3,107 research outputs found

    Using nodal coordinates as variables for the dimensional synthesis of mechanisms

    Get PDF
    The method of the lower deformation energy has been successfully used for the synthesis of mechanisms for quite a while. It has shown to be a versatile, yet powerful method for assisting in the design of mechanisms. Until now, most of the implementations of this method used the dimensions of the mechanism as the synthesis variables, which has some advantages and some drawbacks. For example, the assembly configuration is not taken into account in the optimization process, and this means that the same initial configuration is used when computing the deformed positions in each synthesis point. This translates into a reduction of the total search space. A possible solution to this problem is the use of a set of initial coordinates as variables for the synthesis, which has been successfully applied to other methods. This also has some additional advantages, such as the fact that any generated mechanism can be assembled. Another advantage is that the fixed joint locations are also included in the optimization at no additional cost. But the change from dimensions to initial coordinates means a reformulation of the optimization problem when using derivatives if one wants them to be analytically derived. This paper tackles this reformulation, along with a proper comparison of the use of both alternatives using sequential quadratic programming methods. In order to do so, some examples are developed and studied.The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its support through Grant DPI2013-46329-P and DPI2016-80372-R. Additionally the authors wish to thank the Education Department of the Basque Government for ist support through grant IT947-16

    Differential Equation Models and Numerical Methods for Reverse Engineering Genetic Regulatory Networks

    Get PDF
    This dissertation develops and analyzes differential equation-based mathematical models and efficient numerical methods and algorithms for genetic regulatory network identification. The primary objectives of the dissertation are to design, analyze, and test a general variational framework and numerical methods for seeking its approximate solutions for reverse engineering genetic regulatory networks from microarray datasets using the approach based on differential equation modeling. In the proposed variational framework, no structure assumption on the genetic network is presumed, instead, the network is solely determined by the microarray profile of the network components and is identified through a well chosen variational principle which minimizes a biological energy functional. The variational principle serves not only as a selection criterion to pick up the right biological solution of the underlying differential equation model but also provide an effective mathematical characterization of the small-world property of genetic regulatory networks which has been observed in lab experiments. Five specific models within the variational framework and efficient numerical methods and algorithms for computing their solutions are proposed and analyzed in the dissertation. Model validations using both synthetic network datasets and real world subnetwork datasets of Saccharomyces cerevisiae (yeast) and E. Coli are done on all five proposed variational models and a performance comparison vs some existing genetic regulatory network identification methods is also provided. As microarray data is typically noisy, in order to take into account the noise effect in the mathematical models, we propose a new approach based on stochastic differential equation modeling and generalize the deterministic variational framework to a stochastic variational framework which relies on stochastic optimization. Numerical algorithms are also proposed for computing solutions of the stochastic variational models. To address the important issue of post-processing computed networks to reflect the small-world property of underlying genetic regulatory networks, a novel threshholding technique based on the Random Matrix Theory is proposed and tested on various synthetic network datasets

    Optimization algorithms for inference and classification of genetic profiles from undersampled measurements

    Get PDF
    In this thesis, we tackle three different problems, all related to optimization techniques for inference and classification of genetic profiles. First, we extend the deterministic Non-negative Matrix Factorization (NMF) framework to the probabilistic case (PNMF). We apply the PNMF algorithm to cluster and classify DNA microarrays data. The proposed PNMF is shown to outperform the deterministic NMF and the sparse NMF algorithms in clustering stability and classification accuracy. Second, we propose SMURC: Small-sample MUltivariate Regression with Covariance estimation. Specifically, we consider a high dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. We show that, in this case, the maximum likelihood approach is senseless because the likelihood diverges. We propose a normalization of the likelihood function that guarantees convergence. Simulation results show that SMURC outperforms the regularized likelihood estimator with known covariance matrix and the state-of-the-art sparse Conditional Graphical Gaussian Model (sCGGM). In the third Chapter, we derive a new greedy algorithm that provides an exact sparse solution of the combinatorial l sub zero-optimization problem in an exponentially less computation time. Unlike other greedy approaches, which are only approximations of the exact sparse solution, the proposed greedy approach, called Kernel reconstruction, leads to the exact optimal solution

    Graph-based Regularization in Machine Learning: Discovering Driver Modules in Biological Networks

    Get PDF
    Curiosity of human nature drives us to explore the origins of what makes each of us different. From ancient legends and mythology, Mendel\u27s law, Punnett square to modern genetic research, we carry on this old but eternal question. Thanks to technological revolution, today\u27s scientists try to answer this question using easily measurable gene expression and other profiling data. However, the exploration can easily get lost in the data of growing volume, dimension, noise and complexity. This dissertation is aimed at developing new machine learning methods that take data from different classes as input, augment them with knowledge of feature relationships, and train classification models that serve two goals: 1) class prediction for previously unseen samples; 2) knowledge discovery of the underlying causes of class differences. Application of our methods in genetic studies can help scientist take advantage of existing biological networks, generate diagnosis with higher accuracy, and discover the driver networks behind the differences. We proposed three new graph-based regularization algorithms. Graph Connectivity Constrained AdaBoost algorithm combines a connectivity module, a deletion function, and a model retraining procedure with the AdaBoost classifier. Graph-regularized Linear Programming Support Vector Machine integrates penalty term based on submodular graph cut function into linear classifier\u27s objective function. Proximal Graph LogisticBoost adds lasso and graph-based penalties into logistic risk function of an ensemble classifier. Results of tests of our models on simulated biological datasets show that the proposed methods are able to produce accurate, sparse classifiers, and can help discover true genetic differences between phenotypes
    • …
    corecore