total Variation Min on Rate, λ = 50
Total Variation Min on Rate, λ = 60
Total Variation Min on Rate, λ = 70
Total Variation Min on Rate, λ = 80
Total Variation Min on Rate, λ = 100

Total Variation Min on Value, then Rate λ = 1
Total Variation Min on Value, then Rate λ = 2
Total Variation Min on Value, then Rate λ = 3
Total Variation Min on Value, then Rate λ = 4
Total Variation Min on Value, then Rate λ = 5
Total Variation Min on Value, then Rate λ = 6
Total Variation Min on Value, then Rate λ = 7
Total Variation Min on Value, then Rate λ = 8
Total Variation Min on Value, then Rate λ = 9
Total Variation Min on Value, then Rate λ = 10
Total Variation Min on Value, then Rate λ = 25
Total Variation Min on Value, then Rate λ = 35
Total Variation Min on Value, then Rate λ = 40
Total Variation Min on Value, then Rate λ = 50
Total Variation Min on Value, then Rate λ = 60
Total Variation Min on Value, then Rate λ = 70
Total Variation Min on Value, then Rate λ = 80

Total Variation Min on Value, then Rate λ = 100
`1 Trend-Filtering, λ = 200
`1 Trend-Filtering, λ = 500
`1 Trend-Filtering, λ = 1000
`1 Trend-Filtering, λ = 2000
`1 Trend-Filtering, λ = 5000

Estimate Cardinality (number of distinct rate segments)

Figure 38. Comparison of Sparsity Achieved by all offline methods with piece-
wise linear signal (burst noise), N=500

4.2. BURST NOISE AND DENOISING PERFORMANCE 51

0.03 0.3 3

Uniformly Weighted VIVA
ζ = 25

Variance-Weighted VIVA
ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

0.1 1 10

Max Error

0.02 0.05 0.1

RMS Error

0.02 0.05 0.2

Uniformly Weighted VIVA
ζ = 25

Variance-Weighted VIVA
ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

0.01 0.1

90th Percentile Error

0.02 0.050.01 0.1

Mean Absolute Error

Figure 39. Performance of offline estimators evaluated using piecewise con-
stant signal (strongly white noise), N = 240

0.02 0.05 0.2 0.5

Uniformly Weighted VIVA
ζ = 25

Variance-Weighted VIVA
ζ = 25

Total Variation Min.
λ = 25

Total Variation Min.
λ = 40

0.1

Max Error

0.02 0.050.01 0.1

RMS Error

Figure 40. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise constant signal (strongly white noise), N =
240

4.2.3. Impact of Variance-Based Weighting on Strictly White Noise

Figures 39 and 41 reveal that for stationary noise, the variance-weighted scheme performs
slightly worse that the uniform scheme, because the main source of variance is step changes in
the original signal. De-emphasizing transition regions increases the likelihood of selecting the
wrong step timing. The effects on online estimation are more pronounced, and will be seen in
subsection 5.3.1.

4.2. BURST NOISE AND DENOISING PERFORMANCE 52

7 8 9 10
0

20

40

60

80

%

VIVA

Uniform Weighting (PELT)
Variance Auto-Weighting

30 40 50 60 70
0

2

4

6

8

10

Total Variation Minimization

λ = 25
λ = 40

Figure 41. Sparsity achieved by offline estimators evaluated using piecewise
constant signal (strongly white noise), N = 240

4.2. BURST NOISE AND DENOISING PERFORMANCE 53

0.03 0.3 3

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

0.1 1

Max Error

0.03 0.30.01 0.1

RMS Error

0.03 0.3

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

0.01 0.1

90th Percentile Error

0.030.01 0.1

Mean Absolute Error

Figure 42. Performance of offline estimators evaluated using piecewise linear
signal (strongly white noise), N = 500, analysis of value estimate

0.03 0.3 3

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

0.1 1

Max Error

0.030.01 0.1

RMS Error

Figure 43. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise linear signal (strongly white noise), N =
500, analysis of value estimate

The piecewise linear case is modeled (and generated) as a series of connected line segments.
Unlike the piecewise-constant case, this signal is continuous, and has significantly reduced high
frequency content. This is beneficial to the various estimators which perform smoothing, at least
in terms of residual error in the value estimate. Accurate estimation of the rate signal, which
is discontinuous where the segments meet, remains challenging. Rate calculations using nu-
meric differentiation amplify high frequency noise as predicted by the frequency-domain transfer
function of the derivative operator: F

{
d
dty(t)

}
= j2πfY (f).

The signal ’piecewise_linear.mat’, shown in Figure 46, exemplifies this case. It has been
generated using gen_piecewise_linear.m (Appendix A.1.2) and corrupted using i.i.d. white

4.2. BURST NOISE AND DENOISING PERFORMANCE 54

10−5 10−4 10−3 10−2 10−1 100

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

10−4 10−3 10−2 10−1 100

Max Error

10−5 10−4 10−3 10−210−4 10−3 10−2

RMS Error

10−5 10−4 10−3

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

10−4 10−3

90th Percentile Error

10−5 10−4 10−310−4 10−3

Mean Absolute Error

Figure 44. Performance of offline estimators evaluated using piecewise linear
signal (strongly white noise), N = 500, analysis of rate estimate

10−4 10−3 10−2

Global Regression w/Original Timing

Paired Segment Fit w/Original Timing

Global Regression w/AW-VIVA Timing

Paired Segment Fit w/AW-VIVA Timing

Variance Weighted VIVA

Uniformly Weighted VIVA

`1 Trend Filtering, λ = 500

`1 Trend Filtering, λ = 1000

`1 Trend Filtering, λ = 5000

10−4 10−3 10−2

Max Error

10−5 10−4 10−310−4 10−3

RMS Error

Figure 45. Performance in stable regions (transition bands excluded) of offline
estimators evaluated using piecewise constant signal (strongly white noise), N =
500, analysis of rate estimate

4.2. BURST NOISE AND DENOISING PERFORMANCE 55

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

−40

−20

0

20

40
Measured Signal

Figure 46. The signal piecewise linear.mat with and without noise

Gaussian noise obtained using gen_iid_white_noise.m just as in the piecewise constant case.
Once again the randomly selected parameters used during signal generation are saved for use in
evaluation of various estimates.

Without the high local variance contributed by step changes in the input, variance auto-
weighting is no longer devaluing transition regions, and as a result the auto-weighting scheme is
no longer disadvantaged relative to the uniformly weighted version. Both VIVA variants benefit
from the continuous value signal; without the sudden steps small timing errors no longer equate to
large maximum error levels, at least not in the value estimate (Figure 42). However because step
changes do exist in the rate signal (Figure 44), VIVA is again subject to large errors, although
these are limited to transition regions.

4.2. BURST NOISE AND DENOISING PERFORMANCE 56

Figure 47. Signal corrupted by sporadic noise and recovered using inverse-
variance auto-weighting

Figure 48. Sporadic noise and residual error after recovery using inverse-
variance auto-weighting

4.2.4. Spectrum of residual noise

Consider the signal shown in Figure 47, which has been synthesized with “sporadic” noise
(generated using gen_burst_white_noise.m and a burst length of 1). Subtracting out the orig-
inal signal leaves the measurement noise and offline/final residual error following VIVA denoising

4.3. CASE STUDY, LOAD CELL MONITORING RESUSCITATION OF HEMORRHAGIC SHOCK 57

0 π

−60

−40

−20

0

20

40

60

Normalized Frequency

d
B

Figure 49. Power spectral density of sporadic noise and residual error

(using variance auto-weighting scheme), shown in Figure 48. The reduction in error magnitude is
immediately evident; less evident is the relative reduction of noise at different frequencies. Figure
49 provides a power spectral density plot to answer that question. With 40 dB or better rejection
at all except the lowest frequencies, the noise reduction rivals that of a high-quality lowpass filter
– and VIVA has not removed high frequency components from the true signal.

Successful application of variance auto-weighting to signals corrupted by sporadic noise also
indicates that the auto-weighting method does not require that the window size for variance
calculation match the burst duration.

4.3. Case Study, Load Cell Monitoring Resuscitation of
Hemorrhagic Shock

The four channel “smart IV pole” system (Sparx Engineering, Manvel, TX) previously de-
scribed has been used for monitoring fluid balance during animal studies at the UTMB Re-
suscitation Research Laboratory. Many experiments study responses of the circulatory system
in injury-induced shock states. Flow rates were simultaneously measured using an electronic
Doppler transit-time flowmeter (Transonic Systems) for comparison and confirmation of results.

Figure 50 shows the IV bag weight data logged by the load cells of the smart IV pole during
one such study which induced hypovolemia shock in a 40 kg swine via controlled hemorrhage,
then resuscitated the subject alternately using Lactated Ringer’s solution and blood. One IV pole
channel was not used during this study. In the other three channels one can see the increasing
weight of the blood storage bags attached to channels 2 and 4 during the controlled hemorrhage
near T = 45min. Later one can see the weight smoothly decreasing as the blood is reinfused, or
when Lactated Ringer’s is infused. Substantial noise is also visible, introduced by such causes as

4.3. CASE STUDY, LOAD CELL MONITORING RESUSCITATION OF HEMORRHAGIC SHOCK 58

0 60 120 180 240 300
−200

0

200

400

600

800

1,000

Time (min)

(g)

Load Cell 2 Load Cell 3 Load Cell 4

Figure 50. Load cell data monitoring pig hemorrhage and resuscitation

replacing depleted bags, moving bags between channels, tension on IV tubing during downstream
manipulation, and accidental physical contact with the bags or pole.

Figure 51 shows the series of connected segments identified by AW-VIVA during denoising.
The effects of artifacts have been dramatically reduced, but the result still reflects physical actions
which change the force on the load cell, such as adding a fresh IV bag, or attaching IV tubing,
as well as actual flows. Several heuristics are then applied to reject unreasonable or insignificant
changes in weight, resulting in the flow rates of Figure 52.

4.3. CASE STUDY, LOAD CELL MONITORING RESUSCITATION OF HEMORRHAGIC SHOCK 59

0 60 120 180 240 300
−200

−100

0

100

200

300

400

500

600

700

800

Time (min)

(g)

Raw load cell data Offline/final fit using AW-VIVA

Figure 51. Piecewise linear estimate obtained to denoise load cell channel 2,
Figure 50

4.3. CASE STUDY, LOAD CELL MONITORING RESUSCITATION OF HEMORRHAGIC SHOCK 60

0 60 120 180 240 300

−80

−60

−40

−20

0

20

40

60

80

Time (min)

Flow Rate
(mL/min)

Load Cell 2
Load Cell 3
Load Cell 4

Figure 52. Flow rates obtained from piecewise linear estimate

0 20 40 60 80 100 120 140

−300

−250

−200

−150

−100

−50

0

50

100

Time (min)

Flow Rate
(mL/min)

Transonic
VIVA Total Rate

Figure 53. Total flow rate from multiple load cells, comparison to electronic
Doppler flowmeter

61

CHAPTER 5

Error and Delay in Online Configurations

5.1. Zero-Delay Evaluation

5.1.1. Uniform Weighting Does Not Inherently Require Delay. Because the VIVA estimator
produces a vector of parameter values for the current segment, the piecewise curve can be eval-
uated at any point in the past, at the present instant, or even used to predict the future (under
the assumption of no intervening changepoints). The latter might be applicable for closed-loop
feedback control in the presence of an unknown but time-invariant actuator delay: changepoint
identification could be used for estimation of the delay, forecasts would be valid because the sys-
tem would know whether a control command has been recently sent, and the future projection
used to make control decisions. (In such a scenario, branching could be confined to occur only
during periods following control actions.)

5.1.2. Zero-Delay misses transitions. Transition regions are difficult for zero-delay estimators
as seen in Figures 54 and 55. Without considering a sufficient amount of signal following the
change, there is no evidence to justify paying the penalty ζ, so the leading path does not reflect
presence of the changepoint. For this reason delay is artificially introduced, so that the effect
of a number of subsequent samples is included in the path cost. While increasing the number

4,500 4,600 4,700 4,800 4,900 5,000 5,100 5,200 5,300
−8

−6

−4

−2

0

2

4

6

8

10

12

“Measurement”
Original Signal
Online Recovered Signal, Zero Delay

Figure 54. Excerpt from ’piecewise constant.mat’ and corresponding zero-
delay estimate (Uniformly weighted, ζ = 25)

5.2. CHANGEPOINT DETECTION LAG 62

5,600 5,800 6,000 6,200 6,400 6,600 6,800 7,000 7,200

−60

−40

−20

0

20

“Measurement”
Original Signal
Online Recovered Signal, Zero Delay

Figure 55. Excerpt from ’piecewise linear bursty.mat’ and corresponding
zero-delay estimate (Variance auto-weighted, ζ = 25)

of “future” samples available for estimation is helpful everywhere, the most profound effect is
observed around transitions, where those future samples form the basis for correctly inferring a
transition.

5.2. Changepoint Detection Lag

Two approaches are taken to investigation of detection lag: algebraic and empirical. The
empirical method is preferred with variance auto-weighting is used, because the weights are
difficult to predict.

5.2.1. Solution Stability Condition

Consider again the piecewise constant bicriterion model

(5.1)

minimize
∑
i

(x′
i − yi)

2
+ ζ

∑
i

bi

subject to
∣∣x′

i+1 − x′
i

∣∣ ≤ Mb′i ∀i
b′i ∈ { 0, 1 } ∀i

Assume that b′ = b, that is, the binary variables are chosen according to 1.6 using the true
control timing.

Then considering any control time Tk, then the optimization will eliminate that input step
unless (compare Figures 56 and 57)

5.2. CHANGEPOINT DETECTION LAG 63

tA tk tB

ytA,tB

Measurement
bk = 0

ĉ =
∑
i

A<i≤B

ci (ytA,tB − yi)
2

Figure 56. Cost function within bk = 0 branch

(5.2a)

∑
i

Tk−1<ti≤Tk+1

ci
(
yTk−1,Tk+1

− yi
)2 ≥

∑
i

Tk−1<ti≤Tk

ci
(
yTk−1,Tk

− yi
)2

+ ζ

+
∑
i

Tk<ti≤Tk+1

ci
(
yTk,Tk+1

− yi
)2

where ytA,tB is the (weighted) block temporal mean

(5.2b) ytA,tB =
(∑

i
tA<ti≤tB

ci

)−1 ∑
i

tA<ti≤tB

ciyi

But (this is also the formula relating moment of inertia of a planar mass distribution about its
centroid to moment of inertia about another parallel axis)

(5.2c)
∑
i

tA<ti≤tB

(η − y(τ))
2
= (tB − tA) (η − ytA,tB)

2
+

∑
i

tA<ti≤tB

(ytA,tB − yi)
2

so that in the uniformly weighted case Equation 5.2a becomes

(5.2d) ζ ≤ (Tk − Tk−1)
(
yTk−1,Tk+1

− yTk−1,Tk

)2
+ (Tk+1 − Tk)

(
yTk−1,Tk+1

− yTk,Tk+1

)2
(5.2e) ζ ≤ (Tk − Tk−1) (Tk+1 − Tk)

Tk+1 − Tk−1

(
yTk−1,Tk

− yTk,Tk+1

)2
The fraction is bounded by

1

2
min(Tk − Tk−1, Tk+1 − Tk) ≤

(Tk − Tk−1) (Tk+1 − Tk)
Tk+1 − Tk−1

≤ min(Tk − Tk−1, Tk+1 − Tk)

5.2. CHANGEPOINT DETECTION LAG 64

tA tk tB

ytA,tk

ytk,tB

Measurement
bk = 1

ĉ =
∑
i

A<i≤k

ci (ytA,tk − yi)
2
+ ζ +

∑
i

k<i≤B

ci (ytk,tB − yi)
2

Figure 57. Cost function within bk = 1 branch

which suggests that a good choice for ζ is

(5.3) ζideal =
1

2
tthy

2
th

where tth and yth are the desired detection thresholds for time and magnitude, respectively.

5.2.2. Selecting Delay Based on Solution Stability

When designing for online operation, the effective segment duration is limited to the delay
time, and Equation 5.3 should be updated correspondingly:

(5.4) ζideal =
1

2
tdelayy

2
detect

Naturally, if ζ has already been selected, this formula may be solved for the required tdelay
to achieve a desired detection sensitivity ydetect, and the equation can also be used to predict the
sensitivity of a system with fixed ζ and tdelay.

Changes which are more subtle than ydetect may be expected to converge late, and oscil-
lation between paths with and without a detected changepoint may occur. Specifically, noise
amplification may be observed in the interval

(5.5a) t− Tk < tdetect − tdelay

where

(5.5b) tdetect = 2
ζ

(yk − yk−1)
2

5.3. ONLINE DENOISING PERFORMANCE 65

5.2.3. Selecting Delay Based on Observed Population Reduction

For models with sloped or curved segments, the analytic expressions become more difficult to
manipulate. When confidence-based weighting is added to the mix, finding an analytic expression
may be infeasible due to unknown noise characteristics. In such cases an empirical approach to
delay selection is desired.

One such empirical approach follows from the insight that the reason for incorrect estimates
following changepoints, and particularly for oscillation, is due to the existence of paths both
with and without detected changepoint in the population of candidate paths. By inspecting the
relationship between population size and time elapsed since change, the time at which paths
which fail to acknowledge the change are removed becomes apparent. From this an appropriate
time delay for online processing may be inferred.

5.3. Online Denoising Performance

5.3.1. Piecewise-constant with additive i.i.d. Gaussian noise

Online denoising of is performed using a variety of filters and the VIVA estimator:

• A 60-sample equally weighted moving average, Hma(z) =
1
60

∑59
i=0 z

−i

• A single pole IIR filter, (1− .97z−1)Hsp(z) = .03
• A 511-tap sinc FIR lowpass filter, |Hlp(f/Fs)|= u(.005− |f/Fs|)
• A median filter using a window of N = 51 samples
• Estimate of the current sample, using the lowest cost (to-date) path found by VIVA
using uniform weighting and ζ = 25

• Estimate of 15 samples prior, using the lowest cost (to-date) path found by VIVA

In addition, a second regularization formulation using non-uniform weighting is compared,
also optimized using VIVA. The weights are automatically determined from the input signal, and
chosen to be inversely proportional to the local variance (10 samples before and after the current
position) in the noisy measurement signal. This introduces an additional 10 sample latency.

All these signals can be computed in near-realtime, with a system delay varying from 0 lag
for the single pole IIR and current sample uniformly-weighted VIVA, to 25 sample delay for
the variance-weighted 15-step-behind VIVA and median filter, to 255 sample delay for the sinc
lowpass filter.

The resulting signal using each method is plotted in Figure 58.
Clearly the estimate given by VIVA is better in terms of both steady-state residual error and

behavior near step changes, as long as the assumption of large sparse variations in the original
signal is valid. In fact, the uniformly-weighted VIVA estimator with 15 samples of delay is
visually indistinguishable from the original signal.

In addition to visual verification on a case-by-case basis that the results are good, quantitative
performance metrics on a set of 240 randomly synthesized signals are shown in Figures 59 and
60.

Also note that a sharper frequency cutoff for the lowpass filters does not lead to better per-
formance, because the step changes in the original signal are sharp and have wideband frequency
content.

5.3.2. Piecewise-constant with burst Gaussian noise

Figures 62 and 63 show outcomes from the same online estimators as were used with i.i.d.
noise. The lowpass filters turn out nearly the same results as to maximum absolute error, which
is still dominated by smoothing steps in the input signal. However, the filters are letting some
of the increased noise through in the stable regions, which is hardly surprising.

5.3. ONLINE DENOISING PERFORMANCE 66

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000−8

−6

−4

−2

0

2

4

6

8

10

12
Measured y Signal x
Moving Average N = 60 Single Pole Lowpass
FIR, N = 511 Median N = 51

x̃ x̃z−15

Figure 58. Denoising piecewise constant.mat using conventional lowpass filters
and VIVA

Just as with post-processing in the presence of burst noise, online runs of the variance-
weighted VIVA method, which in the i.i.d. noise case yielded estimates slightly inferior to its
uniform weighting sibling, now show a huge advantage, delivering an order of magnitude lower
residual error than all competitors, excepting only the maximum absolute error. Its ability to
assign low weights to transient changes have given it effective immunity to the burst noise.

5.3.3. Piecewise-linear with i.i.d. Gaussian noise

Just as for piecewise constant signals, delaying polyline estimation until VIVA has analyzed
a number of future samples, made possible by introducing delay, yields the greatest benefit at
and immediately after transitions. And consistent with retrospective analysis, online denoising of
piecewise linear signals misses fewer steps due to variance weighting than did piecewise constant
estimators. VIVA running online is still subject to large maximum errors in the rate signal
(Figure 66), just as the offline analysis was. The conventional filtering mechanisms do not
particularly benefit from low variance near steps, however. Rejection of high-frequency noise
is opposed by the frequency-proportional response of the derivative, and residual errors exist
throughout (Figure 67), not merely near transitions.

The error bands in both value and rate estimates are also considerably wider than in the
piecewise-constant case, because the randomly chosen signals exhibit a wide range of slopes.

5.3.4. Piecewise-linear with burst white Gaussian noise

Figures 68 and 70 show that the auto-weighting VIVA estimates with 15 and 60 sample
delays lead in every error metric, except for maximum rate error where the sharp-cutoff FIR
filters match their performance. This outcome is really not very surprising, considering that the
various features of VIVA were designed for this type of input.

5.3. ONLINE DENOISING PERFORMANCE 67

0.5 2 5 20

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

Median N = 21

Median N = 51

1 10

Max Error

0.05 0.2 0.5 20.1 1

RMS Error

0.05 0.2 0.5 2

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

Median N = 21

Median N = 51

0.1 1

90th Percentile Error

0.02 0.05 0.2 0.50.1

Mean Absolute Error

Figure 59. Performance of online estimators evaluated using piecewise con-
stant signal (strongly white noise), N = 240

0.2 0.5 2 5

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

Median N = 21

Median N = 51

1

Max Error

0.05 0.2 0.50.1

RMS Error

Figure 60. Performance in stable regions (transition bands excluded) of online
estimators evaluated using piecewise constant signal (strongly white noise), N =
240

5.3. ONLINE DENOISING PERFORMANCE 68

4,400 4,600 4,800 5,000 5,200 5,400 5,600 5,800 6,000
−15

−10

−5

0

5

10

Measured y Signal x
Moving Average N = 60 Single Pole Lowpass
FIR, N = 511 Median N = 51

x̃ x̃z−15

Figure 61. Denoising piecewise constant bursty.mat using conventional low-
pass filters and Variance Auto-Weighted VIVA

5.3. ONLINE DENOISING PERFORMANCE 69

0.5 2 5 20 50

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

Median N = 21

1 10 100

Max Error

0.05 0.2 0.5 20.1 1

RMS Error

0.05 0.2 0.5 2

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

Median N = 21

0.1 1

90th Percentile Error

0.05 0.2 0.50.1

Mean Absolute Error

Figure 62. Performance of online estimators evaluated using piecewise con-
stant signal (burst noise), N = 100

0.3 3 30

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

Median N = 21

1 10 100

Max Error

0.05 0.2 0.5 20.1 1

RMS Error

Figure 63. Performance in stable regions (transition bands excluded) of online
estimators evaluated using piecewise constant signal (burst noise), N = 100

5.3. ONLINE DENOISING PERFORMANCE 70

0.2 0.5 2 5 20 50

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

1 10

Max Error

0.05 0.2 0.5 20.1 1

RMS Error

0.05 0.2 0.5 2

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

0.1 1

90th Percentile Error

0.05 0.2 0.50.1 1

Mean Absolute Error

Figure 64. Performance of online estimators evaluated using piecewise linear
signal (i.i.d. white noise), N = 500, analysis of value estimate

0.2 0.5 2 5 20 50

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

1 10

Max Error

0.05 0.2 0.5 20.1 1

RMS Error

Figure 65. Performance in stable regions (transition bands excluded) of online
estimators evaluated using piecewise linear signal (i.i.d. white noise), N = 500,
analysis of value estimate

5.3. ONLINE DENOISING PERFORMANCE 71

0.02 0.05 0.2 0.5 2 5

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

0.1 1

Max Rate Error

0.002 0.005 0.02 0.050.001 0.01 0.1

RMS Rate Error

0.0003 0.003 0.03

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

0.001 0.01

90th Percentile Rate Error

0.0003 0.003 0.030.001 0.01

Mean Absolute Rate Error

Figure 66. Performance of online estimators evaluated using piecewise linear
signal (i.i.d. white noise), N = 500, analysis of rate estimate

0.003 0.03 0.3

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

0.01 0.1

Max Rate Error

0.0003 0.003 0.030.001 0.01

RMS Rate Error

Figure 67. Performance in stable regions (transition bands excluded) of online
estimators evaluated using piecewise linear signal (i.i.d. white noise), N = 500,
analysis of rate estimate

5.3. ONLINE DENOISING PERFORMANCE 72

0.2 0.5 2 5 20 50

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

1 10 100

Max Error

0.05 0.2 0.5 20.1 1

RMS Error

0.2 0.5 2

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

0.1 1

90th Percentile Error

0.05 0.2 0.50.1 1

Mean Absolute Error

Figure 68. Performance of online estimators evaluated using piecewise linear
signal (burst noise), N = 500, analysis of value estimate

0.2 0.5 2 5 20 50

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

1 10 100

Max Error

0.05 0.2 0.5 20.1 1

RMS Error

Figure 69. Performance in stable regions (transition bands excluded) of online
estimators evaluated using piecewise linear signal (burst noise), N = 500, analysis
of value estimate

5.3. ONLINE DENOISING PERFORMANCE 73

10−2 10−1 100 101 102

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

10−2 10−1 100 101 102

Max Rate Error

10−3 10−2 10−1 10010−3 10−2 10−1 100

RMS Rate Error

0.0003 0.003 0.03

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

0.001 0.01 0.1

90th Percentile Rate Error

0.0003 0.003 0.030.001 0.01 0.1

Mean Absolute Rate Error

Figure 70. Performance of online estimators evaluated using piecewise linear
signal (burst noise), N = 500, analysis of rate estimate

10−2 10−1 100 101 102

UW VIVA delayed 60 samples

UW VIVA delayed 15 samples

Uniformly Weighted VIVA

AW VIVA delayed 60 samples

AW VIVA delayed 15 samples

Variance Auto-Weighted VIVA

Moving Average

Single Pole

FIR fc = Fs/200

FIR fc = Fs/10000

10−2 10−1 100 101 102

Max Rate Error

10−3 10−2 10−1 10010−3 10−2 10−1 100

RMS Rate Error

Figure 71. Performance in stable regions (transition bands excluded) of online
estimators evaluated using piecewise linear signal (burst noise), N = 500, analysis
of rate estimate

74

CHAPTER 6

Conclusions

6.1. Summary

The objective of this dissertation has been to advance the state of critical care automation
and decision support systems by reducing measurement error and this improving the fidelity
of the control system’s situational awareness of patient status and response dynamics. Specif-
ically, a new approach has been demonstrated for minimal cardinality recovery of two broad
categories of segmented signals: piecewise-separable, embodied in the piecewise constant model,
and piecewise-continuous, embodied by the piecewise linear segments model.

First, these problems were expressed as a mixed-integer program with a quadratic goal func-
tion and linear and binary constraints. A naive solution to such a problem must elaborate all
combinations of the binary variables in exponential time. The VIVA algorithm draws upon
two known techniques for exploring binary sequences: branch-and-bound optimization of mixed-
integer programs and Viterbi decoding of convolutional-coded digital messages. These ideas
are adapted to the step-fitting and trend-fitting problems using a novel pruning constraint. A
guaranteed bound of quadratic time was proven for piecewise-separable problems, but this worst
case only occurs when the optimal solution contains a single segment. Processing time for many
problems scales linearly.

6.2. Impact

The VIVA algorithm may immediately be used in conjunction with load cells to create a
low-cost mechanically robust hospital infusion monitoring system with accuracy that rivals that
of dedicated laboratory flowmeters or dedicated research staff and far higher accuracy with re-
spect to volume, flow rate, event timing, and flow duration than manual notes routinely collected
by nursing personnel. The resulting high quality records would enable research and quality im-
provement initiatives to answer questions about protocol compliance, frequency of flow cessation
due to bag depletion, and response time to alarms. In addition, the fluid records may be paired
with high resolution vital sign recordings for model development and validation work.

Because VIVA directly optimizes for sparse descriptions, it is very useful for lossy compres-
sion. Varying the regularization parameter controls the compression level, trading off the detail
level of the estimate against the increased size of the representation. Piece-wise descriptions are
especially useful for streaming data to mobile devices, not only because the sparse representation
consumes less network bandwidth, but device memory requirements are reduced. If a piece-wise
linear representation is chosen, the vertices of a polyline can be directly rendered by OpenGL ES
hardware-accelerated graphics.

VIVA may also be used as a general-purpose step fitting algorithm, applicable to problems
such as the study of protein assembly dynamics which motivated the precursor algorithms of
Kerssemakers et al. (2006); Little and Jones (2010). Although VIVA has higher computational
requirements than competing offline methods, it performs analysis online in near real-time at no

6.3. WHITHER? 75

additional cost. Even when online analysis is not required, the additional calculation may be
justified by the improved fit or better sparsity.

6.3. Whither?

An obvious application of the VIVA algorithm would be the original intended use – provid-
ing accurate flow rate measurements to the infusion effects monitor in near real-time. Major
remaining steps include parallel analysis of data using flow rate information from both the elec-
tronic Doppler flowmeters and the load cells with variance auto-weighted VIVA rate estimation,
quantifying the effect of residual input measurement errors on the adaptive filters and paramet-
ric fit in blood pressure response models under development, and finding the VIVA parameters
(regularization weight ζ and time delay) that minimize these effects.

In addition, it may be possible to improve the VIVA online estimate by considering multiple
top paths. For example, the variance of estimates made by the top k paths, as well as agreement
between estimates made with different delays, could lead to a measure of confidence in VIVA’s
estimate output, which in turn could be used for weighting fitting error in the downstream model.

Analysis of sensitivity to the regularization parameter can make use of the solution stability
criterion, if one can be found for the piecewise-linear case. Better pruning criteria for piecewise
linear signals could replace the current set of path discard heuristics and improve the runtime-vs-
optimality tradeoff. Analyses could include the frequency and magnitude of error in transition
timing recovery as an additional performance metric. Also, while the additive white Gaussian
noise models are convenient for analysis and often justified by the Central Limit Theorem, in
the particular application to IV bags hanging from load cells, underdamped pendulum action
leads to a natural frequency of oscillation (which changes slowly as the bag empties), and follow-
ing a physical impact, rather than abruptly ceasing as in the burst noise model, the interfering
factors undergo exponential decay. VIVA performance under these noise conditions could be
studied by characterizing the underdamped oscillation and augmenting the white noise model
with pendulum interference.

Finally, optimization of the implementation code could reduce constant factors in running
cost, both time and space. Even though asymptotic complexity is not improved, such tuning may
make the algorithms suitable for embedding into onboard battery-powered electronics of sensors
such as load cells, instead of requiring the resources of a mainstream desktop computer system.

In addition to use as independent confirmation and calibration of fluid infusion rate deliv-
ered from hospital IV pumps, where a piecewise-linear description fits the data well, there are
exciting possibilities for use of VIVA’s underlying concepts with data fitting other descriptions.
Polynomial segments may be straightforwardly fit as described in Kim et al. (2009) by making
the obvious substitution of the `0 norm in place of `1. Perhaps the conjoined segments individ-
ually are not affine but described by decaying exponentials, as is the case with infusion rates
delivered via gravity flow or pressure bag, since in both cases the driving pressure decays as the
bag empties.

A very powerful technique could be developed through combining VIVA and adaptive filtering
to address unknown changes in system dynamics, by mapping the recovered binary sequence onto
model selection. For example, in a Kalman filter, whether process noise has low or high variance
can be expressed as a binary variable. In orthogonal least-squares filtering, the binary variable
can control covariance resetting. More generally, the binary variable shifts the estimator between
two modes: target-seeking and target-tracking, and VIVA provides a mechanism for “regaining
target lock” by repeating the seeking action when the output error justifies it, while using a
penalty weight to remain in tracking mode as long as tracking continues giving good results.

76

APPENDIX A

Selected Matlab and C# Functions

A limited number of functions which may aid in understanding of the text are included here.
For electronic distributions of source code and complete input datasets, by means of which the
interested reader may reproduce all results, please refer to the companion website:

http://www.sparxeng.com/viva/

A.1. Synthesis of test data for Monte Carlo analysis

Monte Carlo analysis is used for characterization of denoising performance throughout, be-
ginning in section 3.6.1. Datasets of “source” signals: step sequences (piecewise constant) and
polylines (piecewise linear) were synthesized using the below scripts. For each source signal, the
randomly chosen generator parameters were saved. Then each signal was uniformly sampled and
Gaussian noise was generated and combined additively to form a “measured” signal.

A dataset was formed for each combination of source signal model (step or polyline) and
noise model (“uniform” strongly white or “burst” weakly white), as follows:

Table A.1. Size of Monte Carlo datasets

Source Model Segment Count Sample Count Number of Signals
(Uniform Noise) (Burst Noise)

Step 10 10 000 240 100
Polyline 10 20 000 500 500

Where multiple analyses were performed using the same signal model (for example, online,
delay, and retrospective), the same dataset was consistently used, allowing direct comparison of
residual noise results.

A.1.1. gen piecewise constant.m

Listing A.1 produces test vectors which are total length N having k piecewise constant seg-
ments, each segment having minimum duration 100 samples.

All parameters are optional, if omitted or an empty matrix [] is supplied, the default values
will be used as follows:

• Default k = 10 segments
• Default N = 10000 total samples

To achieve the minimum duration of 100 samples per segment, it is necessary that N ≥ 100k.

http://www.sparxeng.com/viva/

A.1. SYNTHESIS OF TEST DATA FOR MONTE CARLO ANALYSIS 77

Listing A.1. Generation of Piecewise Constant Signal

1 function [y, mu, changet] = gen_piecewise_constant(k, N)

26 if nargin < 2

27 N = 10000;

28 end

29 if nargin < 1

30 k = 10;

31 end

32

33 changet = (N - k*100) * rand(k-1,1);

34 changet = (1:k-1)'*100 + floor(sort(changet));

35 changet = [0; changet; N];

36 mu = -10 + 20 * rand(k,1);

37 y = zeros(N,1);

38 for i = 1:k

39 [y(changet(i)+1:changet(i+1))] = mu(i);

40 end

41 end

A.1.2. gen piecewise linear.m

Listing A.2 produces a test vector with k connected linear segments, each having duration
not less than 100 samples, and a total length of N samples.

All parameters are optional, if omitted or an empty matrix [] is supplied, the default values
will be used as follows:

• Default k = 10 segments
• Default N = 10000 total samples

To achieve the minimum duration of 100 samples per segment, it is necessary that N ≥ 100k.

Listing A.2. Generation of Piecewise Linear Signal

1 function [y, b, changet] = gen_piecewise_linear(k, N)

25 if nargin < 2

26 N = 10000;

27 end

28 if nargin < 1 || isempty(k)

29 k = 10;

30 end

31

32 changet = (N - k*100) * rand(k-1,1);

33 changet = (1:k-1)'*100 + floor(sort(changet));

34 changet = [0; changet; N];

35 b = -50 + 100 * rand(k+1,1);

36 y = interp1q(changet, b, [.5:N]');
37 end

A.1.3. gen iid white noise.m

Listing A.3 generates a random vector of independent identically distributed (i.i.d.) white
Gaussian noise.

A.1. SYNTHESIS OF TEST DATA FOR MONTE CARLO ANALYSIS 78

The noise signal w will be generated with a length of N samples. The noise samples share a
Gaussian distribution with zero mean and standard deviation sigma.

All parameters are optional, if omitted or an empty matrix [] is supplied, the default values
will be used as follows:

• Default N = 10000
• Default sigma = 1

Listing A.3. Generation of i.i.d. Gaussian White Noise Signal

1 function [w] = gen_iid_white_noise(N, sigma)

15

16 if nargin < 1 || isempty(N)

17 N = 10000;

18 end

19 if nargin < 2

20 sigma = 1;

21 end

22

23 w = sigma * randn(N,1);

A.1.4. gen burst white noise.m

Listing A.4 generates a random vector of weakly white Gaussian burst noise.
The noise signal w will be generated with a length of N samples. The noise samples are indi-

vidually zero mean Gaussian distributed. The standard deviation is controlled by sigma(1:2).
The samples are grouped into bursts of r adjacent samples, which share the same standard

deviation according to:

(A.1) σ =

{
sigma(1) with probability p

sigma(2) with probability (1− p)

All parameters are optional, if omitted or an empty matrix [] is supplied, the default values
will be used as follows:

• Default N = 10000 total samples
• Default r = 10 samples per burst
• Default p = 0.95 chance of using sigma(1)

• Default sigma =
[
1 16

]

A.2. OPTIMALITY TESTING 79

Listing A.4. Generation of Gaussian Burst Noise Signal (Weakly White)

1 function [w] = gen_burst_white_noise(N, r, p, sigma)

28 if nargin < 1 || isempty(N)

29 N = 10000;

30 end

31 if nargin < 2 || isempty(r)

32 r = 10;

33 end

34 if nargin < 3 || isempty(p)

35 p = .95;

36 end

37 if nargin < 4

38 sigma = [1 16];

39 end

40

41 prbs = repmat(rand(1,ceil(N/r)) > p, [r 1]);

42 prbs = prbs(1:N)';
43

44 w = sigma(1+prbs) .* randn(N,1);

45 end

A.2. Optimality Testing

A.2.1. Connected Piecewise-Linear Regression (Polyline fitting)

Although combinatorial methods for changepoint pursuit do not scale well, for small problems
they remain tractable and can be used to evaluate the magnitude of error introduced by search
truncation heuristics. Listing A.5 implements such a method.

Listing A.5. Exact Search for Best-Fit Polyline

1 function [bestcost, bestx, besty, complexity] =

exhaustive_polyline_fit_branch_and_bound(y, N, givenx)

23 bestcost = inf;

24 bestx = [];

25 besty = [];

26

27 complexity = 0;

28

29 if nargin < 3

30 givenx = 1;

31 end;

32

33 x = zeros(N+1,1);

34 x(1) = 1;

35 x(end) = numel(y);

36

A.2. OPTIMALITY TESTING 80

37 S = zeros(1,N);

38 R = S;

39 n = S;

40

41 lhs = zeros(N+1, N+1);

42 lhs(1,1) = 1;

43

44 recurse(0);

45

46 % Recursion is used to achieve the N-1 nested for loops

47 % Depth-first traversal also allows reuse of partial sums

48 function recurse(ii)

49 if ii > 0

50 trange = x(ii)+(ii>1):x(ii+1);

51 yrange = y(trange);

52 complexity = complexity + numel(yrange);

53 n(ii) = x(ii+1) - x(ii);

54 S(ii) = sum(yrange);

55 R(ii) = (trange - x(ii)) * yrange / n(ii);

56 a11 = (n(ii)-1)*(2*n(ii)-1);

57 a12 = (n(ii)-1)*(n(ii)+1);

58 a22 = (n(ii)+1)*(2*n(ii)+1);

59 A = [a11, a12; a12, a22]/6/n(ii);

60 lhs(ii:ii+1,ii:ii+1) = lhs(ii:ii+1,ii:ii+1) + A;

61

62 b = lhs(1:ii+1,1:ii+1) \ ([S(1:ii)' - R(1:ii)'; 0] + [0; R(1:ii)']);
63

64 yest = interp1q(x(1:ii+1), b, (x(1):x(ii+1))');
65 prefix_cost = norm(y(x(1):x(ii+1)) - yest,2);

66

67 if prefix_cost > bestcost

68 return;

69 end

70

71 if ii == N

72 bestcost = prefix_cost;

73 bestx = x;

74 besty = b;

75 return;

76 end

77 end

78

79 if ii == N-1

80 recurse(N);

81 elseif ii+2 <= numel(givenx)

82 % allows evaluation using predetermined changepoints instead of

83 % performing search

A.3. VIVA IMPLEMENTATION 81

84 x(ii+2) = givenx(ii+2);

85 recurse(ii+1);

86 else

87 lhsbefore = lhs;

88 for jj = x(ii+1):x(end)-N+ii

89 x(ii+2) = jj+1;

90 recurse(ii+1);

91 lhs = lhsbefore;

92 end

93 end

94 end

95 end

A.3. VIVA Implementation

A.3.1. Piecewise-Constant State Update and Branch

Listing A.6. Piecewise-Constant State Update and Branch

1 using System;

2

3 namespace viva.PiecewiseConstant

4 {

5 using Coordinate = System.Collections.Generic.KeyValuePair<uint, double>;

6

7 public class AperiodicState : IAperiodicState<AperiodicState>

8 {

9 uint j;

10 double n;

11 double t;

12 double S;

13 double S2;

14 double prior_residual, total_residual;

15 double max_deficit;

16 ImmutableList<Coordinate> hist;

17

18 public AperiodicState()

19 {

20 }

21

22 public void Init(SampleData s0)

23 {

24 n = s0.weight;

25 t = s0.t;

26 S = s0.weightedValue;

27 S2 = s0.weightedSquared;

A.3. VIVA IMPLEMENTATION 82

28 /* these are all the default state

29 prior_residual = 0.0;

30 hist = null;

31 max_deficit = 0.0;

32 * */

33 }

34

35 public AperiodicState(SolverTags.StepTypeContinue unused,

36 AperiodicState state, SampleData sk)

37 {

38 j = state.j;

39 t = state.t;

40 n = state.n + sk.weight;

41 S = state.S + sk.weightedValue;

42 S2 = state.S2 + sk.weightedSquared;

43

44 prior_residual = state.prior_residual;

45 max_deficit = state.max_deficit;

46

47 hist = state.hist;

48

49 total_residual = prior_residual + S2 - S * S / n;

50 }

51

52 public AperiodicState Continue(SampleData sk)

53 {

54 return new AperiodicState(SolverTags.Continue, this, sk);

55 }

56

57 public AperiodicState(SolverTags.StepTypeBranch unused,

58 AperiodicState state,

59 uint k, double tk, double branch_cost)

60 {

61 j = k;

62 t = tk;

63 n = 0;

64 S = 0.0;

65 S2 = 0.0;

66

67 prior_residual = state.total_residual + branch_cost;

68 total_residual = prior_residual;

69 max_deficit = state.max_deficit;

70

71 hist = new Coordinate(state.j, state.S / state.n).Cons(state.hist);

72 }

73

74 public AperiodicState Branch(uint k, double tk, double branch_cost)

A.3. VIVA IMPLEMENTATION 83

75 {

76 return

77 new AperiodicState(SolverTags.Branch, this, k, tk, branch_cost);

78 }

79

80 public Func<AperiodicState, bool> Dominates(double branch_cost)

81 {

82 return delegate (AperiodicState candidate)

83 {

84 return candidate.TotalResidual

85 >= this.TotalResidual + branch_cost;

86 };

87 }

88

89 public Func<AperiodicState, bool> DominatesIfBranch(double branch_cost)

90 {

91 return delegate (AperiodicState candidate)

92 {

93 return candidate.TotalResidual > this.TotalResidual;

94 };

95 }

96

97 public void MarkDeficit(double best_residual)

98 {

99 if (total_residual > best_residual + max_deficit)

100 max_deficit = total_residual - best_residual;

101 }

102 public double MaxDeficit { get { return max_deficit; } }

103

104 public uint PathLength { get { if (hist == null) return 0;

105 return hist.Length + 1; } }

106

107 public double TotalResidual{ get { return total_residual; } }

108 public uint SegmentEdge { get { return j; } }

109 public Coordinate[] Path(uint k, double tk)

110 {

111 return new Coordinate(j, S/n).Cons(hist).ToArray();

112 }

113

114 public double[] Estimate(double t)

115 {

116 if (t > this.t && n > 0)

117 return new[] { S / n };

118

119 for(var segment = hist; segment != null; segment = segment.pred) {

120 if (t > segment.Value.Key)

121 return new[] { segment.Value.Value };

A.3. VIVA IMPLEMENTATION 84

122 }

123

124 return new [] { double.NaN };

125 }

126 }

127 }

A.3.2. Piecewise-Linear State Update and Branch

Listing A.7. Piecewise-Linear State Update and Branch

1 using System;

2

3 namespace viva.PiecewiseLinear

4 {

5 using Coordinate = System.Collections.Generic.KeyValuePair<uint, double>;

6

7 public class AperiodicState : IAperiodicState<AperiodicState>

8 {

9 internal struct Summary

10 {

11 public int histID;

12 public uint j2;

13 public float chi2, nu;

14 }

15

16 uint j1, j2;

17 double n12, n23;

18 double t1, t2;

19 double T_12, T_23;

20 double T2_12, T2_23;

21 double S_12, S_23;

22 double S2_12, S2_23;

23 double R_12, R_23;

24 double prior_residual, total_residual;

25 double chi1, chi2, nu;

26 double max_deficit;

27 bool would_prune;

28 ImmutableList<Coordinate> hist;

29

30 public AperiodicState()

31 {

32 }

33

34 public void Init(SampleData s0)

35 {

36 j1 = j2 = s0.k;

37 n23 = s0.weight;

A.3. VIVA IMPLEMENTATION 85

38 t1 = t2 = s0.t;

39 S_23 = s0.weightedValue;

40 S2_23 = s0.weightedSquared;

41 /* these are all the default state

42 n12 = 0.0;

43 T_12 = T_23 = 0.0;

44 T2_12 = T2_23 = 0.0;

45 S_12 = 0.0;

46 S2_12 = 0.0;

47 R_12 = R_23 = 0.0;

48 chi1 = 0.0;

49 prior_residual = 0.0;

50 hist = null;

51 chi2 = nu = 0.0;

52 max_deficit = 0.0;

53 would_prune = false;

54 * */

55 }

56

57 public AperiodicState(SolverTags.StepTypeContinue unused,

58 AperiodicState state, SampleData sk)

59 {

60 j1 = state.j1;

61 j2 = state.j2;

62 t1 = state.t1;

63 t2 = state.t2;

64 double t23 = sk.t - t2;

65 double t13 = sk.t - t1;

66 n12 = state.n12;

67 n23 = state.n23 + sk.weight;

68 T_12 = state.T_12;

69 T_23 = state.T_23 + t23 * sk.weight;

70 T2_12 = state.T2_12;

71 T2_23 = state.T2_23 + t23 * t23 * sk.weight;

72 S_12 = state.S_12;

73 S_23 = state.S_23 + sk.weightedValue;

74 S2_12 = state.S2_12;

75 S2_23 = state.S2_23 + sk.weightedSquared;

76 R_12 = state.R_12;

77 R_23 = state.R_23 + t23 * sk.weightedValue;

78

79 chi1 = state.chi1;

80 prior_residual = state.prior_residual;

81 max_deficit = state.max_deficit;

82 would_prune = state.would_prune;

83

84 hist = state.hist;

A.3. VIVA IMPLEMENTATION 86

85

86 SolveHelper();

87 }

88

89 public AperiodicState Continue(SampleData sk)

90 {

91 return new AperiodicState(SolverTags.Continue, this, sk);

92 }

93

94 private void SolveHelper()

95 {

96 double t12 = t2 - t1;

97 double terma = 0.0;

98 if (n12 > 0)

99 terma += T2_12 / t12 / t12;

100 double a11 = terma + n23;

101 double a12 = T_23;

102 double a22 = T2_23;

103

104 double b1 = chi1 * terma + S_23;

105 if (n12 > 0)

106 {

107 b1 -= chi1 * T_12 / t12;

108 b1 += R_12 / t12;

109 }

110 double b2 = R_23;

111

112 double det = (a11 * a22 - a12 * a12);

113 if (Math.Abs(det) > 1e-15)

114 {

115 double idet = 1.0 / det;

116 chi2 = (a22 * b1 - a12 * b2) * idet;

117 nu = (a11 * b2 - a12 * b1) * idet;

118 }

119 else

120 {

121 chi2 = S_23 / n23;

122 nu = 0;

123 }

124

125 double residual_term12 = Residual12();

126 double residual_term23 = Residual23();

127 // these terms can't be negative, but

128 // sometimes due to rounding error the computations are

129 total_residual = prior_residual + Math.Max(0, residual_term12)

130 + Math.Max(0, residual_term23);

131 }

A.3. VIVA IMPLEMENTATION 87

132

133 private double Residual12()

134 {

135 if (n12 <= 0)

136 return 0.0;

137

138 double termb = (chi2 - chi1) / (t2 - t1);

139 return S2_12

140 - 2 * chi1 * S_12

141 + chi1 * chi1 * n12

142 + 2 * chi1 * termb * T_12

143 + termb * termb * T2_12

144 - 2 * termb * R_12;

145 }

146

147 private double Residual23()

148 {

149 double result = S2_23 - 2 * chi2 * S_23

150 + chi2 * chi2 * n23 - nu * nu * T2_23;

151 return Math.Max(0, result);

152 }

153

154 public AperiodicState(SolverTags.StepTypeBranch unused,

155 AperiodicState state,

156 uint k, double tk, double branch_cost)

157 {

158 j1 = state.j2;

159 j2 = k;

160 t1 = state.t2;

161 t2 = tk;

162 n12 = state.n23;

163 n23 = 0;

164 T_12 = state.T_23;

165 T_23 = 0.0;

166 T2_12 = state.T2_23;

167 T_23 = 0.0;

168 S_12 = state.S_23;

169 S_23 = 0.0;

170 S2_12 = state.S2_23;

171 S2_23 = 0.0;

172 R_12 = state.R_23;

173 R_23 = 0.0;

174 chi1 = state.chi2;

175 chi2 = state.chi2 + state.nu * (t2 - t1);

176

177 prior_residual = state.prior_residual + branch_cost

178 + Math.Max(0,state.Residual12());

A.3. VIVA IMPLEMENTATION 88

179 total_residual = state.total_residual + branch_cost;

180 max_deficit = state.max_deficit;

181 would_prune = state.would_prune;

182

183 hist = new Coordinate(j1, chi1).Cons(state.hist);

184 }

185

186 public AperiodicState Branch(uint k, double t, double branch_cost)

187 {

188 return

189 new AperiodicState(SolverTags.Branch, this, k, t, branch_cost);

190 }

191

192 public Func<AperiodicState, bool> Dominates(double branch_cost)

193 {

194 if (would_prune) Program.ReportFalsePrune();

195 return delegate (AperiodicState candidate)

196 {

197 if (candidate.TotalResidual >= this.TotalResidual + 2 * branch_cost)

198 return true;

199 return false;

200 };

201 }

202 public Func<AperiodicState, bool> DominatesIfBranch(double branch_cost)

203 {

204 return delegate(AperiodicState candidate)

205 {

206 if (candidate.TotalResidual >

207 this.TotalResidual + branch_cost) return true;

208 return false;

209 };

210 }

211

212 public void MarkDeficit(double best_residual)

213 {

214 if (total_residual > best_residual + max_deficit)

215 max_deficit = total_residual - best_residual;

216 }

217 public double MaxDeficit { get { return max_deficit; } }

218

219 public uint PathLength { get { if (hist == null) return 0;

220 return hist.Length + 2; } }

221

222 public double TotalResidual { get { return total_residual; } }

223 public uint SegmentEdge { get { return j2; } }

224 public Coordinate[] Path(uint k, double tk)

225 {

A.3. VIVA IMPLEMENTATION 89

226 if (would_prune) Program.ReportFalsePruneOptimum();

227 return new Coordinate(k, chi2 + nu * (tk - t2))

228 .Cons(new Coordinate(j2, chi2)

229 .Cons(hist)).ToArray();

230 }

231

232 internal void MarkPotentialPrune()

233 {

234 would_prune = true;

235 }

236

237 public double[] Estimate(double t)

238 {

239 if (t > t2)

240 return new[] { chi2 + nu * (t - t2), nu };

241

242 double chileft = chi1;

243 double chiright = chi2;

244 double tleft = t1;

245 double tright = t2;

246 var segment = hist;

247 while (true) {

248 double slope = (chiright - chileft) / (tright - tleft);

249 if (t > tleft)

250 return new [] { chileft + slope * (t - tleft), slope };

251

252 if (segment == null)

253 return new[] { double.NaN, double.NaN };

254

255 chiright = chileft;

256 tright = tleft;

257 chileft = segment.Value.Value;

258 tleft = segment.Value.Key;

259 segment = segment.pred;

260 }

261 }

262

263 internal ImmutableList<Coordinate> GetResults(ref Summary s)

264 {

265 s.j2 = j2;

266 s.chi2 = (float)chi2;

267 s.nu = (float)nu;

268 return hist;

269 }

270 }

271 }

A.3. VIVA IMPLEMENTATION 90

A.3.3. Pruned Depth-First Search

Listing A.8. Pruned Depth-First Search

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4

5 using System.Threading.Tasks;

6

7 namespace viva

8 {

9 using CancellationToken = System.Threading.CancellationToken;

10

11 static class ExtensionMethods

12 {

13 public static T Minimizer<T>(this IEnumerable<T> seq,

14 Func<T, double> selector)

15 {

16 var best = seq.First();

17 var best_value = selector(best);

18

19 foreach (T other in seq.Skip(1))

20 {

21 var other_value = selector(other);

22 if (other_value < best_value)

23 {

24 best_value = other_value;

25 best = other;

26 }

27 }

28

29 return best;

30 }

31 }

32

33 public class Solvers

34 {

35 public double StepPenalty = 25.0;

36 public int StepInterval = 1;

37 public IOnlineEstimatesSink online;

38 public uint[] track;

39

40 public enum Branching

41 {

42 PruneOnly,

43 MaximumOneBranch,

44 OneBranchPerPivot

A.3. VIVA IMPLEMENTATION 91

45 }

46

47 public Branching BranchingPolicy = Branching.MaximumOneBranch;

48

49 public enum Weighting

50 {

51 Uniform,

52 Autocorrelation,

53 }

54

55 public Weighting WeightingPolicy = Weighting.Uniform;

56

57 public int TimeoutMilliseconds = 100000;

58

59 protected async Task<KeyValuePair<uint, double>[]> Iteration<tState>(

60 Action<SolverProgressEventArgs<tState>> cb,

61 Func<SampleData, Task<bool>> sampler)

62 where tState : class, IAperiodicState<tState>, new()

63 {

64 var pop = new List<tState>();

65 tState tracking = new tState();

66 SampleData sample = new SampleData();

67 await sampler(sample);

68 tracking.Init(sample);

69 pop.Add(tracking);

70 int iTrack = 1;

71 int rankTrack = 0;

72

73 int largestPopulation = 1;

74

75 var best = tracking;

76 if (online != null)

77 foreach (float tdelay in online.Delays) {

78 online.AppendEstimates(best.Estimate(sample.t - tdelay));

79 }

80

81 var elapsed = new System.Diagnostics.Stopwatch();

82 while (await sampler(sample))

83 {

84 elapsed.Restart();

85 var next_pop = new List<tState>();

86 next_pop.Capacity = pop.Count + 1;

87

88 var step_best = best.Continue(sample);

89 var best_residual = step_best.TotalResidual;

90 var tracking_residual = 0.0;

91 tState nextTracking = null;

A.3. VIVA IMPLEMENTATION 92

92

93 tState c;

94 var filter_all = step_best.Dominates(StepPenalty);

95 foreach (var item in pop) {

96 if (filter_all(item)) continue;

97 c = item.Continue(sample);

98 if (filter_all(c)) continue;

99 next_pop.Add(c);

100 c.MarkDeficit(best_residual);

101

102 if (ReferenceEquals(item, tracking)) nextTracking = c;

103 }

104 best = next_pop.Minimizer(a => a.TotalResidual);

105 if ((sample.k + 1) % StepInterval == 0)

106 {

107 switch (BranchingPolicy) {

108 case Branching.MaximumOneBranch: {

109 next_pop.Add(c = best.Branch(sample.k,

110 sample.t,

111 StepPenalty));

112 c.MarkDeficit(best_residual);

113

114 if (track != null && sample.k == track[iTrack]) {

115 nextTracking = c;

116 iTrack++;

117 }

118 }

119 break;

120 case Branching.OneBranchPerPivot: {

121 int[] best_by_changepoint = new int[sample.k + 1];

122 int[] loc_by_changepoint = new int[sample.k + 1];

123 var continue_pop = next_pop;

124 next_pop = new List<tState>();

125 next_pop.Capacity = continue_pop.Count * 2;

126 var filter_branches = best.DominatesIfBranch(StepPenalty);

127 int continue_index = 0;

128 foreach (var item in continue_pop) {

129 if (elapsed.ElapsedMilliseconds > TimeoutMilliseconds)

130 throw new TimeoutException();

131 ++continue_index;

132 next_pop.Add(item);

133 if (filter_branches(item)) continue;

134

135 int existing = best_by_changepoint[item.SegmentEdge];

136 if (existing != 0) {

137 if (continue_pop[existing - 1].TotalResidual

138 < item.TotalResidual)

A.3. VIVA IMPLEMENTATION 93

139 continue;

140 }

141 c = item.Branch(sample.k, sample.t, StepPenalty);

142 if (existing != 0) {

143 next_pop[loc_by_changepoint[item.SegmentEdge]] = c;

144 }

145 else {

146 loc_by_changepoint[item.SegmentEdge] = next_pop.

Count;

147 next_pop.Add(c);

148 }

149 best_by_changepoint[item.SegmentEdge] = continue_index;

150 }

151 }

152 break;

153 case Branching.PruneOnly: {

154 var continue_pop = next_pop;

155 next_pop = new List<tState>();

156 next_pop.Capacity = continue_pop.Count * 2;

157 var filter_branches = best.DominatesIfBranch(StepPenalty);

158 foreach (var item in continue_pop) {

159 if (elapsed.ElapsedMilliseconds > TimeoutMilliseconds)

160 throw new TimeoutException();

161 next_pop.Add(item);

162 if (filter_branches(item)) continue;

163 c = item.Branch(sample.k, sample.t, StepPenalty);

164 next_pop.Add(c);

165 }

166 }

167 break;

168 }

169 }

170

171 pop = next_pop;

172 if (pop.Count > largestPopulation)

173 largestPopulation = pop.Count;

174

175 if (online != null)

176 foreach(float tdelay in online.Delays)

177 {

178 online.AppendEstimates(best.Estimate(sample.t - tdelay));

179 }

180

181 tracking = nextTracking;

182 if (track != null && tracking != null) {

183 tracking_residual = tracking.TotalResidual;

184 rankTrack = pop.Count(item =>

A.3. VIVA IMPLEMENTATION 94

185 item.TotalResidual < tracking_residual);

186 }

187

188 if (cb != null)

189 cb(new SolverProgressEventArgs<tState> {

190 Leader = best,

191 Step = sample.k,

192 Time = sample.t,

193 PopulationSize = pop.Count,

194 PruningStandard = best_residual,

195 Tracked = tracking,

196 TrackedRank = rankTrack,

197 TrackedResidual = tracking_residual,

198 PathLength = best.PathLength

199 });

200 }

201

202 System.Diagnostics.Trace.WriteLine(

203 "final cost = " + best.TotalResidual.ToString());

204 System.Diagnostics.Trace.WriteLine(

205 "max deficit = " + best.MaxDeficit.ToString());

206 System.Diagnostics.Trace.WriteLine(

207 "largest candidate population = " + largestPopulation.ToString());

208 return best.Path(sample.k, sample.t);

209 }

210 }

211

212 public class ArraySolvers : Solvers

213 {

214 public ArraySegment<float> y, t;

215 public CancellationToken cancel;

216

217 private Func<SampleData, Task<bool>> BuildSampler()

218 {

219 CancellationToken cancel = this.cancel;

220 switch (WeightingPolicy) {

221 case Weighting.Uniform: {

222 uint k = 0;

223 return async delegate(SampleData result)

224 {

225 cancel.ThrowIfCancellationRequested();

226

227 if (k >= y.Count) return false;

228 var t_k = t.Array[t.Offset + k];

229 var y_k = y.Array[y.Offset + k];

230 result.k = k++;

231 result.t = t_k;

A.3. VIVA IMPLEMENTATION 95

232 result.y = y_k;

233 result.weight = 1.0;

234 result.weightedValue = y_k;

235 result.weightedSquared = y_k * y_k;

236 return true;

237 };

238 }

239

240 case Weighting.Autocorrelation: {

241 uint k = 0;

242

243 int support = 10;

244 int effective_support = 0;

245 double isupp = 1.0;

246

247 double sum = 0, energy = 0;

248 int j = 0;

249 for (; j < support; ++j) {

250 var y_j = y.Array[y.Offset + j];

251 sum += y_j;

252 energy += y_j * y_j;

253 effective_support++;

254 }

255

256 return async delegate(SampleData result)

257 {

258 cancel.ThrowIfCancellationRequested();

259

260 if (k >= y.Count) return false;

261

262 if (k < support) {

263 effective_support++;

264 isupp = 1.0 / effective_support;

265 }

266 else {

267 var y_jout = y.Array[y.Offset + k - support];

268 sum -= y_jout;

269 energy -= y_jout * y_jout;

270 }

271 if (k >= y.Count - support) {

272 effective_support--;

273 isupp = 1.0 / effective_support;

274 }

275 else {

276 var y_jin = y.Array[y.Offset + k + support];

277 sum += y_jin;

278 energy += y_jin * y_jin;

A.3. VIVA IMPLEMENTATION 96

279 }

280 var local_var = (energy - sum * sum * isupp) * isupp;

281 var confidence = 1.0 / (1.0 + local_var);

282

283 var y_k = y.Array[y.Offset + k];

284 var t_k = t.Array[t.Offset + k];

285

286 result.k = k++;

287 result.t = t_k;

288 result.y = y_k;

289 result.weight = confidence;

290 result.weightedValue = y_k * confidence;

291 result.weightedSquared = y_k * y_k * confidence;

292 return true;

293 };

294 }

295 default:

296 throw new InvalidOperationException("Invalid WeightingPolicy");

297 }

298 }

299

300 public KeyValuePair<uint, double>[] OptimizeAperiodic<tState>(

301 Action<SolverProgressEventArgs<tState>> cb)

302 where tState : class, IAperiodicState<tState>, new()

303 {

304 return Iteration(cb, BuildSampler()).Result;

305 }

306

307 public KeyValuePair<uint, double>[] OptimizeAperiodic<tState>()

308 where tState : class, IAperiodicState<tState>, new()

309 {

310 return OptimizeAperiodic<tState>(delegate { });

311 }

312 }

313 }

97

APPENDIX B

Solutions to Least-Squares Subproblems

As VIVA performs basis set pursuit via pruned breadth-first search, computing the cost of
each candidate path requires solving a least-squares optimization problem with fixed timing.

Derivations for the least-squares solution and associated integral-square residual error are
given for each of the subproblems encountered. These least-squares optimization algorithms can
also be used when the changepoint timings are provided by another method, such as brute-force
search, convex `1 estimation, or from the “transmitter” of a synthesized signal used in Monte
Carlo simulation.

Additional notes and derivations covering startup, continuous-time, and alternate model
formulations (change-of-variables) may be obtained at the companion website:

http://www.sparxeng.com/viva/

B.1. Minimum-Residual Constant Segment Estimate

The most complex case is that of arbitrary timing and weights. The general result may be
adapted to the simpler models, for example by setting wi = 1.0 everywhere to achieve uniform
weighting, or tn = nTs to achieve periodic sampling without erasure.

The system is a piecewise-constant signal corrupted by additive white Gaussian noise during
measurement. Due to separability of the disjoint curve, it is sufficient to consider a single segment
of the signal, having constant value Xk and bounded in time.

(B.1a) x(t) = Xk ∀Tk ≤ t < Tk+1

(B.1b) y(t) = x(t) + w(t)

(B.1c) w ∼ N (0, σ2)

B.1.1. Least-Squares Solution

The general integral-square residual cost function for an estimator χ of the original signal
Xk is given by

(B.2a)

εk(χ) =
∑
i

Tk<ti≤Tk+1

wi (x(ti)− yi)
2

=
∑
i

Tk<ti≤Tk+1

wi (χ− yi)
2

This quadratic function is convex, therefore there is a unique critical point, the minimizer
χ̃k.

http://www.sparxeng.com/viva/

B.1. MINIMUM-RESIDUAL CONSTANT SEGMENT ESTIMATE 98

(B.3a)
d

dχ
εk(χ)

∣∣∣∣
χ=χ̃k

= 0

(B.3b)
∑
i

Tk<ti≤Tk+1

d

dχ
wi (χ− yi)

2

∣∣∣∣
χ=χ̃k

= 0

(B.3c) 2
∑
i

Tk<ti≤Tk+1

wi (χ̃k − yi) = 0

(B.3d)
∑
i

Tk<ti≤Tk+1

wiχ̃k −
∑
i

Tk<ti≤Tk+1

wiyi = 0

(B.3e) χ̃k

∑
i

Tk<ti≤Tk+1

wi =
∑
i

Tk<ti≤Tk+1

wiyi

(B.3f) χ̃k =

∑
i

Tk<ti≤Tk+1

wiyi

∑
i

Tk<ti≤Tk+1

wi

Writing this in terms of state variables (iterative update being described in), a simple
expression is obtained:

(B.4a) χ̃k =
Sw(Tk, Tk+1)

Nw(Tk, Tk+1)

where

(B.4b) Nc(Ta, Tb) =
∑
i

Ta<ti≤Tb

ci

and

(B.4c) Sc(Ta, Tb) =
∑
i

Ta<ti≤Tb

ciyi

B.1.2. Residual Error

Residual integral-square error appears in the bicriterion metric being minimized as well as
the dynamic programming pruning test (Equations 3.8 and 3.11). In fact, the actual least-squares
minimizer only needs to be calculated for the optimal changepoint timing, while the minimum
error term needs to be calculated for every candidate. Therefore a direct expression for residual
error is desirable.

(B.5a)

εk(χ̃k) =
∑
i

Tk<ti≤Tk+1

wi (χ̃k − yi)
2

=
∑
i

Tk<ti≤Tk+1

wi (χ̃k − yi) χ̃k −
∑
i

Tk<ti≤Tk+1

wi (χ̃k − yi) yi

= χ̃k

∑
i

Tk<ti≤Tk+1

wi (χ̃k − yi)− χ̃k

∑
i

Tk<ti≤Tk+1

wiyi +
∑
i

Tk<ti≤Tk+1

wiy
2
i

but the first term is zero from Equation B.3c and therefore

(B.5b) εk(χ̃k) =
∑
i

Tk<ti≤Tk+1

wiy
2
i − χ̃k

∑
i

Tk<ti≤Tk+1

wiyi

B.2. MINIMUM-RESIDUAL POLYLINE ESTIMATE 99

When expressed in terms of the state variables, this becomes:

(B.6a) εk(χ̃k) = S2
w(Tk, Tk+1)−

Sw(Tk, Tk+1)
2

Nw(Tk, Tk+1)

where

(B.6b) Sp
c (Ta, Tb) =

∑
i

Ta<ti≤Tb

ciy
p
i

Note that Sp
c (Tk, Tk+1) 6= Sc(Tk, Tk+1)

p in general

B.2. Minimum-Residual Polyline Estimate

B.2.1. Least-Squares Solution

In the case of polyline curve fitting (conjoined piecewise-linear segments), each estimated
point is an affine combination of the two estimated vertices which bracket it.

(B.7) x(t) =
χk (Tk+1 − t) + χk+1 (t− Tk)

Tk+1 − Tk
∀k : Tk ≤ t ≤ Tk+1

As before, the problem is solved for arbitrary timing and weights, obtaining a general result
which may be adapted to simpler cases.

The general integral-square residual cost function may be grouped into terms corresponding
to each segment:

T1
χ1

T2
χ2

T3
χ3

T4
χ4

T5
χ5

Figure B.1. Fit using many conjoined piecewise-linear segments

B.2. MINIMUM-RESIDUAL POLYLINE ESTIMATE 100

(B.8a)

ε(χ) =
∑
i

wi (x(ti)− yi)
2

= w1 (χ1 − y1)
2
+

N−1∑
k=1

εk(χ)

where

(B.8b)

εk(χ) =
∑
i

Tk<ti≤Tk+1

wi (x(ti)− yi)
2

=
∑
i

Tk<ti≤Tk+1

wi

(
χk(Tk+1 − ti) + χk+1(ti − Tk)

Tk+1 − Tk
− yi

)2

These terms have partial derivatives

(B.9a)

1

2

∂

∂χk
εk =

�
��1

2

∑
i

Tk<ti≤Tk+1

�2wi (x(ti)− yi)
∂

∂χk
(x(ti)− yi)

=
∑
i

Tk<ti≤Tk+1

wi(x(ti)− yi)
Tk+1 − ti
Tk+1 − Tk

=

∑
i

Tk<ti≤Tk+1

wix(ti)(Tk+1 − ti)−
∑
i

Tk<ti≤Tk+1

wiyi(Tk+1 − ti)

Tk+1 − Tk

but

(B.9b)∑
i

Tk<ti≤Tk+1

wi(ti − Tk)(Tk+1 − ti) =
∑
i

Tk<ti≤Tk+1

wi(ti − Tk)(Tk+1 − Tk)−
∑
i

Tk<ti≤Tk+1

wi(ti − Tk)2

= (Tk+1 − Tk)Tc(Tk, Tk+1)− T 2
c (Tk, Tk+1)

and

B.2. MINIMUM-RESIDUAL POLYLINE ESTIMATE 101

(B.9c)∑
i

Tk<ti≤Tk+1

wi(Tk+1 − ti)
2 =

∑
i

Tk<ti≤Tk+1

wi(Tk+1− ti)(Tk+1−Tk)−
∑
i

Tk<ti≤Tk+1

wi(Tk+1− ti)(ti−Tk)

= (Tk+1 − Tk)
∑
i

Tk<ti≤Tk+1

wi(Tk+1 − ti)

−
(
(Tk+1 − Tk)Tc(Tk, Tk+1)− T 2

c (Tk, Tk+1)
)

= (Tk+1 − Tk)
∑
i

Tk<ti≤Tk+1

wi(Tk+1 − Tk)

− (Tk+1 − Tk)
∑
i

Tk<ti≤Tk+1

wi(ti − Tk)

+ T 2
c (Tk, Tk+1)− (Tk+1 − Tk)Tc(Tk, Tk+1)

= (Tk+1 − Tk)2
∑
i

Tk<ti≤Tk+1

wi − (Tk+1 − Tk)Tc(Tk, Tk+1)

+ T 2
c (Tk, Tk+1)− (Tk+1 − Tk)Tc(Tk, Tk+1)

= (Tk+1 − Tk)2Nc(Tk, Tk+1) + T 2
c (Tk, Tk+1)− 2(Tk+1 − Tk)Tc(Tk, Tk+1)

therefore

(B.9d)∑
i

Tk<ti≤Tk+1

wix(ti)(Tk+1 − ti) =
∑
i

Tk<ti≤Tk+1

wi
χk (Tk+1 − ti) + χk+1 (ti − Tk)

Tk+1 − Tk
(Tk+1 − ti)

=
χk

Tk+1 − Tk

∑
i

Tk<ti≤Tk+1

wi(Tk+1 − ti)
2

+
χk+1

Tk+1 − Tk

∑
i

Tk<ti≤Tk+1

wi(ti − Tk)(Tk+1 − ti)

= χk

[
(Tk+1 − Tk)Nc(Tk, Tk+1)− 2Tc(Tk, Tk+1) +

T 2
c (Tk, Tk+1)

Tk+1 − Tk

]
+ χk+1

[
Tc(Tk, Tk+1)−

T 2
c (Tk, Tk+1)

Tk+1 − Tk

]
also

(B.9e)∑
i

Tk<ti≤Tk+1

wiyi(Tk+1 − ti) =
∑
i

Tk<ti≤Tk+1

wiyi(Tk+1 − Tk)−
∑
i

Tk<ti≤Tk+1

wiyi(ti − Tk)

= (Tk+1 − Tk)Sc(Tk, Tk+1)−Rc(Tk, Tk+1)

so that

B.2. MINIMUM-RESIDUAL POLYLINE ESTIMATE 102

(B.9f)

1

2

∂

∂χk
εk =

1

Tk+1 − Tk

(
χk

[
(Tk+1 − Tk)Nc(Tk, Tk+1)− 2Tc(Tk, Tk+1) +

T 2
c (Tk, Tk+1)

Tk+1 − Tk

]
+ χk+1

[
Tc(Tk, Tk+1)−

T 2
c (Tk, Tk+1)

Tk+1 − Tk

]
+ (Tk+1 − Tk)Sc(Tk, Tk+1)−Rc(Tk, Tk+1)

)
= χk

[
Nc(Tk, Tk+1)− 2

Tc(Tk, Tk+1)

Tk+1 − Tk
+

T 2
c (Tk, Tk+1)

(Tk+1 − Tk)2

]
+ χk+1

[
Tc(Tk, Tk+1)

Tk+1 − Tk
− T 2

c (Tk, Tk+1)

(Tk+1 − Tk)2

]
+ Sc(Tk, Tk+1)−

Rc(Tk, Tk+1)

Tk+1 − Tk

In similar fashion,

(B.10a)

∑
i

Tk<ti≤Tk+1

wix(ti)(ti − Tk) =
∑
i

Tk<ti≤Tk+1

wi
χk (Tk+1 − ti) + χk+1 (ti − Tk)

Tk+1 − Tk
(ti − Tk)

=
χk

Tk+1 − Tk

∑
i

Tk<ti≤Tk+1

wi(Tk+1 − ti)(ti − Tk)

+
χk+1

Tk+1 − Tk

∑
i

Tk<ti≤Tk+1

wi(ti − Tk)2

= χk

[
Tc(Tk, Tk+1)−

T 2
c (Tk, Tk+1)

Tk+1 − Tk

]
+ χk+1

T 2
c (Tk, Tk+1)

Tk+1 − Tk

so that

(B.10b)

1

2

∂

∂χk+1
εk =

�
��1

2

∑
i

Tk<ti≤Tk+1

�2wi (x(ti)− yi)
∂

∂χk+1
(x(ti)− yi)

=
∑
i

Tk<ti≤Tk+1

wi(x(ti)− yi)
ti − Tk

Tk+1 − Tk

=

∑
i

Tk<ti≤Tk+1

wix(ti)(ti − Tk)−
∑
i

Tk<ti≤Tk+1

wiyi(ti − Tk)

Tk+1 − Tk

= χk

[
Tc(Tk, Tk+1)

Tk+1 − Tk
− T 2

c (Tk, Tk+1)

(Tk+1 − Tk)2

]
+ χk+1

T 2
c (Tk, Tk+1)

(Tk+1 − Tk)2
− Rc(Tk, Tk+1)

Tk+1 − Tk

The critical point occurs when

(B.11) ∇χ′ε(χ′)|χ′=χ̃ = 0

which describes a system of linear equations. There is an iterated case (vertex surrounded
by two segments) and two base cases for the end vertices.

The first case, which applies only when the first vertex is being optimized, is given by

B.2. MINIMUM-RESIDUAL POLYLINE ESTIMATE 103

(B.12)

0 =
1

2

∂

∂χ′
1

ε(χ′)|χ′=χ̃

=
1

2

∂

∂χ′
1

w1 (χ
′
1 − y1)

2 |χ′=χ̃ +
1

2

∂

∂χ′
1

ε1(χ
′)|χ′=χ̃

=
�
��1

2
�2w1(χ̃1 − y1) + χ̃1

[
Tc(T1, T2)
T2 − T1

− T 2
c (T1, T2)

(T2 − T1)2

]
+ χ̃2

T 2
c (T1, T2)

(T2 − T1)2
− Rc(T1, T2)

T2 − T1
which yields the equation

(B.13) =
�
��1

2
�2w1(χ1 − y1) + χ̃1

[
Tc(T1, T2)
T2 − T1

− T 2
c (T1, T2)

(T2 − T1)2

]
+ χ̃2

T 2
c (T1, T2)

(T2 − T1)2
− Rc(T1, T2)

T2 − T1
When the segment-freeze heuristic is being used, this equation is replaced by an explicit

value for χ̃1.
The final case is

(B.14)

0 =
1

2

∂

∂χ′
N

ε(χ′)|χ′=χ̃

=
1

2

∂

∂χ′
N

εN−1(χ
′)|χ′=χ̃

= χ̃N−1

[
Tc(TN−1, TN)

TN − TN−1
− T 2

c (TN−1, TN)

(TN − TN−1)2

]
+ χ̃N

T 2
c (TN−1, TN)

(TN − TN−1)2
− Rc(TN−1, TN)

TN − TN−1

which implies that

(B.15) χ̃N−1

[
Tc(TN−1, TN)

TN − TN−1
− T 2

c (TN−1, TN)

(TN − TN−1)2

]
+ χ̃N

T 2
c (TN−1, TN)

(TN − TN−1)2
=

Rc(TN−1, TN)

TN − TN−1

The iterated case is

(B.16)

0 =
1

2

∂

∂χ′
k

ε(χ′)|χ′=χ̃

=
1

2

∂

∂χ′
k

εk−1(χ
′)|χ′=χ̃ +

1

2

∂

∂χ′
k

εk(χ
′)|χ′=χ̃

= χ̃k−1

[
Tc(tk−1, tk)

tk − tk−1
− T 2

c (tk−1, tk)

(tk − tk−1)2

]
+ χ̃k

T 2
c (tk−1, tk)

(tk − tk−1)2
− Rc(tk−1, tk)

tk − tk−1

+ χ̃k

[
Nc(tk, tk+1)− 2

Tc(tk, tk+1)

tk+1 − tk
+

T 2
c (tk, tk+1)

(tk+1 − tk)2

]
+ χ̃k+1

[
Tc(tk, tk+1)

tk+1 − tk
− T 2

c (tk, tk+1)

(tk+1 − tk)2

]
+ Sc(tk, tk + 1))− Rc(tk, tk+1)

tk+1 − tk

while implies that

(B.17)

χ̃k−1

[
Tc(tk−1, tk)

tk − tk−1
− T 2

c (tk−1, tk)

(tk − tk−1)2

]
+ χ̃k

[
T 2
c (tk−1, tk)

(tk − tk−1)2
+Nc(tk, tk+1)− 2

Tc(tk, tk+1)

tk+1 − tk
+

T 2
c (tk, tk+1)

(tk+1 − tk)2

]
+ χ̃k+1

[
Tc(tk, tk+1)

tk+1 − tk
− T 2

c (tk, tk+1)

(tk+1 − tk)2

]
=

Rc(tk−1, tk)

tk − tk−1
− Sc(tk, tk + 1))

+
Rc(tk, tk+1)

tk+1 − tk

Equations B.13, B.17 (repeated), and B.15 form a tridiagonal linear system which may be
solved for χ̃, the vertex ordinates of the polyline of best fit.

104

APPENDIX C

Summary of measurement statistics

C.1. Continuous time

Rather than calculating using the entire sequence of noisy measurements, algorithm imple-
mentations need only calculate a few statistics. The continuous-time algorithms use measure-
ment, energy, and correlation integrals:

(C.1a) S(tA, tB) =

∫ tB

tA

y(τ) dτ

(C.1b) S2(tA, tB) =

∫ tB

tA

y(τ)2 dτ

(C.1c) R(tA, tB) =

∫ tB

tA

(τ − t1) y(τ) dτ

C.1.1. Recursive update

Often it is desirable to perform parameter estimation during data collection. In this case, a
recursive solution is advantageous, because when it exists, recursively using prior computations
requires less memory and processing than reevaluating the direct formula.

The following recurrence relationship holds for the continuous-time statistics.

(C.2a) Si(t+∆t) = Si(t) +

∫ t+∆t

t

y(τ)i dτ

C.1.2. Change of anchor time

For retrospective analysis, the ability to efficiently recalculate using different timing selections
is desired. The following relationships allow simple computation of the statistics from terms which
are independent of step time sequences:

(C.3a) Sm(tA, tB) = Sm(t0, tB)− Sm(t0, tA)

(C.3b) R(tA, tB) = R(t0, tB)−R(t0, tA)− (tA − t0)S(tA, tB)

Derivation:

(C.4a) Sm(tA, tB) =

∫ tB

tA

y(τ)m dτ

(C.4b) =

∫ tB

t0

y(τ)m dτ −
∫ tA

t0

y(τ)m dτ

(C.5a) R(tA, tB) =

∫ tB

tA

(τ − tA) y(τ) dτ

(C.5b) =

∫ tB

tA

(τ − t0) y(τ) dτ −
∫ tB

tA

(tA − t0) y(τ) dτ

(C.5c) =

∫ tB

t0

(τ − t0) y(τ) dτ −
∫ tA

t0

(τ − t0) y(τ) dτ − (tA − t0)

∫ tB

tA

y(τ) dτ

C.2. DISCRETE TIME 105

C.2. Discrete time

Discrete-time algorithms use measurement, energy, and correlation sums. An optional
weighting term ci was introduced in Equation 4.6.

(C.6a) Nc(tA, tB) =
∑

i|tA<ti≤tB

ci

(C.6b) Tc(tA, tB) =
∑

i|tA<ti≤tB

ci(ti − tA)

(C.6c) T 2
c (tA, tB) =

∑
i|tA<ti≤tB

ci(ti − tA)
2

(C.6d) Sc(tA, tB) =
∑

i|tA<ti≤tB

ciyi

(C.6e) S2
c (tA, tB) =

∑
i|tA<ti≤tB

ciy
2
i

(C.6f) Rc(tA, tB) =
∑

i|tA<ti≤tB

ci(ti − tA)yi

C.2.1. Recursive Update

In the periodically sampled case, where tn = nTs, let

(C.7a) (Si)n =
Si(tn)

Ts

(C.7b) (Si)n+1 = (Si)n + yin
and

(C.7c) x̃n =
Sn

n− n1

(C.7d) ε̃n =
(S2)n
n− n1

− x̃2
n

106

APPENDIX D

Linear Relaxations

Branch-and-bound is a technique for reducing the search space for the optimal solution to
an integer, binary, or mixed-integer program from the 2n distinct quadratic programs implied by
the n binary variables b1, b2, . . . , bn.

In particular, the optimal cost of the relaxed program, with having a subset K of the variables
b′k fixed

(D.1)

minimize ĉK = (x̂− y)
T
(x̂− y) + ζ1T b̂

subject to −x̂k + x̂k+1 = 0 ∀k ∈ {K|b′k = 0}
−x̂k + x̂k+1 −Mb̂k ≤ 0 ∀k /∈ K

x̂k − x̂k+1 −Mb̂k ≤ 0 ∀k /∈ K
x̂k = x′

k ∀k ∈ K

b̂k = b′k ∀k ∈ K

0 ≤ b̂k ∀k /∈ K

provides a lower bound for the optimal cost of all binary programs sharing the same values
of b′k for the set K.

(D.2) ĉK ≤ cK

Special attention will be given to the causal set

(D.3) K ≤κ = {k|k ≤ κ}
The causal set is particularly important because it allows online optimization at sample

number κ making maximal use of prior samples and, as will be shown, no future information is
required to do so.

Consider that each term of the goal function is non-negative.

Theorem 2. For finite yk, if x
′
≤κ,b

′
≤κ is any solution to

(D.4)

minimize c≤κ =
∑κ

k=0 (x
′
k − yk)

2
+ ζ

∑κ−1
k=0 b

′
k

subject to −x′
k + x′

k+1 −Mb′k ≤ 0 ∀k < κ
x′
k − x′

k+1 −Mb′k ≤ 0 ∀k < κ
b′k ∈ { 0, 1 } ∀k < κ

The choice of

(D.5) x̂k =

{
x′
k k ≤ κ

yk k > κ

leads to a solution to the relaxed problem D.1 which is:

a) feasible
b) optimal in the limit as M → ∞

Proof. The corresponding solution is

(D.6) b̂k =
1

M
|yk+1 − yk| , ∀κ ≤ k < N

a) Feasibility follows directly from the constraints.

D. LINEAR RELAXATIONS 107

b) Consider the cost function

(D.7a) ĉK = (x̂− y)
T
(x̂− y) + ζ1Tb′ + ζ1T b̂

which rearranges to

(D.7b)

ĉK =

N∑
k=0

(x̂k − yk)
2
+ ζ

N−1∑
k=0

b̂k

=

κ∑
k=0

(x̂k − yk)
2
+

N∑
k=κ+1

(x̂k − yk)
2
+ ζ

κ−1∑
k=0

b̂k + ζ

N−1∑
k=κ

b̂k

=

κ∑
k=0

(x′
k − yk)

2
+

N∑
k=κ+1

(x̂k − yk)
2
+ ζ

κ−1∑
k=0

b′k + ζ

N−1∑
k=κ

b̂k

(D.7c) ĉK = c≤κ +

N∑
k=κ+1

(x̂k − yk)
2
+ ζ

N−1∑
k=κ

b̂k

Non-negativity implies
(D.7d) ĉK ≥ c≤κ

By D.5 and D.6,

(D.7e) c̃K = c≤κ +

N∑
k=κ+1

(yk − yk)
2
+ ζ

N−1∑
k=κ

1

M
|yk+1 − yk|

Because yk are finite,

(D.7f) lim
M →∞

ζ

M

N−1∑
k =κ

|yk+1 − yk| = 0

so that

(D.8) c̃K → c≤κ

and since the lower bound is reached, optimality is assured. �

108

APPENDIX E

Small Polyline fitting examples

These figures provide additional examples small enough for brute force solution to accompany
the discussion in Sections 3.2 and 3.4.

0 100 200 300 400 500 600 700
−5

0

5

10

15

20

25

“Original” signal
“Measurement”

Figure E.1. Signal with “sloop” shape, with accompanying “measurement noise”

E. SMALL POLYLINE FITTING EXAMPLES 109

0 100 200 300 400 500 600 700
−5

0

5

10

15

20

Noiseless “sloop” signal (four segments)
Two Segment Polyline Fit
Three Segment Polyline Fit

Figure E.2. Noiseless signal with “sloop” shape and minimum-MSE polyline
approximations by segment count

Table E.1. Residual error and bicriterion-optimality, by segment count, for the
noiseless “sloop” polyline approximations of Figure E.2

Segments Solution Cost Optimal When

2 (1, -.0062) – (395, 19.71) – (610, 0.82) 1153.8+ ζ 576.9 < ζ < 17162

3
(1, -.0004) – (370, 18.45)
– (440, 17.00) – (610, -.0007)

971.3+ 2 ζ Never

4
(1, 0) – (401, 20) – (406, 0)
– (410, 20) – (610, 0)

0.0+ 3 ζ ζ < 576.9

E. SMALL POLYLINE FITTING EXAMPLES 110

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

109

1010

Brute Force (2n) Search
Segment Count=2
Segment Count=3
Segment Count=4
Pruned Bicriterion ζ = 20
Pruned Bicriterion ζ = 1000

Figure E.3. Comparison of computational complexity of residual minimiza-
tion using fixed segment count and bicriterion regularization with and without
pruning, signal is the noiseless “sloop” shown in Figure E.1

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

Pruned Exact Search ζ = 20
Pruned Exact Search ζ = 1000
Pivot-Based Branching ζ = 20
Pivot-Based Branching ζ = 1000
One Branch per Timestep ζ = 20
One Branch per Timestep ζ = 1000

Figure E.4. Comparison of computational complexity of bicriterion regulariza-
tion via pruned dynamic programming, with and without truncation heuristics,
applied to the noiseless “sloop” shown in Figure E.1

E. SMALL POLYLINE FITTING EXAMPLES 111

0 100 200 300 400 500 600 700
−5

0

5

10

15

20

25

Noisy “sloop” signal
Two Segment Polyline Fit
Three Segment Polyline Fit
Four Segment Polyline Fit

Figure E.5. Minimum-MSE polyline approximations for “sloop with measure-
ment noise” signal

Table E.2. Residual error and bicriterion-optimality, by segment count, for the
“sloop with measurement noise” polyline approximations of Figure E.5

Segments Solution Cost Optimal When

2 (1, .1071) – (396, 19.5805) – (610, 0.9810) 1757.2+ ζ 579.4 < ζ < 16636

3
(1, .1235) – (372, 18.37)
– (439, 17.03) – (610, .1964)

1578.6+ 2 ζ Never

4
(1, .1058) – (401, 19.83) – (406, -.0575)
– (410, 19.96) – (610, 0.1636)

598.3+ 3 ζ 6.9 < ζ < 579.4

5
(1, .8426) – (34, 1.608) – (401, 19.90)
– (406, -.0751) – (410, 19.96) – (610, 0.1635)

591.5+ 4 ζ ζ < 6.9

E. SMALL POLYLINE FITTING EXAMPLES 112

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

109

1010

Brute Force (2n) Search
Segment Count=2
Segment Count=3
Segment Count=4
Pruned Bicriterion ζ = 20
Pruned Bicriterion ζ = 1000

Figure E.6. Comparison of computational complexity of residual minimiza-
tion using fixed segment count and bicriterion regularization with and without
pruning, signal is the “sloop with measurement noise” shown in Figure E.1

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

Pruned Exact Search ζ = 20
Pruned Exact Search ζ = 1000
Pivot-Based Branching ζ = 20
Pivot-Based Branching ζ = 1000
One Branch per Timestep ζ = 20
One Branch per Timestep ζ = 1000

Figure E.7. Comparison of computational complexity of bicriterion regulariza-
tion via pruned dynamic programming, with and without truncation heuristics,
applied to the “sloop with measurement noise” shown in Figure E.1

E. SMALL POLYLINE FITTING EXAMPLES 113

0 100 200 300 400 500 600 700

0

10

20

30

“Original” signal
“Measurement”

Figure E.8. Signal with “gaff cutter” shape, with accompanying “measurement
noise”

E. SMALL POLYLINE FITTING EXAMPLES 114

0 100 200 300 400 500 600 700
0

10

20

30

40

Noiseless “gaff cutter” signal
Two Segment Polyline Fit
Three Segment Polyline Fit
Four Segment Polyline Fit

Figure E.9. Noiseless signal with “gaff cutter” shape and minimum-MSE poly-
line approximations for several segment counts

Table E.3. Residual error and bicriterion-optimality, by segment count, for the
noiseless “gaff cutter” polyline approximations of Figure E.9

Segments Solution Cost Optimal When

2 (1, .0082) – (305, 29.4980) – (610, .1085) 1241.9+ ζ 414 < ζ < 44202

3
(1, -.0084) – (311, 30.11)
– (404, 19.12) – (610, .7222)

1162.1+ 2 ζ Never

4
(1, .0329) – (318, 30.71)
– (409, 15.65) – (410, 20) – (610, 0)

862.8+ 3 ζ Never

5
(1, 0) – (310, 30) – (401, 20)
– (406, 0) – (410, 20) – (610, 0)

0.0+ 4 ζ ζ < 414

E. SMALL POLYLINE FITTING EXAMPLES 115

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

109

1010

Brute Force (2n) Search
Segment Count=2
Segment Count=3
Segment Count=4
Pruned Bicriterion ζ = 20
Pruned Bicriterion ζ = 1000

Figure E.10. Comparison of computational complexity of residual minimiza-
tion using fixed segment count and bicriterion regularization with and without
pruning, signal is the noiseless “gaff cutter” shown in E.8

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

Pruned Exact Search ζ = 20
Pruned Exact Search ζ = 1000
Pivot-Based Branching ζ = 20
Pivot-Based Branching ζ = 1000
One Branch per Timestep ζ = 20
One Branch per Timestep ζ = 1000

Figure E.11. Comparison of computational complexity of bicriterion regular-
ization via pruned dynamic programming, with and without truncation heuris-
tics, applied to the noiseless “gaff cutter” shown in Figure E.8

E. SMALL POLYLINE FITTING EXAMPLES 116

0 100 200 300 400 500 600 700
−10

0

10

20

30

40

Noisy “gaff cutter” signal
Two Segment Polyline Fit
Three Segment Polyline Fit
Four Segment Polyline Fit
Five Segment Polyline Fit

Figure E.12. Optimal polyline approximations for “gaff cutter” signal with
added noise and with fixed segment count

Table E.4. Residual error and optimality, by segment count, for the noisy “gaff
cutter” signal of Figure E.12

Segments Solution Cost Optimal When

2 (1, .3783) – (306, 29.3935) – (610, .0530) 1752.0+ ζ 392.8 < ζ < 43420

3
(1, .4028) – (313, 30.01)
– (403, 19.24) – (610, .6193)

1681.0+ 2 ζ Never

4
(1, .4025) – (319, 30.58)
– (409, 15.50) – (410, 20.16) – (610, -.1739)

1330.9+ 3 ζ Never

5
(1, 0) – (312, 29.94) – (401, 19.70)
– (406, .6872) – (410, 20.15) – (610, -.1675)

573.6+ 4 ζ ζ < 392.8

E. SMALL POLYLINE FITTING EXAMPLES 117

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

109

1010

Brute Force (2n) Search
Segment Count=2
Segment Count=3
Segment Count=4
Pruned Bicriterion ζ = 20
Pruned Bicriterion ζ = 1000

Figure E.13. Comparison of computational complexity of residual minimiza-
tion using fixed segment count and bicriterion regularization with and without
pruning, signal is the “gaff cutter with measurement noise” shown in E.8

100 200 300 400 500 600
100

101

102

103

104

105

106

107

108

Pruned Exact Search ζ = 20
Pruned Exact Search ζ = 1000
Pivot-Based Branching ζ = 20
Pivot-Based Branching ζ = 1000
One Branch per Timestep ζ = 20
One Branch per Timestep ζ = 1000

Figure E.14. Comparison of computational complexity of bicriterion regular-
ization via pruned dynamic programming, with and without truncation heuris-
tics, applied to the “gaff cutter with measurement noise” shown in Figure E.8

118

Bibliography

Massimo Antonelli, Mitchell Levy, Peter J. D. Andrews, Jean Chastre, Leonard D. Hudson,
Constantine Manthous, G. Umberto Meduri, Rui P. Moreno, Christian Putensen, Thomas
Stewart, and et al. Hemodynamic monitoring in shock and implications for management.
Intensive Care Medicine, 33(4):575–590, Feb 2007. doi: 10.1007/s00134-007-0531-4.

S. Arlati, E. Storti, V. Pradella, L. Bucci, A. Vitolo, and M. Pulici. Decreased fluid volume
to reduce organ damage: A new approach to burn shock resuscitation? a preliminary study.
Resuscitation, 72(3):371–378, Mar 2007. doi: 10.1016/j.resuscitation.2006.07.010.

Zsolt Balogh. Supranormal trauma resuscitation causes more cases of abdominal compartment
syndrome. Archives of Surgery, 138(6):637, Jun 2003. doi: 10.1001/archsurg.138.6.637.

Zsolt Balogh, Bruce A McKinley, John B Holcomb, Charles C Miller, Christine S Cocanour,
Rosemary A Kozar, Alicia Valdivia, Drue N Ware, and Frederick A Moore. Both primary
and secondary abdominal compartment syndrome can be predicted early and are harbingers of
multiple organ failure. Journal of Trauma-Injury, Infection, and Critical Care, 54(5):848–861,
2003. doi: 10.1097/01.TA.0000070166.29649.F3.

Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and Pamela H
Vance. Branch-and-price: Column generation for solving huge integer programs. Operations
research, 46(3):316–329, 1998. doi: 10.1287/opre.46.3.316.

Richard Bellman. On the approximation of curves by line segments using dynamic programming.
Communications of the ACM, 4(6):284, June 1961. doi: 10.1145/366573.366611.

Richard Bellman and Robert Roth. Curve fitting by segmented straight lines. Journal of
the American Statistical Association, 64(327):1079–1084, 1969. doi: 10.1080/01621459.1969.
10501038.

Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter. Branching and
bounds tightening techniques for non-convex minlp. Optimization Methods and Software, 24
(4-5):597–634, Oct 2009. doi: 10.1080/10556780903087124.

Dimitris Bertsimas and Romy Shioda. Classification and regression via integer optimization.
Operations Research, 55(2):252–271, 2007. doi: 10.1287/opre.1060.0360.

S. Bibian, G.A. Dumont, M. Huzmezan, and C.R. Ries. Quantifying uncertainty bounds in
anesthetic PKPD models. In Engineering in Medicine and Biology Society, 2004. IEMBS ’04.
26th Annual International Conference of the IEEE, volume 1, pages 786–789. IEEE, Sept 2004.
ISBN http://id.crossref.org/isbn/0-7803-8439-3. doi: 10.1109/iembs.2004.1403276.

Stphane Bibian, Craig R. Ries, Mihai Huzmezan, and Guy Dumont. Introduction to automated
drug delivery in clinical anesthesia. European Journal of Control, 11(6):535–557, Jan 2005.
doi: 10.3166/ejc.11.535-557.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004. ISBN 9780521833783.

Leopoldo C. Cancio. Initial assessment and fluid resuscitation of burn patients. Surgical Clinics
of North America, 94(4):741–754, Aug 2014. doi: 10.1016/j.suc.2014.05.003.

Brian C. Carter, Michael Vershinin, and Steven P. Gross. A comparison of step-detection
methods: How well can you do? Biophysical Journal, 94(1):306–319, Jan 2008. doi:
10.1529/biophysj.107.110601.

http://link.springer.com/article/10.1007/s00134-007-0531-4
http://dx.doi.org/10.1007/s00134-007-0531-4
http://www.sciencedirect.com/science/article/pii/S0300957206003935
http://www.sciencedirect.com/science/article/pii/S0300957206003935
http://dx.doi.org/10.1016/j.resuscitation.2006.07.010
http://archsurg.jamanetwork.com/article.aspx?articleid=394995
http://archsurg.jamanetwork.com/article.aspx?articleid=394995
http://dx.doi.org/10.1001/archsurg.138.6.637
http://journals.lww.com/jtrauma/Abstract/2003/05000/Both_Primary_and_Secondary_Abdominal_Compartment.7.aspx
http://journals.lww.com/jtrauma/Abstract/2003/05000/Both_Primary_and_Secondary_Abdominal_Compartment.7.aspx
http://journals.lww.com/jtrauma/Abstract/2003/05000/Both_Primary_and_Secondary_Abdominal_Compartment.7.aspx
http://dx.doi.org/10.1097/01.TA.0000070166.29649.F3
http://dx.doi.org/10.1287/opre.46.3.316
http://dl.acm.org/citation.cfm?id=366611
http://dx.doi.org/10.1145/366573.366611
http://www.tandfonline.com/doi/abs/10.1080/01621459.1969.10501038
http://dx.doi.org/10.1080/01621459.1969.10501038
http://dx.doi.org/10.1080/01621459.1969.10501038
http://dx.doi.org/10.1080/10556780903087124
http://dx.doi.org/10.1080/10556780903087124
http://dx.doi.org/10.1080/10556780903087124
http://dx.doi.org/10.1287/opre.1060.0360
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1403276
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1403276
http://dx.doi.org/10.1109/iembs.2004.1403276
http://www.sciencedirect.com/science/article/pii/S0947358005704532
http://www.sciencedirect.com/science/article/pii/S0947358005704532
http://dx.doi.org/10.3166/ejc.11.535-557
http://www.sciencedirect.com/science/article/pii/S0039610914000668
http://dx.doi.org/10.1016/j.suc.2014.05.003
http://www.ncbi.nlm.nih.gov/pubmed/17827239
http://www.ncbi.nlm.nih.gov/pubmed/17827239
http://dx.doi.org/10.1529/biophysj.107.110601
http://dx.doi.org/10.1529/biophysj.107.110601

Bibliography 119

R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization. Signal Pro-
cessing Letters, IEEE, 14(10):707–710, Oct 2007. doi: 10.1109/LSP.2007.898300.

Cécile Cordier, Hugues Marchand, Richard Laundy, and Laurence A. Wolsey. bc-opt: a branch-
and-cut code for mixed integer programs. Mathematical Programming, 86(2):335–353, Nov
1999. doi: 10.1007/s101070050092.

David L. Donoho. For most large underdetermined systems of linear equations the minimal
`1-norm solution is also the sparsest solution. Comm. Pure Appl. Math., 59(6):797–829, 2006.
doi: 10.1002/cpa.20132.

Brian J. Eastridge, Robert L. Mabry, Peter Seguin, Joyce Cantrell, Terrill Tops, Paul Uribe,
Olga Mallett, Tamara Zubko, Lynne Oetjen-Gerdes, Todd E. Rasmussen, and et al. Death on
the battlefield (2001-2011). Journal of Trauma and Acute Care Surgery, 73:S431–S437, 2012.
doi: 10.1097/ta.0b013e3182755dcc.

Samir M. Fakhry, Arthur L. Trask, Maureen A. Waller, and Dorraine D. Watts. Management
of brain-injured patients by an evidence-based medicine protocol improves outcomes and de-
creases hospital charges. The Journal of Trauma: Injury, Infection, and Critical Care, 56(3):
492–500, 2004. doi: 10.1097/01.ta.0000115650.07193.66.

Robert Fano. A heuristic discussion of probabilistic decoding. Information Theory, IEEE Trans-
actions on, 9(2):64–74, 1963.

Lucian Fodor, Adriana Fodor, Ytzhack Ramon, Oren Shoshani, Yaron Rissin, and Yehuda Ull-
mann. Controversies in fluid resuscitation for burn management: Literature review and our
experience. Injury, 37(5):374–379, May 2006. doi: 10.1016/j.injury.2005.06.037.

D. Gagnon. The Frank-Starling mechanism and thermal stress: Fundamentals applied! The
Journal of Physiology, 587(17):4147–4148, Aug 2009. doi: 10.1113/jphysiol.2009.176925.

Behnood Gholami, James M. Bailey, Wassim M. Haddad, and Allen R. Tannenbaum. Clinical
decision support and closed-loop control for cardiopulmonary management and intensive care
unit sedation using expert systems. IEEE Trans Control Syst Technol, 20(5):1343–1350, Mar
2012. doi: 10.1109/TCST.2011.2162412.

Somes C Guha, Michael P Kinsky, Brian Button, David N Herndon, Lillian D Traber, Daniel L
Traber, and George C Kramer. Burn resuscitation: crystalloid versus colloid versus hypertonic
saline hyperoncotic colloid in sheep. Critical care medicine, 24(11):1849–1857, 1996.

Scott B. Guthery. Partition regression. Journal of the American Statistical Association, 69(348):
945–947, Dec 1974. doi: 10.1080/01621459.1974.10480233.

Wassim M. Haddad and James M. Bailey. Closed-loop control for intensive care unit sedation.
Best Pract Res Clin Anaesthesiol, 23(1):95–114, Mar 2009. doi: 10.1016/j.bpa.2008.07.007.

Mark A. Hamilton, Maurizio Cecconi, and Andrew Rhodes. A systematic review and meta-
analysis on the use of preemptive hemodynamic intervention to improve postoperative out-
comes in moderate and high-risk surgical patients. Anesthesia & Analgesia, 112(6):1392–1402,
2011. doi: 10.1213/ane.0b013e3181eeaae5.

Jeremy J. Hammond, Walter M. Kirkendall, and Richard V. Calfee. Hypertensive crisis managed
by computer controlled infusion of sodium nitroprusside: A model for the closed loop admin-
istration of short acting vasoactive agents. Computers and Biomedical Research, 12(2):97–108,
Apr 1979. doi: 10.1016/0010-4809(79)90008-9.

Thomas M Hemmerling. Automated anesthesia. Current Opinion in Anaesthesiology, 22(6):
757–763, 2009. doi: 10.1097/aco.0b013e328332c9b4.

C. Holm, M. Mayr, J. Tegeler, F. Hrbrand, G. Henckel von Donnersmarck, W. Mhlbauer, and
U.J. Pfeiffer. A clinical randomized study on the effects of invasive monitoring on burn shock
resuscitation. Burns, 30(8):798–807, Dec 2004. doi: 10.1016/j.burns.2004.06.016.

R G Holzheimer and J A Mannick, editors. Surgical Treatment: Evidence-Based and Problem-
Oriented. Zuckschwerdt, Munich, 2001.

Stephen L. Hoskins, Geir Ivar Elgjo, Jialung Lu, Hao Ying, James J. Grady, David N. Herndon,
and George C. Kramer. Closed-loop resuscitation of burn shock. Journal of Burn Care &

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4303060
http://dx.doi.org/10.1109/LSP.2007.898300
http://dx.doi.org/10.1007/s101070050092
http://dx.doi.org/10.1007/s101070050092
http://dx.doi.org/10.1007/s101070050092
http://onlinelibrary.wiley.com/doi/10.1002/cpa.20132/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpa.20132/abstract
http://dx.doi.org/10.1002/cpa.20132
http://dx.doi.org/10.1097/TA.0b013e3182755dcc
http://dx.doi.org/10.1097/TA.0b013e3182755dcc
http://dx.doi.org/10.1097/ta.0b013e3182755dcc
http://journals.lww.com/jtrauma/Abstract/2004/03000/Management_of_Brain_Injured_Patients_by_an.4.aspx
http://journals.lww.com/jtrauma/Abstract/2004/03000/Management_of_Brain_Injured_Patients_by_an.4.aspx
http://journals.lww.com/jtrauma/Abstract/2004/03000/Management_of_Brain_Injured_Patients_by_an.4.aspx
http://dx.doi.org/10.1097/01.ta.0000115650.07193.66
http://www.sciencedirect.com/science/article/pii/S0020138305002342
http://www.sciencedirect.com/science/article/pii/S0020138305002342
http://dx.doi.org/10.1016/j.injury.2005.06.037
http://jp.physoc.org/content/587/17/4147
http://dx.doi.org/10.1113/jphysiol.2009.176925
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5989878
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5989878
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5989878
http://dx.doi.org/10.1109/TCST.2011.2162412
http://journals.lww.com/ccmjournal/Citation/1996/11000/Burn_resuscitation__Crystalloid_versus_colloid.15.aspx
http://journals.lww.com/ccmjournal/Citation/1996/11000/Burn_resuscitation__Crystalloid_versus_colloid.15.aspx
http://dx.doi.org/10.1080/01621459.1974.10480233
http://dx.doi.org/10.1080/01621459.1974.10480233
http://www.sciencedirect.com/science/article/pii/S1521689608000633
http://dx.doi.org/10.1016/j.bpa.2008.07.007
http://journals.lww.com/anesthesia-analgesia/Fulltext/2011/06000/A_Systematic_Review_and_Meta_Analysis_on_the_Use.27.aspx
http://journals.lww.com/anesthesia-analgesia/Fulltext/2011/06000/A_Systematic_Review_and_Meta_Analysis_on_the_Use.27.aspx
http://journals.lww.com/anesthesia-analgesia/Fulltext/2011/06000/A_Systematic_Review_and_Meta_Analysis_on_the_Use.27.aspx
http://dx.doi.org/10.1213/ane.0b013e3181eeaae5
http://www.sciencedirect.com/science/article/pii/0010480979900089
http://www.sciencedirect.com/science/article/pii/0010480979900089
http://www.sciencedirect.com/science/article/pii/0010480979900089
http://dx.doi.org/10.1016/0010-4809(79)90008-9
http://journals.lww.com/co-anesthesiology/Citation/2009/12000/Automated_anesthesia.12.aspx
http://dx.doi.org/10.1097/aco.0b013e328332c9b4
http://www.sciencedirect.com/science/article/pii/S0305417904001676
http://www.sciencedirect.com/science/article/pii/S0305417904001676
http://dx.doi.org/10.1016/j.burns.2004.06.016
http://journals.lww.com/burncareresearch/Citation/2006/05000/Closed_Loop_Resuscitation_of_Burn_Shock.20.aspx

Bibliography 120

Research, 27(3):377–385, 2006. doi: 10.1097/01.bcr.0000216512.30415.78.
P. Julian, M. Jordan, and A. Desages. Canonical piecewise-linear approximation of smooth func-

tions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
45(5):567–571, May 1998. doi: 10.1109/81.668868.

Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011. ISBN 0374275637.
Jacob W. J. Kerssemakers, E. Laura Munteanu, Liedewij Laan, Tim L. Noetzel, Marcel E.

Janson, and Marileen Dogterom. Assembly dynamics of microtubules at molecular resolution.
Nature, 442(7103):709–712, Aug 2006. doi: 10.1038/nature04928.

R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association, 107(500):1590–1598, Dec
2012. doi: 10.1080/01621459.2012.737745.

Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry Gorinevsky. `1 trend filtering.
SIAM Review, 51(2):339–360, May 2009. doi: 10.1137/070690274.

H. Kobayashi. Simultaneous adaptive estimation and decision algorithm for carrier modulated
data transmission systems. IEEE Transactions on Communications, 19(3):268–280, Jun 1971.
doi: 10.1109/tcom.1971.1090639.

G C Kramer, T Lund, and O Beckum. Pathophysiology of burn shock and burn edema. In
David N. Herndon, editor, Total Burn Care, chapter 8, pages 93–106. Saunders Elsevier, 3rd
edition, 2007a. ISBN 1416032746,9781416032748.

George Kramer, Steve Hoskins, Nick Copper, Jiin-Yu Chen, Michelle Hazel, and Charles Mitchell.
Emerging advances in burn resuscitation. The Journal of Trauma: Injury, Infection, and
Critical Care, 62(Supplement):S71–S72, 2007b. doi: 10.1097/ta.0b013e318065aedf.

George C. Kramer, Michael P. Kinsky, Donald S. Prough, Jose Salinas, Jill L. Sondeen,
Michelle L. Hazel-Scerbo, and Charles E. Mitchell. Closed-loop control of fluid therapy for
treatment of hypovolemia. The Journal of Trauma: Injury, Infection, and Critical Care, 64
(Supplement):S333–S341, 2008. doi: 10.1097/ta.0b013e31816bf517.

James Stephen Krinsley. Effect of an intensive glucose management protocol on the mortality of
critically ill adult patients. In Mayo Clinic Proceedings, volume 79, pages 992–1000. Elsevier,
2004.

Mitchell M. Levy, R. Phillip Dellinger, Sean R. Townsend, Walter T. Linde-Zwirble, John C.
Marshall, Julian Bion, Christa Schorr, Antonio Artigas, Graham Ramsay, Richard Beale,
Margaret M. Parker, Herwig Gerlach, Konrad Reinhart, Eliezer Silva, Maurene Harvey, Su-
san Regan, and Derek C. Angus. The surviving sepsis campaign: results of an international
guideline-based performance improvement program targeting severe sepsis. Intensive Care
Medicine, 36(2):222–231, Jan 2010. doi: 10.1007/s00134-009-1738-3.

Sven Leyffer, Annick Sartenaer, and Emilie Wanufelle. Branch-and-refine for mixed-integer non-
convex global optimization. Technical Report Preprint ANL/MCS-P1547-0908, Mathematics
and Computer Science Division, Argonne National Laboratory, 2008.

M. A. Little and Nick S. Jones. Sparse Bayesian step-filtering for high-throughput analysis
of molecular machine dynamics. In Proceedings of the 2010 IEEE International Conference
on Acoustics Speech and Signal Processing (ICASSP), pages 4162–4165, 2010. doi: 10.1109/
ICASSP.2010.5495722.

Tamas Luspay and Karolos M. Grigoriadis. Design and validation of an extended Kalman filter
for estimating hemodynamic variables. 2014 American Control Conference, Jun 2014. doi:
10.1109/acc.2014.6859101.

Greg S. Martin, David M. Mannino, Stephanie Eaton, and Marc Moss. The epidemiology of
sepsis in the united states from 1979 through 2000. N Engl J Med, 348(16):1546–1554, Apr
2003. doi: 10.1056/nejmoa022139.

Christopher L Meador. Closed loop fluid delivery system. Technical report, Arcos, Inc., Feb
2014.

http://dx.doi.org/10.1097/01.bcr.0000216512.30415.78
http://dx.doi.org/10.1109/81.668868
http://dx.doi.org/10.1109/81.668868
http://dx.doi.org/10.1109/81.668868
http://www.nature.com/nature/journal/v442/n7103/full/nature04928.html
http://dx.doi.org/10.1038/nature04928
http://dx.doi.org/10.1080/01621459.2012.737745
http://dx.doi.org/10.1080/01621459.2012.737745
http://dx.doi.org/10.1080/01621459.2012.737745
http://epubs.siam.org/doi/abs/10.1137/070690274
http://dx.doi.org/10.1137/070690274
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1090639
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1090639
http://dx.doi.org/10.1109/tcom.1971.1090639
http://books.google.com/books?id=m_QnStA_JPsC
http://journals.lww.com/jtrauma/Citation/2007/06001/Emerging_Advances_in_Burn_Resuscitation.54.aspx
http://dx.doi.org/10.1097/ta.0b013e318065aedf
http://journals.lww.com/jtrauma/Citation/2008/04001/Closed_Loop_Control_of_Fluid_Therapy_for_Treatment.6.aspx
http://journals.lww.com/jtrauma/Citation/2008/04001/Closed_Loop_Control_of_Fluid_Therapy_for_Treatment.6.aspx
http://dx.doi.org/10.1097/ta.0b013e31816bf517
http://link.springer.com/article/10.1007/s00134-009-1738-3
http://link.springer.com/article/10.1007/s00134-009-1738-3
http://dx.doi.org/10.1007/s00134-009-1738-3
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5495722
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5495722
http://dx.doi.org/10.1109/ICASSP.2010.5495722
http://dx.doi.org/10.1109/ICASSP.2010.5495722
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6859101
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6859101
http://dx.doi.org/10.1109/acc.2014.6859101
http://dx.doi.org/10.1109/acc.2014.6859101
http://www.nejm.org/doi/full/10.1056/nejmoa022139
http://www.nejm.org/doi/full/10.1056/nejmoa022139
http://dx.doi.org/10.1056/nejmoa022139
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA597495

Bibliography 121

Andrew Conway Morris, Alasdair W. Hay, David G. Swann, Kirsty Everingham, Corrienne Mc-
Culloch, Jane McNulty, Odette Brooks, Ian F. Laurenson, Brian Cook, and Timothy S. Walsh.
Reducing ventilator-associated pneumonia in intensive care: Impact of implementing a care
bundle. Critical Care Medicine, 39(10):2218–2224, 2011. doi: 10.1097/ccm.0b013e3182227d52.

Craig D. Newgard, Robert H. Schmicker, Jerris R. Hedges, John P. Trickett, Daniel P. Davis,
Eileen M. Bulger, Tom P. Aufderheide, Joseph P. Minei, J. Steven Hata, K. Dean Gubler,
and et al. Emergency medical services intervals and survival in trauma: Assessment of the
“golden hour” in a north american prospective cohort. Annals of Emergency Medicine, 55(3):
235–246.e4, Mar 2010. doi: 10.1016/j.annemergmed.2009.07.024.

Warwick D. Ngan Kee, Anna Lee, Kim S. Khaw, Floria F. Ng, Manoj K. Karmakar, and Tony
Gin. A randomized double-blinded comparison of phenylephrine and ephedrine infusion combi-
nations to maintain blood pressure during spinal anesthesia for cesarean delivery: The effects
on fetal acid-base status and hemodynamic control. Anesthesia & Analgesia, 107(4):1295–1302,
Oct 2008. doi: 10.1213/ane.0b013e31818065bc.

Jun Oda, Katsuyuki Yamashita, Takuya Inoue, Nobuyuki Harunari, Yasumasa Ode, Kazuharu
Mega, Yoshiki Aoki, Mitsuhiro Noborio, and Masashi Ueyama. Resuscitation fluid volume and
abdominal compartment syndrome in patients with major burns. Burns, 32(2):151154, Mar
2006. doi: 10.1016/j.burns.2005.08.011.

ONR BAA 11-012. BROAD AGENCY ANNOUNCEMENT (BAA) Autonomous Critical Care
System (ACCS). Department of the Navy, 2011.

ONR BAA 12-004 CONOPs. Autonomous Aerial Cargo/Utility System (AACUS) Concept of
Operations (CONOPs). Department of the Navy, 2012.

Ronny M. Otero. Early goal-directed therapy in severe sepsis and septic shock revisited. CHEST
Journal, 130(5):1579, Nov 2006. doi: 10.1378/chest.130.5.1579.

Azriel Perel. Bench-to-bedside review: The initial hemodynamic resuscitation of the septic
patient according to surviving sepsis campaign guidelines does one size fit all? Crit Care, 12
(5):223, 2008. doi: 10.1186/cc6979.

Tam N. MD Pham, Leopoldo C. MD Cancio, and Nicole S. MD Gibran. American burn associ-
ation practice guidelines burn shock resuscitation. Journal of Burn Care & Research, 29(1):
257–266, January/February 2008.

S. Preisman. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional
haemodynamic parameters including the respiratory systolic variation test and static preload
indicators. British Journal of Anaesthesia, 95(6):746–755, Oct 2005. doi: 10.1093/bja/aei262.

Abraham D Rafie, Paul A Rath, Michael W Michell, Robert A Kirschner, Donald J Deyo,
Donald S Prough, James J Grady, and George C Kramer. Hypotensive resuscitation of multiple
hemorrhages using crystalloid and colloids. Shock, 22(3):262–269, 2004. doi: 10.1097/01.shk.
0000135255.59817.8c.

Carlos Ramirez, Vladik Kreinovich, and Miguel Argaez. Why `1 is a good approximation to `0:
A geometric explanation. Journal of Uncertain Systems, 7(3):203–207, 2013.

R.R. Rao, B. Aufderheide, and B.W. Bequette. Multiple model predictive control of hemo-
dynamic variables: an experimental study. In American Control Conference, Proceedings
of the 1999, volume 2, pages 1253–1257. IEEE, Jun 1999. ISBN http://id.crossref.org/is-
bn/0-7803-4990-3. doi: 10.1109/acc.1999.783568.

R.R. Rao, B. Aufderheide, and B.W. Bequette. Experimental studies on multiple-model predic-
tive control for automated regulation of hemodynamic variables. IEEE Trans. Biomed. Eng.,
50(3):277–288, Mar 2003. doi: 10.1109/tbme.2003.808813.

Guillem Rigaill. Pruned dynamic programming for optimal multiple change-point detection.
arXiv preprint arXiv:1004.0887, 2010.

Joseph Rinehart, Brenton Alexander, Yannick Manach, Christoph Hofer, Benoit Tavernier,
Zeev N Kain, and Maxime Cannesson. Evaluation of a novel closed-loop fluid-administration
system based on dynamic predictors of fluid responsiveness: an in silico simulation study. Crit

http://journals.lww.com/ccmjournal/Abstract/2011/10000/Reducing_ventilator_associated_pneumonia_in.2.aspx
http://journals.lww.com/ccmjournal/Abstract/2011/10000/Reducing_ventilator_associated_pneumonia_in.2.aspx
http://dx.doi.org/10.1097/ccm.0b013e3182227d52
http://www.sciencedirect.com/science/article/pii/S0196064409012840s
http://www.sciencedirect.com/science/article/pii/S0196064409012840s
http://dx.doi.org/10.1016/j.annemergmed.2009.07.024
http://journals.lww.com/anesthesia-analgesia/Fulltext/2008/10000/A_Randomized_Double_Blinded_Comparison_of.37.aspx
http://journals.lww.com/anesthesia-analgesia/Fulltext/2008/10000/A_Randomized_Double_Blinded_Comparison_of.37.aspx
http://journals.lww.com/anesthesia-analgesia/Fulltext/2008/10000/A_Randomized_Double_Blinded_Comparison_of.37.aspx
http://dx.doi.org/10.1213/ane.0b013e31818065bc
http://www.sciencedirect.com/science/article/pii/S0305417905002457
http://www.sciencedirect.com/science/article/pii/S0305417905002457
http://dx.doi.org/10.1016/j.burns.2005.08.011
http://journal.publications.chestnet.org/article.aspx?articleid=1084814&issueno=5
http://dx.doi.org/10.1378/chest.130.5.1579
http://ccforum.com/content/12/5/223
http://ccforum.com/content/12/5/223
http://dx.doi.org/10.1186/cc6979
http://bja.oxfordjournals.org/content/95/6/746
http://bja.oxfordjournals.org/content/95/6/746
http://bja.oxfordjournals.org/content/95/6/746
http://dx.doi.org/10.1093/bja/aei262
http://journals.lww.com/shockjournal/Fulltext/2004/09000/HYPOTENSIVE_RESUSCITATION_OF_MULTIPLE_HEMORRHAGES.11.aspx
http://journals.lww.com/shockjournal/Fulltext/2004/09000/HYPOTENSIVE_RESUSCITATION_OF_MULTIPLE_HEMORRHAGES.11.aspx
http://dx.doi.org/10.1097/01.shk.0000135255.59817.8c
http://dx.doi.org/10.1097/01.shk.0000135255.59817.8c
http://digitalcommons.utep.edu/cs_techrep/758/
http://digitalcommons.utep.edu/cs_techrep/758/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=783568
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=783568
http://dx.doi.org/10.1109/acc.1999.783568
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1186731
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1186731
http://dx.doi.org/10.1109/tbme.2003.808813
http://arxiv.org/abs/1004.0887
http://ccforum.com/content/15/6/R278
http://ccforum.com/content/15/6/R278

Bibliography 122

Care, 15(6):R278, 2011. doi: 10.1186/cc10562.
Joseph Rinehart, Ngai Liu, Brenton Alexander, and Maxime Cannesson. Closed-loop sys-

tems in anesthesia. Anesthesia & Analgesia, 114(1):130–143, Jan 2012. doi: 10.1213/ane.
0b013e318230e9e0.

Jacob Roll, Alberto Bemporad, and Lennart Ljung. Identification of piecewise affine systems via
mixed-integer programming. Automatica, 40(1):37–50, Jan 2004. doi: 10.1016/j.automatica.
2003.08.006.

Hong S Ryoo and Nikolaos V Sahinidis. A branch-and-reduce approach to global optimization.
Journal of Global Optimization, 8(2):107–138, 1996.

Jeffrey R. Saffle. The phenomenon of “fluid creep” in acute burn resuscitation. Journal of Burn
Care & Research, 28(3):382–395, 2007. doi: 10.1097/bcr.0b013e318053d3a1.

B H Saggi, R Ivatury, and Sugerman HJ. Abdominal compartment syndrome, chapter Part XVI.
Surgical critical care issues. In Holzheimer and Mannick (2001), 2001.

Nikolaos V Sahinidis. Baron: A general purpose global optimization software package. Journal
of global optimization, 8(2):201–205, 1996.

Jose Salinas, Guy Drew, James Gallagher, Leopoldo C. Cancio, Steven E. Wolf, Charles E. Wade,
John B. Holcomb, David N. Herndon, and George C. Kramer. Closed-loop and decision-assist
resuscitation of burn patients. The Journal of Trauma: Injury, Infection, and Critical Care,
64(Supplement):S321–S332, 2008. doi: 10.1097/ta.0b013e31816bf4f7.

Jose Salinas, Kevin K Chung, Elizabeth A Mann, Leopoldo C Cancio, George C Kramer, Maria L
Serio-Melvin, Evan M Renz, Charles E Wade, and Steven E Wolf. Computerized decision
support system improves fluid resuscitation following severe burns: An original study*. Critical
care medicine, 39(9):2031–2038, 2011. doi: 10.1097/CCM.0b013e31821cb790.

A P Sanford and D N Herndon. Current therapy of burns, chapter Part XV. Surgical Infections.
In Holzheimer and Mannick (2001), 2001.

Philip C. Spinella and John B. Holcomb. Resuscitation and transfusion principles for traumatic
hemorrhagic shock. Blood Reviews, 23(6):231–240, Nov 2009. doi: 10.1016/j.blre.2009.07.003.

Michel MRF Struys, Tom De Smet, Linda FM Versichelen, Stijn Van de Velde, Rudy Van den
Broecke, and Eric P Mortier. Comparison of closed-loop controlled administration of propofol
using bispectral index as the controlled variable versus “standard practice” controlled admin-
istration. Anesthesiology, 95(1):6–17, 2001.

Michael Sugrue. Abdominal compartment syndrome. Current opinion in critical care, 11(4):
333–338, 2005.

Llewellyn Hilleth Thomas. Elliptic problems in linear difference equations over a network. Watson
Sci. Comput. Lab. Rept., Columbia University, New York, 1949.

Alejandro Toriello and Juan Pablo Vielma. Fitting piecewise linear continuous functions. Euro-
pean Journal of Operational Research, 219(1):86–95, May 2012. doi: 10.1016/j.ejor.2011.12.030.

Betty J Tsuei and Paul A Kearney. Hypothermia in the trauma patient. Injury, 35(1):7–15, Jan
2004. doi: 10.1016/s0020-1383(03)00309-7.

Sumreen U. Vaid, Alia Shah, Michael W. Michell, Abraham D. Rafie, Donald J. Deyo, Donald S.
Prough, and George C. Kramer. Normotensive and hypotensive closed-loop resuscitation using
3.0% NaCl to treat multiple hemorrhages in sheep. Critical Care Medicine, 34(4):1185–1192,
2006. doi: 10.1097/01.ccm.0000207341.78696.3a.

Melanie van der Heijden, Joanne Verheij, Geerten P. van Nieuw Amerongen, and A B. Johan
Groeneveld. Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury
in septic and nonseptic critically ill patients with hypovolemia*. Critical Care Medicine, 37
(4):1275–1281, 2009. doi: 10.1097/ccm.0b013e31819cedfd.

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Trans. Inform. Theory, 13(2):260–269, Apr 1967. doi: 10.1109/tit.1967.
1054010.

http://dx.doi.org/10.1186/cc10562
http://journals.lww.com/anesthesia-analgesia/Fulltext/2012/01000/Closed_Loop_Systems_in_Anesthesia___Is_There_a.17.aspx
http://journals.lww.com/anesthesia-analgesia/Fulltext/2012/01000/Closed_Loop_Systems_in_Anesthesia___Is_There_a.17.aspx
http://dx.doi.org/10.1213/ane.0b013e318230e9e0
http://dx.doi.org/10.1213/ane.0b013e318230e9e0
http://dx.doi.org/10.1016/j.automatica.2003.08.006
http://dx.doi.org/10.1016/j.automatica.2003.08.006
http://dx.doi.org/10.1016/j.automatica.2003.08.006
http://dx.doi.org/10.1016/j.automatica.2003.08.006
http://dx.doi.org/10.1097/BCR.0B013E318053D3A1
http://dx.doi.org/10.1097/bcr.0b013e318053d3a1
http://journals.lww.com/jtrauma/Abstract/2008/04001/Closed_Loop_and_Decision_Assist_Resuscitation_of.5.aspx
http://journals.lww.com/jtrauma/Abstract/2008/04001/Closed_Loop_and_Decision_Assist_Resuscitation_of.5.aspx
http://dx.doi.org/10.1097/ta.0b013e31816bf4f7
http://dx.doi.org/10.1097/CCM.0b013e31821cb790
http://www.sciencedirect.com/science/article/pii/S0268960X09000411
http://www.sciencedirect.com/science/article/pii/S0268960X09000411
http://dx.doi.org/10.1016/j.blre.2009.07.003
http://journals.lww.com/anesthesiology/Abstract/2001/07000/Comparison_of_Closed_loop_Controlled.7.aspx
http://journals.lww.com/anesthesiology/Abstract/2001/07000/Comparison_of_Closed_loop_Controlled.7.aspx
http://journals.lww.com/anesthesiology/Abstract/2001/07000/Comparison_of_Closed_loop_Controlled.7.aspx
http://dx.doi.org/10.1016/j.ejor.2011.12.030
http://dx.doi.org/10.1016/j.ejor.2011.12.030
http://www.sciencedirect.com/science/article/pii/S0020138303003097
http://dx.doi.org/10.1016/s0020-1383(03)00309-7
http://journals.lww.com/ccmjournal/Abstract/2006/04000/Normotensive_and_hypotensive_closed_loop.37.aspx
http://journals.lww.com/ccmjournal/Abstract/2006/04000/Normotensive_and_hypotensive_closed_loop.37.aspx
http://dx.doi.org/10.1097/01.ccm.0000207341.78696.3a
http://dx.doi.org/10.1097/CCM.0b013e31819cedfd
http://dx.doi.org/10.1097/CCM.0b013e31819cedfd
http://dx.doi.org/10.1097/ccm.0b013e31819cedfd
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1054010&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1054010&tag=1
http://dx.doi.org/10.1109/tit.1967.1054010
http://dx.doi.org/10.1109/tit.1967.1054010

Bibliography 123

Kelly A Wood and Derek C Angus. Pharmacoeconomic implications of new therapies in sepsis.
PharmacoEconomics, 22(14):895–906, 2004. doi: 10.2165/00019053-200422140-00001.

Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. Image smoothing via L0 gradient minimization. ACM
Transactions on Graphics, 30(6):1, Dec 2011. doi: 10.1145/2070781.2024208.

Yi-Ching Yao. Estimation of a noisy discrete-time step function: Bayes and empirical Bayes
approaches. Ann. Statist., 12(4):1434–1447, Dec 1984. doi: 10.1214/aos/1176346802.

H. Ying, M. McEachern, D.W. Eddleman, and L.C. Sheppard. Fuzzy control of mean arterial
pressure in postsurgical patients with sodium nitroprusside infusion. IEEE Trans. Biomed.
Eng., 39(10):10601070, 1992. doi: 10.1109/10.161338.

H. Ying, C.A. Bonnerup, R.A. Kirschner, D.J. Deyo, M.W. Michell, and G.C. Kramer. Closed-
loop fuzzy control of resuscitation of hemorrhagic shock in sheep. In Engineering in Medicine
and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedi-
cal Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint,
volume 2, pages 1575–1576, 2002. ISBN http://id.crossref.org/isbn/0-7803-7612-9. doi:
10.1109/iembs.2002.1106545.

C. Yu, R.J. Roy, H. Kaufman, and B.W. Bequette. Multiple-model adaptive predictive control of
mean arterial pressure and cardiac output. IEEE Trans. Biomed. Eng., 39(8):765–778, 1992.
doi: 10.1109/10.148385.

T Zikov and S Bibian. Neurowave closed-loop sedation technology. In Military Health 2014, Ft.
Lauderdale, FL, Aug 2014. NeuroWave Systems, Inc., Smart Monitoring.

http://link.springer.com/article/10.2165/00019053-200422140-00001
http://dx.doi.org/10.2165/00019053-200422140-00001
http://www.cse.cuhk.edu.hk/leojia/projects/L0smoothing/index.html
http://dx.doi.org/10.1145/2070781.2024208
http://projecteuclid.org/euclid.aos/1176346802
http://projecteuclid.org/euclid.aos/1176346802
http://dx.doi.org/10.1214/aos/1176346802
http://dx.doi.org/10.1109/10.161338
http://dx.doi.org/10.1109/10.161338
http://dx.doi.org/10.1109/10.161338
http://dx.doi.org/10.1109/IEMBS.2002.1106545
http://dx.doi.org/10.1109/IEMBS.2002.1106545
http://dx.doi.org/10.1109/iembs.2002.1106545
http://dx.doi.org/10.1109/iembs.2002.1106545
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=148385
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=148385
http://dx.doi.org/10.1109/10.148385
http://www.smartmonitoring.org/events/military-health-2014/#program2

	University of Pennsylvania
	ScholarlyCommons
	1-1-2015

	VIVA: An Online Algorithm for Piecewise Curve Estimation Using ℓ0 Norm Regularization
	Richard Benjamin Voigt
	Recommended Citation

	VIVA: An Online Algorithm for Piecewise Curve Estimation Using ℓ0 Norm Regularization
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Signature Page
	Copyright
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Illustrations
	Chapter 1. Background
	1.1. The Value of Infusion Monitoring
	1.1.1. Shock is a Major Factor in Preventable Deaths
	1.1.2. Shock is Treated by Optimum Fluid Therapy
	1.1.3. Goal-Directed Therapy Achieves Better Outcomes
	1.1.4. Research Demonstrates that Decision Support and Closed-Loop Control of Hemodynamics is Possible
	1.1.5. Limitations of Automated Fluid Delivery using a Fixed Control Law
	1.1.6. Controllers Benefit from Automated Response Analysis
	1.1.7. "Electronic Doctor" Diagnosis and Prescription will Rely on Automated Response Analysis

	1.2. Practical Measurement of Infusion Rate
	1.2.1. Effects of Erroneous Infusion Rate
	1.2.2. Need for Independent Rate Measurement
	1.2.3. Infusion Monitoring System Prototype

	1.3. Existing Methods for Denoising Piecewise Signals
	1.3.1. Bicriterion Model
	1.3.2. Inexact Methods
	1.3.2.1. "Greedy" Step-Fitting Algorithms

	1.3.3. Convex Methods
	1.3.3.1. Total Variation Minimization
	1.3.3.2. Trend Filtering
	1.3.3.3. Other Interior Point Methods
	1.3.3.4. Advantages of L0 Regularization

	1.3.4. Equivalent Mixed-Integer Models
	1.3.5. Methods of Solving Integer Programs
	1.3.5.1. Symmetry reduction
	1.3.5.2. Bound strengthening methods

	1.3.6. Related Work in Dynamic Programming
	1.3.6.1. Curve Estimation in the Dynamic Programming Literature
	1.3.6.2. Reception of Digital Codes
	1.3.6.3. Pruned dynamic programming

	1.4. Real-Time Implications

	Chapter 2. Short History of the Project
	Chapter 3. Piecewise Minimum Cardinality Curve Fittingusing Pruned Dynamic Programming
	3.1. Optimality Criterion for Continuity-ConstrainedPiecewise Curve Fitting
	3.2. Complexity Growth in Small Cases
	3.3. Functional Description of VIVA Algorithm
	3.3.1. Dense State Encoding

	3.4. Truncated Search Heuristics
	3.4.1. "Freeze Old Segments" Heuristic
	3.4.2. "Limited Branching" Heuristic

	3.5. Case Study, Compression of Electrocardiogram Data
	3.6. Evaluation of Signal Recovery Performanceusing Synthesized Data
	3.6.1. Monte-Carlo Testing Methodology
	3.6.2. Piecewise Constant
	3.6.3. Piecewise Linear

	Chapter 4. Confidence Weighting
	4.1. Measurement Variance
	4.1.1. Inclusion of Weighting Term in Bicriterion Regularization
	4.1.2. Automatic Weighting by Variance Estimation

	4.2. Burst Noise and Denoising Performance
	4.2.1. Unweighted Estimator Performance Degradation due to Burst Noise
	4.2.2. Variance-Based Weighting Provides Robustness to Burst Noise
	4.2.3. Impact of Variance-Based Weighting on Strictly White Noise
	4.2.4. Spectrum of residual noise

	4.3. Case Study, Load Cell Monitoring Resuscitation of Hemorrhagic Shock

	Chapter 5. Error and Delay in Online Configurations
	5.1. Zero-Delay Evaluation
	5.1.1. Uniform Weighting Does Not Inherently Require Delay
	5.1.2. Zero-Delay misses transitions

	5.2. Changepoint Detection Lag
	5.2.1. Solution Stability Condition
	5.2.2. Selecting Delay Based on Solution Stability
	5.2.3. Selecting Delay Based on Observed Population Reduction

	5.3. Online Denoising Performance
	5.3.1. Piecewise-constant with additive i.i.d. Gaussian noise
	5.3.2. Piecewise-constant with burst Gaussian noise
	5.3.3. Piecewise-linear with i.i.d. Gaussian noise
	5.3.4. Piecewise-linear with burst white Gaussian noise

	Chapter 6. Conclusions
	6.1. Summary
	6.2. Impact
	6.3. Whither?

	Appendix A. Selected Matlab and C# Functions
	A.1. Synthesis of test data for Monte Carlo analysis
	A.1.1. gen_piecewise_constant.m
	A.1.2. gen_piecewise_linear.m
	A.1.3. gen_iid_white_noise.m
	A.1.4. gen_burst_white_noise.m

	A.2. Optimality Testing
	A.2.1. Connected Piecewise-Linear Regression (Polyline fitting)

	A.3. VIVA Implementation
	A.3.1. Piecewise-Constant State Update and Branch
	A.3.2. Piecewise-Linear State Update and Branch
	A.3.3. Pruned Depth-First Search

	Appendix B. Solutions to Least-Squares Subproblems
	B.1. Minimum-Residual Constant Segment Estimate
	B.1.1. Least-Squares Solution
	B.1.2. Residual Error

	B.2. Minimum-Residual Polyline Estimate
	B.2.1. Least-Squares Solution

	Appendix C. Summary of measurement statistics
	C.1. Continuous time
	C.1.1. Recursive update
	C.1.2. Change of anchor time

	C.2. Discrete time
	C.2.1. Recursive Update

	Appendix D. Linear Relaxations
	Appendix E. Small Polyline fitting examples
	Bibliography

