
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2010

Differential Equation Models and Numerical Methods for Reverse Differential Equation Models and Numerical Methods for Reverse

Engineering Genetic Regulatory Networks Engineering Genetic Regulatory Networks

Mi Un Yoon
University of Tennessee, myoon@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Yoon, Mi Un, "Differential Equation Models and Numerical Methods for Reverse Engineering Genetic
Regulatory Networks. " PhD diss., University of Tennessee, 2010.
https://trace.tennessee.edu/utk_graddiss/928

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=trace.tennessee.edu%2Futk_graddiss%2F928&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Mi Un Yoon entitled "Differential Equation

Models and Numerical Methods for Reverse Engineering Genetic Regulatory Networks." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Mathematics.

Xiaobing Feng, Major Professor

We have read this dissertation and recommend its acceptance:

Suzanne Lenhart, Steven Wise, Albrecht von Arnim

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Miun Yoon entitled “Differential Equa-

tion Models and Numerical Methods for Reverse Engineering Genetic Regulatory Net-

works”. I have examined the final electronic copy of this dissertation for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy, with a major in Mathematics.

Xiaobing Feng

Major Professor

We have read this dissertation
and recommend its acceptance:

Suzanne Lenhart

Steven Wise

Albrecht von Arnim

Accepted for the Council:

Carolyn R. Hodges

Vice Chancellor and Dean of
Graduate Studies

(Original signatures are on file with offical student records.)

Differential Equation Models and

Numerical Methods for Reverse

Engineering Genetic Regulatory Networks

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Miun Yoon

December 2010

Copyright c© 2010 by Miun Yoon.

All rights reserved.

iii

Dedication

This dissertation is dedicated to my family. My parents raised me with freedom of choice

and supported me all the time. My parents-in-law encouraged and are proud of me.

I especially dedicate this dissertation to my husband, Kyungyuk, who has always been

there as a husband, a mentor, and a friend, to my lovely son, Hagen, who has grown into

a wonderful four years old boy and makes me smile and to my lovely daughter, Ella, who

was born on October 13, 2010.

iv

Acknowledgments

I would like to take this opportunity to thank many people who have made this dissertation

possible. First and foremost, I would like to thank my dissertation advisor, Dr. Xiaobing

Feng for his watchful guidance, kind encouragement, forgiveness. Dr. Feng has led me to

this very fun field of study and never got tired of answering my questions. I would also like

to thank Drs. Suzanne Lenhart, Steven Wise, and Albrecht von Arnim, for gladly serving

on my dissertation committee. Dr. Suzanne Lenhart who gives me suggestions and great

support as a woman mathematician. Dr. Wise gives me detailed comments and suggestions

about numerical methods. Dr. von Arnim strengthens my background of Genetics and

gives me a lot of suggestions as a biologist.

I would like to thank Drs. Jizhong Joe Zhou and Zhili He of Institute for Environmental

Genomics (IEG) at University of Oklahoma, and Dr. Yunfeng David Yang of Oak Ridge

National Laboratory for getting me interested in modeling and simulation of gene regulatory

netwokrs, and system biology in general.

A number of people whom I have met at the UTK deserve my special thanks. Allison

Carter, my longest buddy in this country, has been keeping me motivated and encouraged

when I could not see the light at the end of the tunnel.

Finally, I would like to acknowledge the support of the NSF grants DMS-0410266 and

DMS-0710831 for my research from August of 2008 to July of 2009 and in the summer of

2010.

v

Abstract

This dissertation develops and analyzes differential equation-based mathematical models

and efficient numerical methods and algorithms for genetic regulatory network identifica-

tion. The primary objectives of the dissertation are to design, analyze, and test a general

variational framework and numerical methods for seeking its approximate solutions for re-

verse engineering genetic regulatory networks from microarray datasets using the approach

based on differential equation modeling. In the proposed variational framework, no structure

assumption on the genetic network is presumed, instead, the network is solely determined

by the microarray profile of the network components and is identified through a well cho-

sen variational principle which minimizes a biological energy functional. The variational

principle serves not only as a selection criterion to pick up the right biological solution

of the underlying differential equation model but also provides an effective mathematical

characterization of the small-world property of genetic regulatory networks which has been

observed in lab experiments. Five specific models within the variational framework and

efficient numerical methods and algorithms for computing their solutions are proposed and

analyzed in the dissertation. Model validations using both synthetic network datasets and

real world subnetwork datasets of Saccharomyces cerevisiae (yeast) and E. coli are done

on all five proposed variational models and a performance comparison vs some existing

genetic regulatory network identification methods is also provided. As microarray data is

typically noisy, in order to take into account the noise effect in the mathematical models,

we propose a new approach based on stochastic differential equation modeling and gener-

alize the deterministic variational framework to a stochastic variational framework which

vi

relies on stochastic optimization. Numerical algorithms are also proposed for computing

solutions of the stochastic variational models. To address the important issue of post-

processing computed networks to reflect the small-world property of underlying genetic

regulatory networks, a novel threshholding technique based on the Random Matrix Theory

is proposed and tested on various synthetic network datasets.

vii

Contents

1 Introduction 1

1.1 Background of genetics . 1

1.1.1 History of genetics . 1

1.1.2 Molecular basis of gene expression 3

1.1.3 Technology . 11

1.2 Systems biology . 11

1.3 Background and literature review of DE-based models of gene regulatory

networks . 13

1.3.1 Dynamical models of gene regulatory networks 13

1.3.2 Discretization . 17

1.4 Scope and contributions of the dissertation 18

2 Variational Methods for Gene Regulatory Network Identification Based

on Differential Equation Modeling 21

2.1 The general framework of variational methods 21

2.2 Examples of energy functional L . 24

2.3 Derivation of unconstrained variational problem 27

2.4 Extension to the general model (1.3.4) . 29

3 The Average Minimum Strength and the cp Minimum Strength Models 31

3.1 The average minimum strength model . 32

viii

3.1.1 Existence and uniqueness of minimizers 32

3.1.2 AMSM Algorithm . 34

3.2 The cp minimum strength model . 34

3.3 Numerical simulation . 36

3.3.1 Post-processing . 38

3.3.2 Performance evaluation . 38

4 The Column Minimum Strength and the Row Minimum Strength Models 46

4.1 The column minimum strength model . 47

4.1.1 l∞-vector norm minimization . 47

4.1.2 L1-matrix norm minimization . 49

4.2 The row minimum strength model . 51

4.2.1 l1-vector norm minimization . 51

4.2.2 L∞-matrix norm minimization . 55

4.3 Numerical simulation . 56

5 The Lp Minimum Strength Model 65

5.1 Existence and uniqueness of minimizers . 66

5.2 Algorithm . 66

5.2.1 The matrix Lp-norm estimation . 66

5.2.2 LpMSM algorithm . 68

5.3 Numerical simulation . 68

6 The Entrywise Minimum Strength Model 72

6.1 Existence and uniqueness of minimizers . 73

6.2 Algorithm . 73

6.3 Numerical simulation . 74

7 Stochastic Differential Equation Models and Random Matrix Theory Thresh-

olding Techniques 78

ix

7.1 Stochastic differential equation models and

stochastic variational framework . 79

7.2 Post-processing of stochastic differential equation models 82

7.2.1 Random matrix theory (RMT) . 82

7.2.2 RMT thresholding techniques . 84

7.3 Numerical simulations . 85

8 Conclusion and Future Directions 89

8.1 Conclusion . 89

8.1.1 Synthetic gene regulatory networks 90

8.1.2 Benchmark subnetworks of Saccharomyces cerevisiae and E. coli . . 92

8.2 Future directions . 93

Bibliography 97

Appendices 107

Vita 147

x

List of Tables

3.1 Elements in connection matrix . 39

3.2 Occurrences of TP, FP, and FN for different types of graphs 40

8.1 PPV and Se values of all models on an yeast cell cycle network 92

8.2 PPV and Se values comparison on a five-gene yeast network using switch-on

data . 93

8.3 PPV and Se values comparison on a five-gene yeast subnetwork using switch-

off data . 94

8.4 PPV and Se values comparison on a fourteen-gene E.coli. subnetwork (PPV

and Se values of ARANCE, BANJO, Clustering are reported in [3]) 95

B.1 List of m-files . 112

xi

List of Figures

1.1 Central dogma of biology (http://1mkturin.files.wordpress.com) 3

1.2 Cell, Chromosome, and DNA (http://employees.csbsju.edu) 4

1.3 The structure of DNA, A: Adenin, C:Cytosine, G:Guanine, and T:Thymine

(http://www.britannica.com) . 5

1.4 Basic structure of gene (http://nitro.biosci.arizona.edu) 6

1.5 Elongation stage in translation (http://www.bio.miami.edu) 8

1.6 Elongation stage in translation (http://upload.wikimedia.org) 9

1.7 Bases in mRNA (http://library.thinkquest.org) 9

1.8 Anticodon and peptide in tRNA (http://library.thinkquest.org) 9

1.9 Genetic Code (http://img.sparknotes.com) 10

3.1 AMSM synthetic 100, 350 and 3000 genes networks (x-axis is in log scale) . 42

3.2 True yeast cell cycle network [56] . 42

3.3 Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly

inferred and incorrectly inferred edges by AMSM, respectively. PPVu=0.3,

Seu=0.32, PPVd=0.29, Sed=0.29, PPVs=0.17, Ses=0.17. u: undirected

graph, d: directed graph, s: signed graph. 43

3.4 Five-gene yeast true network [15] . 43

xii

3.5 Inferred five-gene yeast network using switch on data. Solid and dashed lines

indicate the correctly inferred and incorrectly inferred edges by AMSM using

switch on data, respectively. PPVu=0.71, Seu=0.57, PPVd=0.43, Sed=0.38,

PPVs=0.43, Ses=0.38. 44

3.6 Inferred five-gene yeast network using switch off data. Solid and dashed

lines indicate the correctly inferred and incorrectly inferred edges by AMSM,

respectively. PPVu=0.57, Seu=0.57, PPVd=0.5, Sed=0.5, PPVs=0.5, Ses=0.5. 44

3.7 Nine-gene true E. coli network [4]. 45

3.8 Inferred nine-gene E. coli network. Solid and dashed lines indicate the

correctly inferred and incorrectly inferred edges by AMSM, respectively.

PPVu=0.68, Seu=0.88, PPVd=0.67, Sed=0.65, PPVs=0.45, Ses=0.44. . . . 45

4.1 CMSM1 on synthetic 100 and 350 genes networks 57

4.2 CMSM2 on synthetic 100 genes network . 57

4.3 RMSM1 on synthetic 100 and 350 genes networks 58

4.4 RMSM2 on synthetic 100 genes network . 58

4.5 Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly

inferred and incorrectly inferred edges by CMSM1, respectively. PPVu=0.42,

Seu=0.47, PPVd=0.37, Sed=0.39, PPVs=0.21, Ses=0.22. 59

4.6 Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly

inferred and incorrectly inferred edges by CMSM2, respectively. PPVu=0.36,

Seu=0.36, PPVd=0.27, Sed=0.27, PPVs=0.12, Ses=0.12. 60

4.7 Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly

inferred and incorrectly inferred edges by RMSM1, respectively. PPVu=0.21,

Seu=0.12, PPVd=0.2, Sed=0.2, PPVs=0.13, Ses=0.12. 61

4.8 Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly

inferred and incorrectly inferred edges by RMSM2, respectively. PPVu=0.33,

Seu=0.38, PPVd=0.23, Sed=0.24, PPVs=0.14, Ses=0.15. 62

xiii

4.9 Inferred nine-gene E. coli network. Solid and dashed lines indicate the

correctly inferred and incorrectly inferred edges by CMSM1, respectively.

PPVu=0.68, Seu=0.96, PPVd=0.6, Sed=0.65, PPVs=0.38, Ses=0.42. 63

4.10 Inferred nine-gene E. coli network. Solid and dashed lines indicate the

correctly inferred and incorrectly inferred edges by CMSM2, respectively.

PPVu=0.73, Seu=0.92, PPVd=0.64, Sed=0.67, PPVs=0.36, Ses=0.37. . . . 63

4.11 Inferred nine-gene E. coli network. Solid and dashed lines indicate the

correctly inferred and incorrectly inferred edges by RMSM1, respectively.

PPVu=0.66, Seu=0.88, PPVd=0.69, Sed=0.72, PPVs=0.49, Ses=0.51. . . . 64

4.12 Inferred nine-gene E. coli network. Solid and dashed lines indicate the

correctly inferred and incorrectly inferred edges by RMSM2, respectively.

PPVu=0.73, Seu=0.92, PPVd=0.73, Sed=0.74, PPVs=0.43, Ses=0.44. . . . 64

5.1 LpMSM on synthetic 50 genes network . 70

5.2 Inferred yeast cell cycle network network. Solid and dashed lines indicate

the correctly inferred and incorrectly inferred edges by LpMSM, respectively.

PPVu=0.33, Seu=0.40, PPVd=0.21, Sed=0.24, PPVs=0.13, Ses=0.15. . . . 70

5.3 Inferred nine-gene E. coli network. Solid and dashed lines indicate the

correctly inferred and incorrectly inferred edges by LpMSM, respectively.

PPVu=0.71, Seu=0.92, PPVd=0.70, Sed=0.72, PPVs=0.36, Ses=0.37. . . . 71

6.1 EMSM on synthetic 100 and 350 genes networks 75

6.2 Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly

inferred and incorrectly inferred edges by EMSM, respectively. PPVu=0.31,

Seu=0.38, PPVd=0.23, Sed=0.27, PPVs=0.13, Ses=0.15. 76

6.3 Inferred nine-gene E. coli network. Solid and dashed lines indicate the cor-

rectly inferred and incorrectly inferred edges by EMSM, respectively. PPVu=0.68,

Seu=0.86, PPVd=0.74, Sed=0.65, PPVs=0.36, Ses=0.37. 77

xiv

7.1 Nuclear reaction of Lithium . 83

7.2 Optional caption for list of figures . 87

7.3 Optional caption for list of figures . 88

8.1 Comparison of all models applied to a synthetic network with 100 genes . . 91

8.2 Comparison of AMSM, CMSM1, RMSM1, and EMSM applied to a synthetic

network with 350 genes . 91

8.3 Inferred network by TSNI using switch-on data [15] 94

8.4 Inferred network by BANJO using switch-on data [15] 94

8.5 Inferred network by TSNI using switch-off data [15] 95

8.6 Inferred network by BANJO using switch-off data [15] 95

xv

Chapter 1

Introduction

1.1 Background of genetics

This section collects some basic materials about genes, DNA, RNA, gene expression, and

gene regulatory networks. These materials can be found in any undergraduate level text

books on genes and gene networks, among them we refer to [46, 84].

1.1.1 History of genetics

Gregor Johann Mendel who is known as the “father of modern genetics” suggested the

existence of inherited characteristics by pea plants in 1866. In 1902, Walter Sutton and

Theodor Boveri established the chromosome theory of inheritance. In 1909, Wilhelm Jo-

hannsen who was a Danish Botanist named a functional unit of heredity as “gene”. In the

following years, Thomas Hunt Morgan who was an American geneticist and embryologist

confirmed the chromosome theory of inheritance by his discovery that genes are carried by

and located on specific part of a chromosome. Biochemists proved that each chromosome

is an organized structure of a single piece of coiled DNA and DNA-bound proteins. In

the 1940s and 1950s, Oswald Avery, Colin Munro MacLeod, and Maclyn McCarty finally

demonstrated that genes are packed and encoded in DNA. This discovery served as the

springboard for research on the DNA molecule to identify its structure and to understand

1

how DNA carries the hereditary information. In 1953, James D. Watson and Francis Crick

proposed the structure of DNA which is known as the “double helix” these days [81]. After

the discovery of the structure of DNA, it was also elucidated that the double helix structure

of DNA and basepairs of four chemical components on the structure were related to the

ability of DNA as the main storage and carrier of the genetic information.

Each gene is manual that encode the information to produce proteins and other molecules

in the cell. To produce needed proteins, first, the information in each gene is read by a

special molecule machinery in the cell. Second, those instructions are transferred to an-

other molecule machine, the ribosome, to produce proteins using instructions. These two

processes are referred as “gene expression”. Francis Crick in 1958 proposed “the central

dogma” in the cell (Figure 1.1). The first process is called transcription and the latter one

is called translation. See the next subsection for a detailed discussion.

The biologists turned their attention to categorizing and analyzing the information

contained within individual genes, which was the beginning of molecular genetics. More

recently, the entire hereditary information contained within one species, the genome, has

been analyzed (genomics). In 1990, the human genome project began to identify all the

genes (about 20,000 - 25,000 genes) in human DNA by determining the entire sequence of

basepairs in the human genome, which was completed in 2003.

Although all the genes in human DNA are now known, it is still hard to explain how

living organisms are made up and how they respond to and adjust to their environment. In

other words, to understand the metabolism and cellular functions, one needs to understand

not only each component (gene) but also how it is expressed and how different genes interact.

The development of DNA microarray technology has accelerated geneticists’ research. The

DNA microarray has allowed geneticists to examine the RNA expression of thousands of

genes simultaneously. Using DNA microarray, geneticists have been able to determine when

and where each gene is expressed, as well as how the expression of one gene depends on the

presence or expression of other genes.

2

Figure 1.1: Central dogma of biology (http://1mkturin.files.wordpress.com)

1.1.2 Molecular basis of gene expression

Cells are the building blocks of the living organism. Each cell in a living organism consists

of molecular components such as DNA, RNA, proteins, and other molecules. Cells mainly

produce varieties of proteins which are needed for the development and functioning of living

organisms. There are many different types of cells that differ in their molecular composition,

structure, and function. For example, some cells in the blood produce hemoglobin to carry

oxygen to every place in the body and other cells produce enzymes like amylase, pepsin,

and lactase to digest food. Who determines which proteins cells produce and what the cells’

functions are? The pattern of proteins produced b any given cell is determined by the genes

encoded in the basepair sequence of the DAN and by the expression pattern of those genes

(Figure 1.2).

DNA stores genetic information containing all instructions needed for cells to produce

proteins and to function in the living organism. The double helix structure of DNA is

3

Figure 1.2: Cell, Chromosome, and DNA (http://employees.csbsju.edu)

4

Figure 1.3: The structure of DNA, A: Adenin, C:Cytosine, G:Guanine, and T:Thymine
(http://www.britannica.com)

formed by binding two long polynucleotide strands. Each strand is a stack made up nu-

merous nucleotides. A single nucleotide consists of a sugar, a phosphate, and one of four

bases, adenine, cytosine, guanine, and thymine. The bases attached to both DNA strands

pair with each other via weak, non-covalent bonds, known as hydrogen bonds. Adenine

always interacts with thymine and cytosine interacts with guanine. Sugars and phosphates

in both strands form the backbone on the outside of the double helix and while the bases

(flat molecules) are facing inward forming the rings of the ladder. Because of the base com-

plementary, the information contained within a double-stranded DNA molecule is two-fold

redundant and can be easily replicated by separation of the strands and de novo synthesis

(See figure 1.3). One end of each strand of DNA is called the 5′ end and the other end is

called the 3′ end. The double helix structure is said to be antiparallel, that is, both strands

run in opposite directions (one strand runs 5′ → 3′ and the complementary strand runs

3′ → 5′). One strand is called the template strand (3′ → 5′) and the other strand is called

the non-template strand (5′ → 3′). It is the non-template strand that gets copied into an

5

Figure 1.4: Basic structure of gene (http://nitro.biosci.arizona.edu)

mRNA molecule in the process of transcription (Figure 1.5. Not all the genes are expressed

in every cell.

Each gene is a discrete segment of DNA, which is defined by being transcribed into a

discrete short mRNA molecule, which in turn is translated into a discrete protein molecule.

There are about 30,000 genes in human cells. Not all genes encode proteins. Some genes

contain information to produce RNAs. A sequence located upstream (5′) of the protein

coding region is called the gene’s promoter (see figure 1.4 for the basic structure of gene).

The promoter plays an important role in gene regulation when and where the gene is

transcribed. Gene expression of DNA into protein proceeds via an important intermediate

ribonucleic acid (RNA).

RNA is a long chain of nucleotides like DNA. In fact, the structure of RNA is very

similar to that of DNA except for a few important details. RNA molecule is usually a

single polynucleotide strand. RNA nucleotide contains four bases, like DNA, but thymine

is replaced by uracil, which have pairs with adenine. RNA is transcribed from DNA by

RNA polymerases (enzymes). There are many types of RNAs. Here, we introduce three

RNAs, messengerRNA (mRNA), ribosomalRNA (rRNA), and transferRNA (tRNA) which

are involved in protein synthesis.

Transcription of protein coding genes produces mRNA. mRNA is a “blueprint” (or

“template”) of a protein product (Figure 1.7). The bases in the mRNA are complementary

to the template strand (3′ → 5′) of DNA. A group of three consecutive bases in the mRNA

6

template is called a codon.Each codon codes for a specific amino acid depending on the

sequence of bases in each codon (see Figure 1.9). One codon specifies the start of the

protein coding region on the mRNA. Three of codons serve as stop signals to terminate the

translation process.

In order to translate the tripled code at the RNA level into a sequence of amino acids,

a set of adopter molecules is needed. Another RNA produced by the transcription from

DNA is a transfer RNA (tRNA). tRNA is a small molecule that delivers amino acids during

the protein synthesis. One end of each tRNA contains an anticodon that is complementary

to mRNA, so that tRNAs bind to mRNA during the translation. The other end attaches

an amino acid. Depending on a codon, tRNA brings a different amino acid to mRNA

to produce the amino acids sequence of a polypeptide. Figure 1.8 shows an example of

an anticodon and an amino acid in tRNA with mRNA from Figure 1.7. tRNA with the

anticodon “GAU” binds to the codon “CUA” . The corresponding amino acid to the codon

“CUA” in the tRNA is “Leu” found in Figure 1.9. Cells contain one or more tRNAs for

each of the 20 amino acid used during protein synthesis.

The last transcribed RNA is ribosomal RNA (rRNA) which makes up about 80% of

RNA in the cell. rRNA is associated with specific proteins to form the ribosome. The

ribosome is the central component of the protein production machinery in a cell. Each

ribosome consists of two subunits called the large and small subunits. Two subunits of the

ribosomes are attached to mRNA that stays in between them. Each ribosome accepts two

tRNAs at a time. The ribosome functions as an enzyme that sticks together the amino

acids that are delivered by the series of tRNAs.

In summary, gene expression is a process by which a gene’s information is decoded into

a cell’s product, protein. It is a two-step process that begins with decoding of the genetic

information from DNA to RNA (transcription) followed by translation of RNA into protein

(translation).

Transcription and translation in prokaryotes and eukaryotes are a bit different in details

and involving factors. We describe two processes which occur in eukaryotes below.

7

Figure 1.5: Elongation stage in translation (http://www.bio.miami.edu)

Transcription is the first step of gene expression and produces mRNA from the DNA

template. Three phases occur during transcription: initiation, elongation, and termination.

Transcription is initiated by transcription factors binding near the the gene promoter, which

is called TATA (i.e. alternating thymine-adenine bonds) box . These factors prepare the

DNA to bind RNA polymerase for a successful transcription. During the elongation (Figure

1.5), RNA polymerase (enzyme) moves along the DNA by unwinding a small portion of

double helix in the 5′ → 3′ direction of the template DNA strand. mRNA is produced by

stacking of bonds that are complementary of the template DNA strand. Most factors are

removed after initiation phase. Transcription is terminated at specific points after coding

sequence. This area contains a sequence to stop transcription. Then, RNA polymerase is

also released.

As we mentioned above, cells do not express all genes at once. Only about 15% of

the human genome is expressed in any given cell, and the rest of the genes are inactive. In

multicellular organisms, the subset of expressed genes varies depending on the types of cells.

For example, a type of blood cell, the lymphocyte, produces antibodies by expressing genes

that encode antibody polypeptide. The characteristics and roles of the cells are determined

8

Figure 1.6: Elongation stage in translation (http://upload.wikimedia.org)

Figure 1.7: Bases in mRNA (http://library.thinkquest.org)

Figure 1.8: Anticodon and peptide in tRNA (http://library.thinkquest.org)

9

Figure 1.9: Genetic Code (http://img.sparknotes.com)

by its active gene set. The amount of proteins that a cell produces depends on the tissue,

the developmental stage of the organism and the metabolic or physiologic state of the cell.

The genes are under the control of complex patterns of regulation, so that the expressed

genes are those that are necessary for the cell’s functions. The pattern of gene expression

can change during the lifetime of the cell, and an abnormal gene expression pattern can

lead to the development of diseases. It is very important to understand the gene regulation

to reveal the disease mechanism. Unfortunately, how genes are regulated is not yet fully

understood. Transcriptional regulation is the best-studied form of regulation. Besides the

regulation of transcription, expression of a gene may be controlled during RNA processing

and transport, RNA translation, and by the post-translational modification of proteins.

The degradation of mRNA and intermediate RNA products can also be regulated.

10

1.1.3 Technology

DNA microarray technology has greatly accelerated the pace of discovery in genetics. A

DNA microarray is in the form of a large matrix whose size is thousands by thousands.

In each spot, a single stranded DNAs with a gene-specific sequence, known as a probe, is

attached [34]. Each gene in the genome is represented by one or, usually, multiple probes.

In a microarray based gene separation experiment, first, mRNAs are extracted from sample

cells that are examined. Second, complementary DNAs (cDNA), known as targets, are

generated via reverse transcription using the extracted mRNA as template. Next, cDNA

product is labeled using a fluorescence dye. The labeled cDNAs are deposited onto the

surface of the microarray. cDNAs only bind to those probes on microarray that contain

complementary bases. The binding, however, can not be seen by the human at this step.

To see that, the hybridized microarray is scanned by fluorescence microscopy. Finally, the

intensity of the target at each spot is analyzed using image analysis software. The intensity

of fluorescent signal at each spot represents the amount of mRNA in the original sample of

cells [34].

In order to use DNA microarray data for the currently proposed gene regulatory net-

work identification problems, they need to be pre-processed, since microarray data almost

certainly contains noise. Noise aries from different sources during the DNA microarray ex-

periment such as incomplete extraction of the mRNA from the tissue, conversion to cDNA,

hybridization, and so on. In this dissertation, we introduce two types of models, determinis-

tic differential equation models and stochastic differential models. Deterministic differential

models require pre-processed microarray data. Stochastic differential models can take raw

microarray data.

1.2 Systems biology

In the late 1990s, scientists (biologists, mathematicians and engineers) began studying the

hidden biological dynamics, such as interactions between genes and proteins, in a way that

11

has become known as systems biology. Systems biology has been one of the featured fields

in modern science.

With recent advances in high-throughput technologies such as DNA microarray, it is

possible to measure the spatial-temporal expression levels of thousands of genes at the sys-

tem level. Data thus collected provides valuable descriptions of gene activities under various

biochemical and physiological circumstances and allow one to identify their interactions at

the system level, or to “reverse-engineer” the gene regulatory networks (GRNs), that is,

to infer the underlying network structures from gene expression profiling. Understanding

gene regulatory networks at the system level is a fundamental issue in the post-genomic era

[10, 3, 15, 40, 57, 62, 80]. The interactions between genes for the purpose of gene regulation,

development, discover etc. have been studied for many years and even decades J. Monod, M.

Ptashne, C. Nüsslein Volhard, H. Varmus, ect. what distinguishes “systems biology” from

those prior approaches is the goal of considering or incorporating all possible data at once,

in a “holistic” fashion. Previously, interactions were usually reduced to simple patterns of

one gene regulating on other gene, in the tried-and tested tradition of “reductionist” science.

There are three types of interactions among genes within a GRN, namely, activation, inhi-

bition, and non-interaction. The activation and inhibition are represented by interlocking

positive and negative effects of one gene on another between genes, respectively. Because

most GRNs of interest involve many constituents (such as genes, RNAs, proteins, and other

molecules), which are connected and interact in a very complex fashion, an intuitive un-

derstanding of the network and its dynamics is difficult to achieve. Consequently, formal

mathematical and statistical methods and computer tools for modeling and simulation of

GRNs become indispensable. In the past fifteen years, various methods and approaches have

been introduced to study gene regulatory network identification (and functional prediction).

Among them are statistical methods such as Boolean, Bayesian, graph network, and neural

network methods, as well as machine learning algorithms [78, 22, 39, 49, 54, 53, 61, 26].

Boolean network models make use of Boolean variables to infer GRNs. In a Boolean

model, the state of a gene is described by a Boolean variable 0 (inactive) or 1 (active) and

12

interactions between the genes are expressed by Boolean functions which calculate the state

of a gene based on the states of some other genes. In the Boolean network formalism, the

mRNA expression levels are discretized to be active or inactive and intermediate expression

levels are ignored. So the discretization may cause the loss of significant information,

hence, give unrealistic GRNs. In Bayesian network models, the relationships between genes

are expressed by graph structures whose vertices and directed edges represent variables

(genes) and dependencies, respectively. Variables without connections are conditionally

independent. They together form a direct acyclic graph which has no loops. Bayesian

methods infer GRNs using direct acyclic graphs and conditional probability distributions

and their statistical theories. They are not proper to infer GRNs which contain loops [18].

Moreover, Bayesian methods only infer GRNs’ graphic structures, they do not provide the

dynamical aspects of gene regulations.

Alternatively, inspired by the electrical engineering paradigm, some successful ideas

such as systems and control theories from electrical circuitry have been borrowed to study

genomic circuitry [87]. The defining feature of such an approach is that it relies on math-

ematical modeling and numerical/computer simulation. Since such mathematical models

are often described by differential equations (DEs), we shall refer this approach as DE-based

approach or DE-modeling. Recently, various DE models and methods have been developed

in the literature [17, 19, 40, 28, 80, 62, 77, 86, 26].

1.3 Background and literature review of DE-based models of

gene regulatory networks

1.3.1 Dynamical models of gene regulatory networks

In order to construct Gene Regulatory Networks (GRNs) identification models based on

differential equations (DEs), the concentrations of mRNA, proteins, other molecules, which

take values of nonnegative real numbers, are often used as the primary variables since they

are measurable from the microarray data [48] and assumed to vary continuously in time.

13

DE based GRN identification models relate to an external perturbation which changes the

rate of change of transcript concentrations in a cell. Let t be the time, n denote the number

of genes in the GRNs, and yi(t) represent the gene transcript concentration of gene i at time

t in the network, then for gene i, yi(t) is assumed to satisfy the following rate equations

[26, 40, 80]:

dyi(t)

dt
= fi(y1(t), y2(t), · · · , yn(t)) + bivi for i = 1, 2, · · · , n, (1.3.1)

where fi : Rn → R is a scalar valued influence function and a (small) constant quantity

vi is an external perturbation to each gene. bi is the impact of the perturbation vi on ith

gene. vi could be a function of the time depending on what type of experimental data

is collected. Hence, the entire GRN via gene expression data can be modeled by an n-

dimensional dynamical system of rate equations:

dy(t)

dt
= F(y(t)) + b · v, (1.3.2)

where y(t) = [y1(t), y2(t), · · · , yn(t)]T , R+ := [0,∞) → Rn
+, F(y) = [f1(y), f2(y), · · · ,

fn(y)]T , and v = [v1, v2, · · · , vn]T (for the time dependent external perturbation v(t) =

[v1(t), v2(t), · · · , vn(t)]). Clearly, the choice of influence function F is the crucial first step

to build good mathematical models of the form (1.3.2), and different choices of F may

lead to different conclusions about the structure and the quantitative relations between

genes in the GRN. Several choices of F such as linear and piecewise linear functions have

been proposed and studied in the literature (see [26] and the references therein), however,

their usefulness is severely hampered by the lack of in vivo or in vitro measurements of

the (kinetic) parameters in the rate equations. In addition to the linear models, nonlinear

influence functions should be considered, since in general, most of biological networks are

governed by nonlinear dynamics. There, however, have been very few nonlinear models

proposed in literature because of the difficulties in estimating parameters with the small

number of data compared to the large number of parameters. Instead of constructing the

14

biologically well-defined nonlinear function F, most of approaches for the DE modeling

consider the first order approximation of the model (1.3.2) near a steady state solution,

where gene expression values do not change significantly over time and their gene expression

levels are measurable in a lab experiment [40, 41, 4]. That is, one seeks a solution of the form

y(t) = y0 + δx(t) for |δ| � 1, where y0 is the steady state solution of (1.3.2). Plugging y(t)

into (1.3.2), using Taylor formula and the fact that F(y0) ≈ 0, and neglecting the higher

order terms in δ we get the following linearized differential equation model:

dx(t)

dt
= Ax(t) + Pu, (1.3.3)

where u = δ−1v and A := [aij] denotes the n × n Jacobian matrix of F at y0, i.e. aij =

∂fi
∂yi

(y0). Each entry of A encodes the regulatory interaction (activation, inhibition, and

non-interaction) between the genes in the network and its magnitude measures the strength

of the interactions. If aij > 0, the jth gene activates the ith gene, which means that the rate

of change in production of ith is increasing. For aij = 0, it means that there is no interaction

between the jth and the ith genes in the network. If aij < 0, the jth gene inhibits the ith

gene, which means that the rate of change for the production of ith gene is decreasing. The

matrix A is often called the influence matrix in the biology literature [41]. The n×q matrix

P := [pil] represents the effect of l perturbations on n genes. pil 6= 0 means that the lth

perturbation has a direct effect on the ith gene. Otherwise, there is no direct effect of the

lth perturbation on the ith gene. In recent studies, the linearized DE modeling largely uses

two different forms of data [3, 18]. One is time-series data and the other one is steady-state

data. Depending on types of data, (1.3.3) is slightly different. In the case of time-series

data, one uses (1.3.3). Depending on types of the external perturbation, the amount of

external perturbations changes in time as gene expression level and is measurable. If u

depends on time [4], then (1.3.3) becomes

dx(t)

dt
= Ax(t) + Pu(t). (1.3.4)

15

Studies with steady-state data, mRNA concentrations and the external perturbations

are collected at time points {ti}, where
dx(ti)

dt
= 0, for each external perturbation. Hence,

(1.3.3) can be simplified as

0 = Ax + Pu, (1.3.5)

which is independent of time [40, 29, 55]. Although many studies use steady-state data, it

has the limitation to reflect the dynamics of interactions in the network. Also, it requires

more than one perturbation to make the problem feasible. The choice of perturbations is

critical because it needs to reflect all the characteristics of genes in the network. As one can

imagine, the amount of perturbations can play an important role. Too large perturbations

result in gene expression level away from the original steady-state, and too small pertur-

bations produce gene expression data that is not large enough to infer its structure. It is

improper to apply the above approach to a gene regulatory network which does not have a

steady state.

For both approaches using time-series and steady-state data, one replaces Pu by u in

(1.3.4) and (1.3.5). For time-series gene expression data, the external perturbations to each

gene are given once at the beginning of an experiment and the level of perturbations at

each time point remains the same as at the beginning. For steady-state data, it is required

to know which gene has been directly perturbed in each perturbation experiment [40, 3].

In this dissertation, we adopt the linearized DE-modeling using time-series gene expres-

sion data and assuming P = I (identity matrix), that is, we consider the following dynamic

model:

dx(t)

dt
= Ax(t) + u. (1.3.6)

However, we like to point out that our approach also applies to the more general model

(1.3.4) with a minor modification, see Section 2.4 for details. The problem is now reduced

to the one that identifies the entries of the influence matrix A using only gene expression

data, x(tj) = [x1(tj), x2(tj), · · · , xn(t)]T for j = 1, 2, · · · ,m. If m ≥ n− 1, i.e., the number

of time points is no less than the number of species in the network, then the above problem

16

is overdetermined and its solution can be computed easily using the least squares method.

However, for a large network (100 < n < 30, 000) it is impractical to measure gene expres-

sions at n time points. Typically, 2 < m < 100. Thus, practically the above problem is

underdetermined and hence expected to have infinitely many solutions. We note that the

above problem is often referred as the dimensionality problem in the literature (see [26] and

the references therein).

1.3.2 Discretization

The gene expression data x(t) is measured at m+1 time points {tj}m+1
j=1 in a lab experiment.

Therefore, we can approximate
dx(t)

dt
at each time point tj (1 ≤ j ≤ m) by

dx(tj)

dt
≈ x(tj+1)− x(tj)

tj+1 − tj
. (1.3.7)

Furthermore, the discretized model can be phrased as the following matrix equation problem

(P): Given X,Y ∈ Rn×m, n >> m > 1, find A ∈ Rn×n such that

AX = Y. (1.3.8)

In equation (1.3.8), the columns of the matrixX represents a time-series of the concentration

x(tj) measured at m time incidences {tj}, columns of the matrix Y stands for discrete

approximations of the rate

(
dx

dt
− u

)
at the same m time incidences.

A nonzero value at the (i, j) entry of the matrix A indicates that there is a regulatory

interaction between the ith gene and the jth gene, the magnitude of the value represents

the strength of the interaction. A positive and negative entry of A represent activation and

inhibition, respectively.

17

1.4 Scope and contributions of the dissertation

An important and challenging problem in post-genomic research is to infer GRN from

gene expression profiling experiments. Unfortunately, the huge number of constituents

and their complex relationships in the cell make the mathematical modeling and numerical

simulations of large-scale biological networks very challenging. From the mathematical point

of view, one of the main obstacles is that the amount and the quality of the experimental

data at hand is often insufficient for an unequivocal assignment of the model parameters.

Mathematically, that means the problem of reverse engineering gene regulatory networks

is severely ill-posed. This may sound like a paradox because the naive perception is that

high-throughput technologies produce too much data to be analyzed. The perception is

indeed true from the static point of view, however, it is not the case from the dynamic

point of view. Due to economical and practical reasons, it is too expensive to measure gene

expression profiles for thousands of genes at a large number (≥ 200) of time points.

The restriction n >> m > 1 in problem (P) is due to the above reasons. Consequently,

system (1.3.8) is strongly underdetermined. Hence, problem (P) is mathematically ill-posed

because of the non-uniqueness of solutions. To see this, suppose A is a solution of equation

(1.3.8), let z ∈ Rn be any nonzero vector and zT is orthogonal to all columns of X (i.e.,

zT belongs to the null space of the matrix X), then it is trivial to check that the matrix

A+ zzT is also a solution of equation (1.3.8).

The most popular and widely used method for selecting a solution is the least squares

method, which seeks A as a minimizer of the following minimization problem:

min
B∈Rn×n

‖Y −BX‖2F , (1.4.1)

where ‖ · ‖F denotes the Frobenius matrix norm, that is,

‖X‖F :=

n∑
i=1

m∑
j=1

|xij |2. (1.4.2)

18

It is easy to check that A is a solution to (1.4.1) if and only if A satisfies the following

normal system

AXXT = Y XT or XXTAT = XY T . (1.4.3)

Unfortunately, since n > m, the matrix XXT ∈ Rn×n is a singular matrix, hence, solutions

of (1.4.3) are not unique! Consequently, the least squares method fails to solve equation

(1.3.8) unless some additional remedies are taken.

The very first goal of this dissertation is to propose a new approach to identify the bio-

logically meaningful solution from the set of infinitely many possible solutions. In Chapter

2, we introduce our new approach for selecting the unique biological solution to problem

(P). In our approach, we present a general variational framework for solving the ill-posed

problem (P). In our framework, equation (1.3.8) is treated as a constraint, we then define the

desired biological solution as the unique solution of some constrained variational problem

with constraint (1.3.8). Furthermore, it is important to a choose proper energy functional

in the constrained variational problem so that the resulting problem is well-posed. Thus,

for the DE-modeling to be successful, the advances must be made at the level of developing

more accurate and realistic models and fast and efficient computational methods for com-

puting the solutions of these models. Various examples of energy functionals will also be

presented in Chapter 2.

In each of Chapter 3-6, we analyze each of the proposed models in detail. This includes

to examine the well-posedness of the model, to design and implement efficient numerical

methods and algorithms to compute the solution. We also test and validate each of our

models using real world S. cerevisiae (yeast) and E. coli microarray data.

Because of uncertainties, such as measurement errors, equipment malfunction, and in-

sufficient information, scientific data such as those obtained from microarray technologies

are typically noisy. The second goal of this dissertation is to develop stochastic DE mod-

els for gene regulatory networks by considering and incorporating those uncertainties into

mathematical models. The new models require the use of stochastic and statistic tools and

19

methods. In Chapter 7, we introduce a new stochastic differential equation model in place

of (1.3.6) and design and test numerical methods and algorithms to compute the solutions

of the new models.

Another issue in reverse engineering of GRN is post-processing. Based on previous

studies about the biochemical networks, cellular networks are usually not fully connected

and have special structures. Hence, the influence matrix A is expected to be sparse (i.e.,

most of its entries are zeros). Most approaches for the linear DE-modeling assume the

loose connectivity of inferring networks. However, the inferred network matrices A from

other approaches including our approach are often dense although most entries of A are

expected to be very small, that is, the networks are fully connected. So we are forced to

make a delicate but important decision, that is, to decide which small entries in an inferred

influence matrix A should be set to zero and which should be kept. In the literature (cf.

[87]), the threshold values are usually decided in some ad hoc or arbitrary manner, and often

lead to less satisfactory or unsatisfactory results. The final main goal of this dissertation

is to develop an automatic thresholding technique. For the deterministic DE-modeling,

we choose a threshold value manually. For the stochastic DE-modeling, we propose a

thresholding method based on the Random Matrix Theory (RMT). The random matrix

theory was recently introduced and developed for automatically post-processing biological

networks [63, 64]. Clearly, it is a non-trivial and non-intuitive method. In Chapter 7, we

introduce the RMT and present our investigation on the RMT applied to our variational

framework as the default method for post-processing the identified influence matrix A.

The dissertation is concluded by a brief summary and a list of future directions and

works in Chapter 8.

20

Chapter 2

Variational Methods for Gene

Regulatory Network Identification

Based on Differential Equation

Modeling

In this chapter, we first define a biological solution for problem (P) based on a constrained

variational framework. We then establish the existence and uniqueness of biological so-

lutions for the constrained variational problem under some structure assumptions on the

energy functional. Examples of the energy functional to be studied in this dissertation are

also introduced. We also present an equivalent unconstrained variational formation for the

constrained variation problem using the Singular Value Decomposition (SVD) theory. Fi-

nally, we show how our variational framework can be adopted to cover the general model

(1.3.4).

2.1 The general framework of variational methods

We define a biological solution to problem (P) as follows:

21

Definition 2.1.1. Let L : Rn×n −→ R+ := [0,∞) be a pre-determined (energy) functional

on Rn×n, we call A ∈ Rn×n a biological solution to problem (P) if A is a minimizer of the

following variational problem:

min
B∈Rn×n

L(B) subject to BX = Y. (2.1.1)

In other words, the variational problem (2.1.1) is our selection criterion for picking up

the biologically relevant solution among infinitely many possible choices.

Clearly, the most important component of the general framework is to design the energy

functional L. Mathematically, it is not hard to construct an energy functional such that the

minimization problem (2.1.1) has a unique solution. In fact, any strictly convex functional

will work. On the other hand, it is an art (and also a science) to design and construct a

functional L which will give a good “biological solution”. This requires biological intuition,

knowledge, experience, and insights, in addition to mathematical sophistication.

The following two theorems show existence and uniqueness of solutions to problem (P).

Theorem 2.1.1. (Existence) Suppose S := {B ∈ Rn×n;BX = Y } be the solution space of

the constraint equation to problem (P) and that L is a lower semicontinuous functional

and it is equivalent to a matrix norm ‖ · ‖ on S, that is, there exists c0, c1 > 0 such that

c0‖B‖ ≤ L(B) ≤ c1‖B‖, ∀B ∈ S. Then there exists a biological solution to problem (P).

Proof. Suppose

m := inf
B∈S
L(A) <∞.

Let {An}∞n=1 ∈ S be a minimizing sequence for L, that is, L(An) → m as n → ∞. Since

L(·) is bounded by a matrix norm for all matrices in the solution space, then {An}∞n=1

is a bounded sequence. Hence, the finite dimensionality of S implies that there exists a

convergent subsequence, {Ank
}∞k=1, such that limk→∞Ank

= A.

22

By the fact that the functional L is lower semicontinuous, we get

m ≤ L(A) ≤ lim inf
k→∞

L(Ank
) = m.

Hence, L(A) = m. That is, A is a solution of problem (2.1.1).

Theorem 2.1.2. (Uniqueness 1) Suppose L is a strictly convex functional, then the biological

solutions to problem (P) is unique.

Proof. Suppose that A1 and A2 are two distinct solutions to (2.1.1). Since L is strictly

convex (cf. Definition A.0.1), then for every α ∈ (0, 1) we have

L
(
αA1 + (1− α)A2

)
< αL(A1) + (1− α)L(A2) = L(A1) = L(A2),

which contradicts with the assumption that A1 and A2 are solutions to (2.1.1). Hence,

the minimization problem (2.1.1) has a unique solution when the functional L is strictly

convex.

The most widely used functionals of matrices are matrix norms. For a choice of matrix

norm as L, it is easy to show that such an L is not strictly convex in the sense of Definition

A.0.1, so it is necessary to verify the uniqueness of the biological solutions of problem (P)

using Definition A.0.2 or Definition A.0.3 (see Appendix A). Since they are equivalent, it is

enough to show uniqueness with Definition A.0.2.

Theorem 2.1.3. (Uniqueness 2) Suppose L = ‖ · ‖ represents a strictly convex matrix norm

in the sense of Definition A.0.2, then the biological solutions to problem (P) is unique.

Proof. Assume that A1 and A2 are two solutions to (2.1.1). Then, ‖A1‖ = ‖A2‖, and

‖A1 +A2‖ ≤ ‖A1‖+ ‖A2‖ = 2‖A1‖,∥∥∥∥∥A1 +A2

2

∥∥∥∥∥ ≤ ‖A1‖.

23

Since ‖A1‖ is a solution of (2.1.1), we must have

∥∥∥∥∥A1 +A2

2

∥∥∥∥∥ = ‖A1‖.

Therefore, by the strict convexity assumption we get A1 = A2. Hence, the uniqueness

holds.

In the next section, we introduce several examples of the energy functional which will

be analyzed in later chapters in detail.

2.2 Examples of energy functional L

We emphasize that different choices of strictly convex functional L will give different models,

and hence, result in different solutions to problem (P), although these solutions are expected

and hoped to be qualitatively similar. The viability and applicability of a model might be

problem-specific, and need to be tested carefully on benchmark problems. In the following

we give a few examples of the energy functional L. Detailed analysis and validations of

these models will be presented in the later chapters.

1. The least squares model (LSM)

The first and obvious choice of L is

L(B) = ‖BX − Y ‖2F . (2.2.1)

With this choice of L problem (2.1.1) reduces to the least squares problem (1.4.1). Hence,

we recover the least squares model. As noted early in Section 1.3.2, the least squares model

is ill-posed since it has multiple solutions in the case n > m. The deep mathematical reason

for the non-uniqueness is that the above functional L is convex but not strictly convex.

24

2. The average minimum strength model (AMSM)

Next example of L is

L(B) = ‖B ‖F :=

√√√√ n∑
i=1

n∑
j=1

|bij |2, (2.2.2)

that is, L(B) is defined as the matrix Frobenius norm of B.

3. The cp minimum strength model (cpMSM)

Next example of the energy functional L is the matrix cp norm. For 1 ≤ p ≤ ∞, let

σ1 ≥ σ2 ≥ · · · ≥ σn be singular values of B ∈ Rn×n (cf. Appendix A). Define

L(B) = ‖B ‖cp := (

n∑
i=1

σpi)
1
p . (2.2.3)

One easily notices that (2.2.3) is the same model as (2.2.2) for p = 2. For p = ∞ and

p = 1, (2.2.3) is equivalent to the matrix 2-norm (‖B‖2 = σ1) and the trace (nuclear) norm,

respectively.

4. The column minimum strength model (CMSM)

CMSM uses the matrix L1-norm as the functional.

L(B) = ‖B ‖L1 := max
1≤j≤n

n∑
i=1

|bij |. (2.2.4)

5. The row minimum strength model (RMSM)

Next example of the functional is the matrix L∞-norm.

L(B) = ‖B ‖L∞ := max
1≤i≤n

n∑
j=1

|bij |. (2.2.5)

25

6. The Lp minimum strength model (LpMSM)

Another family of the energy functional L is using the matrix Lp norm,

L(B) = ‖B‖pLp , (2.2.6)

where

‖B ‖Lp := sup
x∈Rn,x 6=0

‖Bx‖p
‖x‖p

, 1 < p <∞,

and ‖Bx‖p and ‖x‖p denote the vector p-norm of Bx and x, respectively.

7. The entrywise minimum strength model (EMSM)

For 1 ≤ p ≤ ∞, the entrywise matrix p-norm is

‖B ‖ep :=

(
n∑
i=1

n∑
j=1

|bij |p
) 1

p

.

For p =∞, the entrywise matrix p-norm is same as the max norm

‖B ‖e∞ := max(|bij |).

For the choice of the entrywise matrix p-norm, we define the energy functional L as

L(B) = ‖B‖pep , 1 ≤ p ≤ ∞. (2.2.7)

Unfortunately, many of above models do not immediately promise a unique solution since

these norms are not strictly convex. Strictly convex norms are (2.2.2), (2.2.3)(1 < p <∞),

(2.2.6), and (2.2.7). Although the others are not strictly convex, we still expect a unique

minimizer to (2.1.1) because of the constraint. Note that strict convexity is only a sufficient

condition for the uniqueness of minimizers.

We shall study numerical algorithms for different choices of L including AMSM, cpMSM,

26

CMSM, RMSM, LpMSM, and EMSM in the later chapters. We propose and implement

numerical algorithms on both synthetic mircroarray data and real microarray data.

2.3 Derivation of unconstrained variational problem

Once the functional L is determined, the next question is how to convert the constrained

variational problem to an unconstrained problem. The general approach to this matter is

to use the Lagrange multiplier method. That is, there exists a unique constant λ > 0, called

the Lagrange multiplier, such that the constrained variational problem (2.1.1) is equivalent

to the following unconstrained variational problem

min
B∈Rn×n

Lλ(B),

where

Lλ(B) := L(B) + λ‖BX − Y ‖2F .

To compute the solution to the above unconstrained problem, it is crucial to find the right

λ, which is often difficult to compute.

We introduce a different approach to get rid of the constraint. We first decompose

the biological solution matrix B as B = B1 − B0, where B0 is a general solution of the

homogeneous equation B0X = 0 and B1 is a particular solution of B1X = Y . As mentioned

in Section 1.3.2, there are infinitely many candidates for choosing a particular solution

B1 since it is the ill-posed problem. To compute the general solution B0, we use the

Singular Value Decomposition (SVD) (see Appendix A) which plays an important role in

our approach .

We first transpose the equation B0X = 0 and let XT = UΛV T be a SVD of XT , where

U =


u11 u12 · · · u1m

...
...

. . .
...

um1 um2 · · · umm

 ∈ Rm×m,

27

V =


v11 u12 · · · v1n

...
...

. . .
...

vn1 vn2 · · · vnn

 ∈ Rn×n

are orthogonal matrices, Λ is diagonal matrix

Λ =



σ1 0 · · · 0 · · · 0

0 σ2 · · · 0 · · · 0

...
...

. . .
...

... 0

0 0 · · · σm · · · 0


∈ Rm×n.

Then, XTBT
0 = UΛV TBT

0 = 0. Hence, column vectors of BT
0 (or row vectors of B0) must

belong to the null space of XT . Thus, let bk denote the kth column vector of BT
0 , we have

bk = ckr+1vr+1+ckr+2vr+2+· · ·+cknvn, k = 1, 2, · · · , n and r is rank of XT . Consequently,

BT
0 has the following decomposition:

BT
0 = (v1, v2, · · · , vn)



0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

c1r+1 c2r+1 · · · cnr+1

...
...

...
...

c1n c2n · · · cnn


= V CT .

Equivalently, B0 = CV T where

C =


0 · · · 0 c1r+1 · · · c1n

...
. . .

...
...

. . .
...

0 · · · 0 cnr+1 · · · cnn

 = (0 C0) ,

28

0 stands for n× r zero matrix, and C0 ∈ Rn×(n−r). By the decomposition of the biological

solution matrix, we get

B = B1 − C0V
T

0 ,

where

V0 = [vr+1,vr+2, · · · ,vn].

Substituting the aboveB into (2.1.1), we then convert the constrained minimization problem

into the following unconstrained minimization problem:

min
C0∈Rn×(n−r)

L(B1 − C0V
T

0). (2.3.1)

It is easy to see that the number of unknowns in (2.3.1) is n(n− r) instead of n2.

Regarding to the choice of B1, we shall prove in Chapter 3 that the solution of the

AMSM defined by (2.1.1) and (2.2.2) will provide a natural and convenient choice.

2.4 Extension to the general model (1.3.4)

Some researchers use the equation

dx(t)

dt
= Ax(t) + Pu(t) (2.4.1)

to infer GRN and reveal the effects of external perturbations on genes using time-series

data. Gene expression x(t) and the external perturbations u(t) for j = 1, 2, · · · ,m can be

measured in a lab. We note that the number of external perturbations need not to be same

as the number of genes in the network.

dx(t)

dt
is approximated as before. Then the discretized model of (2.4.1) can be written

in matrix form: Given X,W ∈ Rn×m and U ∈ Rq×m, find A ∈ Rn×m and P ∈ Rn×q such

that

W = AX + PU. (2.4.2)

29

The columns of the matrix X represents a time-series of the concentration x(tj) measured at

m time incidences {tj}, column of matrix W stands for discrete approximations of the rate

dx(t)

dt
at the same m incidences {tj}, and the column of U represents a time-series of the

external perturbations measured at the same m incidences {tj}. The entries A indicates

regulatory interactions between genes in the network. A nonzero element at the (i, l) of

matrix P represents that ith gene is a direct target of the lth perturbation. Problem (2.4.2)

is ill-posed since the number of time points we can have at hand is usually much smaller

than the number of genes and external perturbations. Hence, there are infinitely many

solutions. To handle this problem, Bansal et al.[4] used the method of interpolation. They

increased the number of time points by using a cubic smoothing spline filter and piecewise

cubic spline interpolation.

Our variational approach can be applied to this problem by rearranging the matrices in

(2.4.2). We can phrase the equation (2.4.2) as the following matrix equation problem:

W =

(
An×n, Pn×q

) Xn×m

Uq×m

 .

Hence, we have a new form of problem: Given W ∈ Rn×m and XU ∈ R(n+q)×m, find

AP ∈ Rn×(n+q) such that

W = ABXU , (2.4.3)

where

AP =

(
An×n, Pn×q

)
and XU =

 Xn×m

Uq×m

 .

Finally, we can apply our variational approach to problem (2.4.3) as described in Sections

2.1-2.3.

30

Chapter 3

The Average Minimum Strength

and the cp Minimum Strength

Models

The Average Minimum Strength Model (AMSM) uses the functional L(·) = ‖ · ‖F , the

Frobenius matrix norm. For this choice the abstract variation model (2.1.1) becomes

min
B∈Rn×n

‖B‖F subject to BX = Y. (3.0.1)

From the definition of ‖ · ‖F , it is clear that the AMSM treats every entry of the network

matrix equally, At the minimizer, the “energy” of the network is minimized in a square

averaged sense. To some extent, this is one way to describe the “small-world” property of

GRN (i.e. each gene in the GRN interacts with a few genes). We remark that the AMSM

can be easily modified to incorporate the anisotropy (if a priori information is known) of

some GRNs by defining L to be a weighted Frobenius norm functional.

The cp Minimum Strength Model (cpMSM) uses the functional L(·) = ‖ · ‖cp , the cp

31

matrix norm (or the schatten norm). Then, the abstract variation model (2.1.1) becomes

min
B∈Rn×n

‖B‖cp subject to BX = Y. (3.0.2)

To construct an numerical algorithm to approximate the minimizer of (3.0.2), we solve the

unconstrained minimization problem which was introduced in Chapter 2. The matrix cp-

norm has an important unitary invariance property (cf. Appendix A). By this property, we

have an interesting result about the solution of (3.0.2).

The goals of this chapter include establishing the well-posedness of (3.0.1), designing

efficient numerical algorithms to compute the solution of (3.0.1), and doing numerical ex-

periments to check the performance of the model and the algorithms. Also, we prove the

general result about the solution of (3.0.2).

3.1 The average minimum strength model

3.1.1 Existence and uniqueness of minimizers

For the AMSM, there holds the following nice characterization result in the case when X

has full rank, which is often satisfied by microarray data.

Theorem 3.1.1. Suppose that the matrix X has full rank. Then the unique solution to

problem (3.0.1) is given by

A = Y (XTX)−TXT . (3.1.1)

Proof. First, since X has full rank, so does (XTX), hence (XTX)−1 exists. Therefore,

A = Y (XTX)−1XT is a well defined n× n matrix.

Next, since it is trivial to verify that the above A satisfies the constraint equation

AX = Y , hence, it suffices to show that A is a solution of (3.0.1), that is, A has the minimum

Frobenius norm among all matrices in the solution space S := {B ∈ Rn×n;BX = Y }. To

32

this end, for any C ∈ S, let E = C −A, then EX = 0 and

‖C ‖2F = ‖A+ E ‖2F (3.1.2)

= ‖A ‖2F + ‖E ‖2F + 2
n∑
k=1

aTk ek,

where ak and ek denote the kth columns of AT and ET , respectively, that is,

AT = [a1,a2, · · · ,an] and ET = [e1, e2, · · · , en].

Note that aTk and eTk are the kth rows of A and E, respectively.

It follows from the definition of A and the equation

XTET = XT (CT −AT) = 0 or XTek = 0, k = 1, 2, · · · , n,

that

aTk ek = yTk (XTX)−1XTek = 0, k = 1, 2, · · · , n, (3.1.3)

where yk denote the kth column of Y T .

Combining (3.1.2) and (3.1.3) yields

‖C ‖2F = ‖A ‖2F + ‖E ‖2F ≥ ‖A ‖2F . (3.1.4)

Hence, A has the minimum Frobenius norm in S. Moreover, since the equality holds in

(3.1.4) if and only if E = 0 or C = A. Thus A is unique minimizer of ‖ · ‖F . The proof is

complete.

Remark 3.1.1. The matrix X+ := XT (XXT)−1 is called the Moore-Penrose generalized

inverse of the matrix X (see [27]). Hence the matrix A can be rewritten as A = Y X+.

Remark 3.1.2. The AMSM is the only model we found so far which has an explicit solution.

It plays an important role in designing numerical methods and algorithms for other models.

33

3.1.2 AMSM Algorithm

A natural algorithm for computing the solution A given in (3.1.1) is the followings. The

first algorithms is efficient for X with full rank. The second algorithm works for X that is

not a full rank.

Algorithm 1:

Step 1: Solve the following matrix equation for W ∈ Rn×m by Gaussian elimination or

QR factorization

WXTX = Y. (3.1.5)

Step 2: Set A = WXT .

Algorithm 2:

Step 1: Compute QR factorization of X.

Step 2: Set X+ = R−1QT .

Step 3: Set A = Y X+.

3.2 The cp minimum strength model

We solve cpMSM using the unconstrained minimization formulation

min
C0∈Rn×(n−r)

‖B1 − C0V
T

0 ‖cp , (3.2.1)

where B1 is a particular solution of B1X = Y and V0 is a part of V in XT = UΛV T . As

mentioned before, there are infinitely many solutions of B1X = Y . In this dissertation,

our choice of B1 for cpMSM and other models is the solution of AMSM since it is easy to

compute and efficient.

The cp-norm (1 ≤ p ≤ ∞) is one of the largest family of unitary invariant norms

(cf. Appendix A3) [44, 74, 76]. For cpMSM, there holds a following nice result about the

solutions of (3.0.2).

34

Theorem 3.2.1. The unique biological solution of

min
B∈Rn×n

‖B‖cp subject to BX = Y (3.2.2)

is Bcp = BAMSM := Y (XTX)−1XT , the solution of AMSM.

Proof. We first replace the constrained minimization problem (3.2.2) by its equivalent un-

constrained minimization problem. Write B = BAMSM −B0 and B0 = C0V
T

0 , then

min
B∈Rn×n

‖B‖cp = min
C0∈Rn×(n−m)

‖BAMSM − C0V
T

0 ‖cp .

Next, we show that C0 = BAMSMV0 and the minimum value is zero. Since ‖B‖cp = ‖BT ‖cp ,

V0 is an unitary matrix and the cp-norm is an unitary invariant norm,

min
B∈Rn×n

‖BT ‖cp = min
C0∈Rn×(n−m)

‖BT
AMSM − V0C

T
0 ‖cp

= min
C0∈Rn×(n−m)

‖V0(V T
0 B

T
AMSM − CT0)‖cp

= min
C0∈Rn×(n−m)

‖V T
0 B

T
AMSM − CT0 ‖cp .

Therefore, CT0 = V T
0 B

T
AMSM , that is, C0 = BAMSMV0.

Finally, to show Bcp = BAMSM , it is sufficient to show B0 = 0. But that is obviously

true since B0 = C0V
T

0 = BAMSMV0V
T

0 = BAMSM0 = 0. Therefore, C0 = BAMSMV0 = 0,

hence, Bcp = BAMSM .

Remark 3.2.1. Matrix 2-norm (or the spectral norm), ‖A‖2 =
√
λmax(ATA) = σmax(A), is

a special case of the cp-norm.

• For p =∞, the cp norm is same as the spectral norm.

• For p = 2, Lp matrix norm is same as the spectral norm.

Since matrix 2-norm is a unitary invariant norm [8], then the solution of LpMSM with

p = 2 is equal to the solution of AMSM.

35

3.3 Numerical simulation

In this section, we present four sets of numerical experiments to test and validate the AMSM.

This will be done first on randomly generated synthetic networks, and then in a subnetwork

of S. cerevisiae (yeast) cell-cycle using its time-series microarray data obtained from the

National Center for Biotechnology Information (NCBI). Our third test is a synthetic five-

gene network in S. cerevisiae which was proposed by Cantone et al. [15] for benchmarking

the reverse-engineering techniques and modeling approaches. Lastly, we use our model to

recover nine-gene network of E. coli using time-series data reported in Bansal et al. [4].

Because the number of time points at which gene expression is measured is usually

much less than the number of the genes in the network, it is necessary to test the model

(and algorithm) with severely under-sampled data sets (i.e., m << n). To quantitatively

describe the degree of incompleteness of under-sampled data sets, we define

DCR :=
m

n
=
] of time points (m)

] of genes (n)
,

and call this number the data completeness ratio of the given data set. Clearly, the smaller

DCR, the less complete the data set.

To evaluate performance of our model and numerical algorithm, we use different mea-

surements for the synthetic gene regulatory networks and the real gene regulatory networks.

For the synthetic networks, we measure the relative error. For the real networks, we only

have the qualitative information about the subnetworks of S. cerevisiae and E. coli, so the

focus of our tests is to recover this qualitative information. We first perform post-processing

and then measure the performance of our approach using PPV and Se (see Subsections 3.3.1

and 3.3.2).

1. Synthetic gene regulatory network

We first assess accuracy and efficiency of our AMSM and algorithm on some randomly

generated synthetic networks. To design the tests, we randomly generate an n× n network

36

matrix A and an n×m data matrix X and set Y = AX with m = 100 and 350 and various

m values depending on n. The goal of these tests is to recover A using the proposed model

and the algorithm. For each test, we measure the relative error between the exact synthetic

network matrix and the recovered network matrix.

2. Saccharomyces cerevisiae cell cycle

To validate our AMSM and algorithm, we also perform numerical simulations using real

experimental data. We first choose the cell cycle of S. cerevisiae (yeast) for the purpose

because the gene regulatory network of yeast has been well-understood and documented,

see [1, 38]. It was also used early as a benchmark to evaluate various models based on

different approaches (cf. [56, 57, 86]). In our test, we use a subnetwork of yeast consisting

of 14 genes (i.e. n = 14) and its microarray profile at 10 time points (i.e. m = 10) (cf.

[20]). Hence, the DCR of the data set is 0.714.

3. Synthetic five-gene yeast network

The second choice of our numerical simulation using real experimental data is the yeast

synthetic network with five genes that is published in [15] to asses reverse engineering and

modeling approaches of GRN. Canton et al. constructed a synthetic GRN of five yeast genes,

then measured gene expression levels of those five genes in two types of data, time-series data

and steady state data. For both types, they performed perturbation experiments by shifting

cells from glucose to galactose (“switch-on”) and from galactose to glucose (“switch-off”).

They also evaluated the proposed reverse engineering and modeling approaches using their

data. We evaluate our model and algorithm using both switch-on and switch-off time-series

data and compare with other approaches which were reported in [15].

4. Nine-gene E. coli network

The last real network test of our model and algorithm is the nine-gene E. coli network used

in [40]. We use microarray profile at 6 time points (i.e. m = 5) reported in [4]. Hence, the

37

DCR of the data set is 0.556. There is no information of perturbation. Thus, Y is only

calculated without the perturbation.

3.3.1 Post-processing

Unlike some earlier works [40, 62, 80, 87], we did not assume any priori information about

or make any assumptions on the influence matrix A. So in general our identified influence

matrices A are dense matrices, i.e., majority of the entries of A are nonzero. On the other

hand, we also expect that the magnitudes of a majority of the entries in the identified

matrix A are very small because lab experiments have shown that a gene often interacts

only with a handful of other genes in a (large) gene regulatory network (unfortunately, we

do not know a priori which interacts with which). This means that in most cases the real

network matrix A should be sparse meaning that majority of the entries in A are zeros.

So the network matrix A obtained from a mathematical model and its numerical algorithm

must be post-processed. In other words, one needs to figure out a threshold value and then

use it as a reference to determine which entries of the computed A are set as zero and which

are kept unchanged. So far most thresholding strategies reported in the literature are ad

hoc [40, 19, 57, 62, 86], which is also the case in all numerical experiments of this section.

To post-process the computed network matrix, we test various threshold values ranging

from the smallest to the largest (in absolute value). We note that the signs of the unfiltered

entries are kept unchanged in the process. We then compute PPV and Se (see the next sec-

tion for their definitions) of the post-processed matrix for every threshold value. Finally, we

take the post-processed network with the best overall PPV and Se as the inferred network.

3.3.2 Performance evaluation

As we mentioned in Section 1.3.1, nonzero elements in the influence matrix encode the

regulatory interactions (activation and inhibition) and magnitude of elements measures the

strength of interaction. Currently, regulatory interactions between genes of an organisms

can be identified, however, the strength of interaction is more difficult to measure accurately.

38

Hence, researchers in the reverse engineering of GRN only focus on evaluating regulatory

interactions.

In order to evaluate the performance of GRN inferring techniques, we computed the

Positive Predicted Value (PPV) and the Sensitivity (Se) that are introduced in [23, 3, 15, 71].

The inferred network can be expressed as one of three different types of graphs.

• Undirected graph: Indicates interactions between genes.

• Directed graph: Indicates interactions between genes and their directions.

• Signed graph: Indicate interactions between genes, their directions, and effects.

The PPV and Se are computed as follows:

PPV =
TP

TP + FP
and Se =

TP

TP + FN
, (3.3.1)

where TP is the number of true positives (the number of edges in the real network that are

correctly inferred), FP is the number of false positives (the number of inferred edges that

are not in the real network) and FN stands for the number of false negatives (the number

of edges in the real network that are not inferred).

Each type of graphs can be represented by matrices using 0 and ±1. Table 3.1 shows

the meanings of 0 and ±1 depending on the type of graphs. We note that the connection

matrix of undirected graph is symmetric.

The occurrences of TP, FP, and FN need to be measured differently depending on the

type of graphs which is described in the Table 3.2. Let R and I be the connection matrices

of the real network and the inferred network, respectively.

Table 3.1: Elements in connection matrix

−1 0 1

Undirected graph none no interaction interaction

Directed graph none no interaction interaction

Signed graph inhibition no interaction activation

39

Table 3.2: Occurrences of TP, FP, and FN for different types of graphs

Undirected and Directed graph Directed signed graph

TP R(i, j) = I(i, j) = 1 R(i, j) = I(i, j) = 1 or R(i, j) = I(i, j) = −1

FP R(i, j) = 0 and I(i, j) = 1 I(i, j) = ±1 and R(i, j) 6= I(i, j)

FN R(i, j) = 1 and I(j, i) = 0 R(i, j) = ±1 and R(i, j) 6= I(i, j)

In our approach, the end product is already a matrix. We convert the resulting matrix

into a connection matrix for each type of graphs. For the undirected graph, we change

nonzero elements to 1, and then make the matrix symmetric by replacing (i, j) element that

is zero but (j, i) element 1 by 1. For the directed graph, non-zero elements are replaced

by 1. For the connection matrix of the signed graph, negative and positive elements are

replaced by −1 and 1, respectively. For example, let

A =



0 −1.5 0 0.5

0 0 2.8 −1.1

0.2 0 0 2

0 0 0 0


be a hypothetical influence matrix given by a numerical simulation. The connection matrix

in the case of undirected graph (CU) is converted as follows:



0 1 0 1

0 0 1 1

1 0 0 1

0 0 0 0


=⇒ CU =



0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


.

The connection matrix of the directed graph (CD) and the signed graph (CS) are

CD =



0 1 0 1

0 0 1 1

1 0 0 1

0 0 0 0


and CS =



0 −1 0 1

0 0 1 −1

1 0 0 1

0 0 0 0


.

40

To compute the occurrences of TP, FP, and FN, the inferred network and the real

network need to be represented in each case, then TP, FP, and FN are calculated according

to the rules in Table 3.2.

For the synthetic gene regulatory network test, we generate a 3000-gene network for

the AMSM and test with different numbers of time points m. We observe that the relative

errors of n = 3000 case are lower than for n = 100 and n = 350 for the same DCR, that

is, the network with more components is recovered with less number of time points. For

example, the error of 3000-gene network is dropped below 10% for DCR = 0.016, whereas

the errors of 100-gene network and 350-gene network are above 10% (Figure 3.1).

Surprisingly, for the 5-gene yeast network, the results of all models that we present in

the dissertation are the same.

41

1 10 100 1000

Number of time points
0

10

20

30

40

50

60

70

E
rr

or
s

(%
)

100 genes
350 genes
3000 genes

Figure 3.1: AMSM synthetic 100, 350 and 3000 genes networks (x-axis is in log scale)

ACE2

CLB1

CLB6

CLN1

CLN2

CLN3

FKH2

MBP1

MCM1

SIC1

SWI4

SWI5

SWI6

YOX1

Figure 3.2: True yeast cell cycle network [56]

42

ACE2

CLB1

CLB6

CLN1

CLN2

CLN3

FKH2

MBP1

MCM1

SIC1

SWI4

SWI5

SWI6

YOX1

Figure 3.3: Inferred yeast cell cycle network. Solid and dashed lines indicate the cor-
rectly inferred and incorrectly inferred edges by AMSM, respectively. PPVu=0.3, Seu=0.32,
PPVd=0.29, Sed=0.29, PPVs=0.17, Ses=0.17. u: undirected graph, d: directed graph, s:
signed graph.

GAL4

CBF1GAL80

SWI5 ASH1

Figure 3.4: Five-gene yeast true network [15]

43

GAL4

CBF1GAL80

SWI5 ASH1

Figure 3.5: Inferred five-gene yeast network using switch on data. Solid and dashed lines
indicate the correctly inferred and incorrectly inferred edges by AMSM using switch on
data, respectively. PPVu=0.71, Seu=0.57, PPVd=0.43, Sed=0.38, PPVs=0.43, Ses=0.38.

GAL4

CBF1GAL80

SWI5 ASH1

Figure 3.6: Inferred five-gene yeast network using switch off data. Solid and dashed
lines indicate the correctly inferred and incorrectly inferred edges by AMSM, respectively.
PPVu=0.57, Seu=0.57, PPVd=0.5, Sed=0.5, PPVs=0.5, Ses=0.5.

44

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD rpoH

Figure 3.7: Nine-gene true E. coli network [4].

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD

rpoH

Figure 3.8: Inferred nine-gene E. coli network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by AMSM, respectively. PPVu=0.68, Seu=0.88,
PPVd=0.67, Sed=0.65, PPVs=0.45, Ses=0.44.

45

Chapter 4

The Column Minimum Strength

and the Row Minimum Strength

Models

The Column Minimum Strength Model (CMSM) and the Row Minimum Strength Mode

(RMSM) use the functionals L(·) = ‖ · ‖L1 , the L1-matrix norm and L(·) = ‖ · ‖L∞ , the L∞-

matrix norm, respectively. For these choices, the abstract variation model (2.1.1) becomes

min
B∈Rn×n

‖B‖L1 subject to BX = Y (4.0.1)

and

min
B∈Rn×n

‖B‖L∞ subject to BX = Y. (4.0.2)

Unlike AMSM, there are no closed form solutions for these models. Thus, to construct

efficient and fast algorithms becomes necessary to solve these models. To the end, we solve

their equivalent unconstrained minimization problems (cf. Chapter 2) with the choice of

B1 = Y (XTX)−TXT :

min
C0∈Rn×(n−r)

‖B1 − C0V
T

0 ‖L1 (4.0.3)

46

and

min
C0∈Rn×(n−r)

‖B1 − C0V
T

0 ‖L∞ . (4.0.4)

The problems now reduce to minimizing a matrix in L1 and L∞ norms, such problems have

rarely studied in the literature.

In this chapter, we propose two different approaches for solving these problems. The

first approach is to compute C0 column-by-column. For this approach, we use the property,

‖B‖L1 = ‖BT ‖L∞

or

‖BT ‖L1 = ‖B‖L∞ .

We then develop numerical algorithms to approximate C0 which directly minimizes matrix

L1-norm and L∞-norm of the matrix B1 − C0V
T

0 .

The goals of this chapter include establishing the well-posedness of (4.0.3) and (4.0.4)

and designing efficient numerical algorithms to compute the solutions of (4.0.3) and (4.0.4)

for both approaches. Finally, numerical experiments are presented to show the performance

of the CMSM and RMSM and the proposed numerical algorithms for solving the models.

4.1 The column minimum strength model

4.1.1 l∞-vector norm minimization

To compute C0 column-by-column approach, we use the property ‖B‖L1 = ‖BT ‖L∞ . By

this property, solving (4.0.3) is equivalent to solve the following problem:

min
C0∈Rn×(n−r)

‖BT
1 − V0C

T
0 ‖L∞ . (4.1.1)

We propose to compute the solution of (4.1.1), C0 by minimizing the l∞-norm of each

column of BT = BT
1 − V0C

T
0 .

47

Minimizing the l∞-norm of each column of BT = BT
1 − V0C

T
0 approach leads to the

following n minimization problems:

min
c̃k∈R(n−r)

‖b̃k − V0c̃k‖∞, (4.1.2)

where b̃k is the kth column of BT
1 and c̃k is the kth column of CT0 . Here, for a vector x ∈ Rn,

‖x‖∞ := max(|x1|, |x2|, · · · , |xn|). We note that the above minimization is to seek a vector

which minimizes the residual of an overdetermined linear system in l∞-norm. Once c̃k is

computed, we assemble the biological solution by B = B1 − C0V
T

0 .

The l∞ minimization of the residual of a linear system has been used in the various areas

such as motion computation [75] and tracking a deformable surface [72]. There is no explicit

formula to solve (4.1.2). However, it is well-known that l∞ minimization of the residual

of a linear system is equivalent to a linear programming problem [37]. Therefore, any

linear programming technique can be used to compute the solution of the l∞ minimization

problem. We adopt this strategy to compute each column of CT0 .

1. Existence and uniqueness

Since the l∞-norm is convex, there exists a minimizer of (4.1.2). But the l∞-norm is not

strictly convex. For example, let x = [1, 0]T and y = [1, 1]T then ‖x‖∞ = 1 = ‖y‖∞,

x+y = [2, 1]T and ‖x+y‖∞ = 2, but x 6= y. Thus, solutions to (4.1.2) may not be unique.

2. Algorithm

CMSM Algorithm 1

We first state the equivalent linear programming problem of (4.1.2) below. It can be

shown that has the following equivalent linear programming formulation:

min t

subject to − t1 ≤ b̃k − V0c̃k ≤ t1,

48

where 1 stands for the vector with constant entry 1. Then, the linear programming problem

with variables t, c̃k is

min d
T
c̃k

subject to V0 c̃k ≤ b̃k

with

c̃k =

c̃k

t

 , d =

0

1

 , A =

 A −1

−A −1

 , b̃k =

 b̃k

−b̃k

 .

We use the Matlabr built-in function “linprog” to solve the above linear programming

problem for k = 1, 2, · · · , n.

4.1.2 L1-matrix norm minimization

The column-by-column approach may destroy relations between columns since it recov-

ers the solution matrix column-by-column. In this section, to overcome this problem, we

propose another method which directly minimizes the L1 matrix norm.

1. Existence and uniqueness

Theorem 4.1.1. There exists a minimizer of (4.0.3).

Proof. The existence of the minimizer of (4.0.3) immediately follows from Theorem 2.1.1.

On the other hand, we recall that the matrix L1-norm is not strictly convex. For example,

let

X =

1 0

0 0

 and Y =

0 1

1 0

 , then X + Y =

1 1

1 1


and ‖X‖L1 = ‖Y ‖L1 =

1

2
‖X + Y ‖L1 . However, X 6= Y . Therefore, by Definition A.0.2, L1

norm is not strictly convex.

In spite of L1-norm is not strictly convex, we still expect a unique minimizer to (4.0.3)

49

because of the constraint. Moreover, the strictly convexity is only a sufficient condition

for the uniqueness of minimizers. Unfortunately, the uniqueness of the minimizer that also

satisfies the constraint has not been proved yet.

2. Algorithm

To construct a numerical algorithm for the L1-norm minimization, we use the gradient

descent method (or the steepest descent method)[11] which is a well-known first-order op-

timization method. First, let F (C0) = ‖B1 − C0V
T

0 ‖L1 which is the function of a matrix

C0. At each iteration of the gradient descent algorithm, ∇F must be computed. We ap-

proximate ∇F using the finite difference method. For each element of C0, first compute

C0(i, j) + h and C0(i, j)− h for any small h and keep the rest of elements unchanged. Let

LC0 and RC0 denote the two resulting matrices, then

∇F (C0)(i, j) ≈ F (LC0)− F (RC0)

2h
.

CMSM Algorithm 2

Step 1: Compute the particular solution B1 using the AMSM Algorithm.

Step 2: Compute C0 using the gradient descent method.

Choose an initial guess C
(0)
0 , set F (0) = ‖B1 − C(0)

0 V T
0 ‖L1 .

For l = 0, 1, 2, · · · , L− 1,

Determine a decreasing step length α.

Set C
(l+1)
0 = C

(l)
0 − α∇F (C

(l)
0).

Step 3: Set B = B1 − C(L)
0 V T

0 .

50

4.2 The row minimum strength model

4.2.1 l1-vector norm minimization

For column-by-column approach, we use the property ‖B‖L∞ = ‖BT ‖L1 . By this property,

(4.0.4) is equivalent to the following problem:

min
C0∈Rn×(n−r)

‖BT
1 − V0C

T
0 ‖L1 . (4.2.1)

Like CMSM column-by-column approach, we propose to compute the solution of (4.2.1) by

minimizing the l1-norm of each column of BT
1 − V0C

T
0 .

During last a few decades, vector l1-norm has been used as a sparsity-promoting func-

tional in various area such as approximation, compression, and statistical estimation [21,

16, 31, 32, 73, 79]. It has been widely used to approximate a solution to an overdetermined

linear system by minimizing the l1-norm of the residual error since l1-norm solution is robust

to large data errors in the system [7]. Applications and numerical techniques of minimizing

vector l1-norm dramatically increased in the last ten years [33, 30, 14, 13]. Minimizing

the residual error of the linear system in l1-vector norm is especially used to recover the

sparsity solution of the system [33]. The sparsity property of solutions is important for

GRN problem since the inferred network matrix is meant to be sparse by the “small-world”

property of GRN. This motivates us to adopt the l1-vector norm minimization to (4.2.1).

Minimizing the l1-norm of each column of BT = BT
1 − V0C

T
0 approach leads to the

following n minimization problems:

min
c̃k∈R(n−r)

‖b̃k − V0c̃k‖1, (4.2.2)

where b̃k is the kth column of BT
1 and c̃k is the kth column of CT0 . Here, for a vector

x ∈ Rn, ‖x‖1 :=
∑n

i=1 |xi|. We note that the above minimization is to seek a vector which

minimizes the residual of an overdetermined linear system in l1-norm. Once c̃k is computed,

we assemble the biological solution by B = B1 − C0V
T

0 .

51

There are two well-known methods for computing the solution of (4.2.2), they are “Iter-

ative Reweighted Least Squares” (IRLS) and “Linear Programming” methods. It had been

shown that the l1-norm minimization to an overdetermined linear system problem can be

expressed as a linear programming problem and solved by linear programming techniques

[5, 6, 79]. Linear programming techniques, however, requires the use of a large amount

computer memory. Since 1970s, more sufficient IRLS algorithm was developed to solve

lp-norm minimization problem, in particular for 1 ≤ p ≤ 2 [25].

1. Iterative reweighted least squares

For given a matrix and vectors A ∈ Rn×m, x ∈ Rm, and y ∈ Rn, consider the linear system

Ax = y. (4.2.3)

Then the least lp-norm (1 ≤ p ≤ 2) solution to (4.2.3) is x ∈ Rm such that

N (x) = min
z∈Rm

Np(z) for 1 ≤ p ≤ 2,

where

Np(z) =
n∑
i=1

∣∣∣yi − m∑
j=1

aijzj

∣∣∣p.
To derive the normal equations, we set

∂Np
∂zk

= −p
n∑
i=1

aiksign(r(i))|r(i)|p−1 for k = 1, · · · ,m,

where r(i) = yi −
∑m

j=1 aijzj . Then,

∂Np
∂zk

= −p
n∑
i=1

aikr(i)|r(i)|p−2 = 0.

52

Now, we replace r(i) by its expression to get

n∑
i=1

aik|r(i)|p−2
(m∑
j=1

aijzj

)
=

n∑
i=1

aik|r(i)|p−2yi,

or
m∑
j=1

(n∑
i=1

aik|r(i)|p−2aij

)
zj =

n∑
i=1

aik|r(i)|p−2yi for k = 1, · · · ,m.

The above m normal equations can be expressed in the matrix form as:

ATWAz = ATWy, (4.2.4)

where

W =



w(1)

w(2) 0
0 . . .

w(n)


,

and w(i) = |r(i)|p−2, and r(i) = bi −
∑m

j=1 aijzj for i = 1, 2, · · · , n. The system (4.2.4) is

implicit and non-linear since r(i) and W depend on the unknown vector z. We note that

for p = 2, W is the identity matrix and (4.2.4) is the normal system of the least squares

method.

Numerical algorithm for IRLS approximates z iteratively. At each iteration, the IRLS

algorithm solves the following linear system for zk,

ATWkAzk+1 = ATWky, k = 0, 1, 2, · · · .

Since W depends on the unknown vector zk, we choose the initial condition z0 such that

W 0 = I for the initial condition. The diagonal matrix W k for k = 1, 2, · · · is formed with

the residuals of kth iteration. The convergence of this algorithm is guaranteed under the

following two conditions [12]. First, w(i) is non-increasing in |r(i)|. Second, w(i) is bounded

53

for all i. The first condition is true for p ≤ 2. To satisfy the second condition, Huber [52]

replaced w(i) = |r(i)|p−2 by

w(i) =


|r(i)|p−2 if |r(i)| > ε,

εp−2 if |r(i)| ≤ ε

for any small ε > 0.

2. Existence and uniqueness

Since any vector norm is a convex function, then the l1- norm is a convex function. Hence,

problem (4.2.2) always has a solution by Theorem 2.1.1. Unfortunately, l1-norm is not

strictly convex. It can be shown by the following example. Let x = [1, 0]T and y = [0, 1]T

then ‖x‖1 = 1 = ‖y‖1, x + y = [1, 1]T and ‖x + y‖1 = 2, but x 6= y. Thus, solutions to

(4.2.2) may not be unique. In 1988, Zhang et al. [89] introduced the limiting solution of

l1 minimization. That is, they remove non-uniqueness of l1 solution by choosing a solution

that is equal to the limit of xp as p approaches to 1 from above. Specifically,

x1+ := lim
p→1+

xp, (4.2.5)

where for A ∈ Rn×m and y ∈ Rn (n ≥ m), xp is defined by

xp := arg min
x
‖y −Ax‖p, p ≥ 1. (4.2.6)

They showed the existence and uniqueness of the limiting solution which resides in the l1

solution set.

To find the minimizer of (4.2.2), we apply the IRLS algorithm since it is faster and

approximate the unique limiting solution by letting p tend to 1.

54

3. Algorithm

RMSM Algorithm 1

Step 1: Compute the particular solution B1 using the AMSM Algorithm .

Step 2: Compute SVD of XT : XT = UΛV T .

Step 3: Compute C0 column-by-column using the IRLS algorithm.

Set Z
(0)
k = In.

For l = 1, 2, · · · , L, do the following:

For k = 1, 2, · · · , n, set

r
(l)
k = ã

(l)
k − V0c̃

(l)
k ,

Z lk = diag(r
(l)
k),

c̃
(l+1)
k = (V t

0Z
(l)
k V0)−1(V t

0Z
(l)
k ã

(l)
k).

Step 4: Set CT0 = [c̃
(L)
1 , c̃

(L)
2 , · · · , c̃(L)

n] and B = B1 − C0V
T

0 .

4.2.2 L∞-matrix norm minimization

Although l1-vector norm minimization is a nice method to approximate the sparse solution,

it may destroy relations between columns since it recovers the solution matrix column-by-

column. To overcome this problem, we construct an algorithm to directly minimize L∞ as

we proposed for CMSM algorithm 2.

1. Existence and uniqueness

Theorem 4.2.1. There exists a minimizer of (4.0.4).

Proof. The existence of the minimizer of (4.0.4) immediately follows from Theorem 2.1.1.

On the other hand, the matrix L∞-norm is not strictly convex. We can show this using the

example of Theorem 4.1.1 by transposing matrices X and Y .

Although we have not proved the uniqueness of the minimizer that satisfies the con-

straint, yet, we still expect a unique minimizer with the same reasons for CMSM.

55

2. Algorithm

Similar to the situation of the CMSM, our numerical algorithm for the RMSM to be intro-

duced below is also of the gradient descent type. To construct a numerical algorithm for

L∞-norm minimization using the gradient descent method, we let F (C0) = ‖B1−C0V
T

0 ‖L∞ .

Then, we compute ∇F (C0) using the finite difference method as it was computed in CMSM

algorithm 2.

RMSM Algorithm 2

Step 1: Compute the particular solution B1 using the AMSM Algorithm.

Step 2: Compute C0 using the gradient descent method.

Choose an initial guess C
(0)
0 , set F (0) = ‖B1 − C(0)

0 V T
0 ‖L∞ .

For l = 0, 1, 2, · · · , L− 1,

Determine a decreasing step length α.

Set C
(l+1)
0 = C

(l)
0 − α∇F (C

(l)
0).

Step 3: Set B = B1 − C(L)
0 V T

0 .

4.3 Numerical simulation

We assess CMSM1, CMSM2, RMSM1, and RMSM2 on a randomly generated synthetic

networks used for AMSM. We perform CMSM1 and RMSM1 on 100-gene and 350-gene

networks and CMSM2 and RMSM2 only on 100-gene network. We also evaluate four models

on fourteen-gene yeast cell cycle, five-gene subnetwork and nine-gene E. coli subnetwork. For

the five-gene yeast subnetwork, the best inferred networks by CMSM1, CMSM2, RMSM1,

and RMSM2 are the same as the inferred network by AMSM.

56

0 100 200 300 400

Number of time points
0

5

10

15

20

25

30

E
rr

or
s

(%
)

100 genes
350 genes

Figure 4.1: CMSM1 on synthetic 100 and 350 genes networks

0 20 40 60 80 100

Number of time points
0

10

20

30

40

50

60

70

80

E
rr

or
s

(%
)

100 genes

Figure 4.2: CMSM2 on synthetic 100 genes network

57

0 100 200 300 400

Number of time points
0

50

100

E
rr

or
s

(%
)

100 genes
350 genes

Figure 4.3: RMSM1 on synthetic 100 and 350 genes networks

0 20 40 60 80 100

Number of time points
0

10

20

30

40

50

60

70

80

E
rr

or
s

(%
)

100 genes

Figure 4.4: RMSM2 on synthetic 100 genes network

58

ACE2

CLB1

CLB6

CLN1

CLN2

CLN3

FKH2

MBP1

MCM1

SIC1

SWI4

SWI5

SWI6

YOX1

Figure 4.5: Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by CMSM1, respectively. PPVu=0.42, Seu=0.47,
PPVd=0.37, Sed=0.39, PPVs=0.21, Ses=0.22.

59

ACE2

CLB1
CLB6

CLN1

CLN2

CLN3

FKH2

MBP1

MCM1

SIC1

SWI4

SWI5

SWI6

YOX1

Figure 4.6: Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by CMSM2, respectively. PPVu=0.36, Seu=0.36,
PPVd=0.27, Sed=0.27, PPVs=0.12, Ses=0.12.

60

ACE2

CLB1

CLB6

CLN1

CLN2

CLN3

FKH2

MBP1

MCM1

SIC1

SWI4

SWI5

SWI6

YOX1

Figure 4.7: Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by RMSM1, respectively. PPVu=0.21, Seu=0.12,
PPVd=0.2, Sed=0.2, PPVs=0.13, Ses=0.12.

61

ACE2

CLB1

CLB6

CLN1

CLN2

CLN3

FKH2

MBP1

MCM1

SIC1

SWI4

SWI5 SWI6

YOX1

Figure 4.8: Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by RMSM2, respectively. PPVu=0.33, Seu=0.38,
PPVd=0.23, Sed=0.24, PPVs=0.14, Ses=0.15.

62

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD

rpoH

Figure 4.9: Inferred nine-gene E. coli network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by CMSM1, respectively. PPVu=0.68, Seu=0.96,
PPVd=0.6, Sed=0.65, PPVs=0.38, Ses=0.42.

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD

rpoH

Figure 4.10: Inferred nine-gene E. coli network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by CMSM2, respectively. PPVu=0.73, Seu=0.92,
PPVd=0.64, Sed=0.67, PPVs=0.36, Ses=0.37.

63

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD

rpoH

Figure 4.11: Inferred nine-gene E. coli network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by RMSM1, respectively. PPVu=0.66, Seu=0.88,
PPVd=0.69, Sed=0.72, PPVs=0.49, Ses=0.51.

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD

rpoH

Figure 4.12: Inferred nine-gene E. coli network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by RMSM2, respectively. PPVu=0.73, Seu=0.92,
PPVd=0.73, Sed=0.74, PPVs=0.43, Ses=0.44.

64

Chapter 5

The Lp Minimum Strength Model

The Lp Minimum Strength Model (LpMSM) uses the functional L(·) = ‖·‖pLp for 1 < p <∞

(p 6= 2), where ‖ · ‖Lp is the matrix Lp-norm. For p = 2, the matrix Lp-norm is same as

the spectral norm which is an unitary invariant norm (cf. Chapter 3). Thus, the solution

of the L2MSM is same as that of the AMSM. Therefore, we do not consider p = 2 in this

family. For this choice, the abstract variation model (2.1.1) becomes

min
B∈Rn×n

‖B‖pLp subject to BX = Y. (5.0.1)

The LpMSM model has no explicit solution. Thus, we solve its equivalent unconstrained

minimization problem (cf. Chapter 2) with the choice of B1 = Y (XTX)−TXT :

min
C0∈Rn×(n−r)

‖B1 − C0V
T

0 ‖
p
Lp , 1 < p <∞, p 6= 2. (5.0.2)

The problem now reduces to minimizing pth power of the matrix Lp-norm. Unfortunately,

the matrix Lp-norm (or Hölder p-nrom) has no explicit representation. Thus, to construct

an algorithm to compute a minimizer of (5.0.2), we first need to estimate the matrix Lp-

norm. To the end, we adopt an algorithm to compute pth power of the matrix Lp-norm

from [50]. In this chapter, we first introduce the algorithm of [50], then compute C0 by

directly minimizing matrix Lp-norm of the matrix B1 − C0V
T

0 .

65

The goal of this chapter is to address the well-posedness of (5.0.2) and develop an efficient

algorithm to compute the solution of (5.0.2) utilizing the algorithm for computing the matrix

Lp-norm. Numerical experiments are presented as well to evaluate the performance of the

LpMSM and the proposed numerical algorithms for solving the model.

5.1 Existence and uniqueness of minimizers

Theorem 5.1.1. There exists a solution to problem (5.0.2).

Proof. The existence of a minimizer of (5.0.2) follows immediately from Theorem 2.1.1,

since the functional L(·) = ‖ · ‖pLp is convex.

To show the uniqueness we need to show that L(·) = ‖·‖pLp is a strictly convex functional.

Unfortunately, we have not proved it yet, although our numerical tests suggest so.

5.2 Algorithm

To construct a numerical algorithm for Lp-norm minimization, we use the gradient descent

method as we did for L1-norm minimization (cf. Chapter 4). The only difference is how the

matrix norms are evaluated. As mentioned early, there is no explicit formula to compute

the matrix Lp-norm. In this section, we first present an algorithm for approximating the

matrix Lp-norm.

5.2.1 The matrix Lp-norm estimation

There is no explicit formula to compute the matrix Lp-norm except p = 1 and p = ∞.

In 1947, Boyd first introduced a method to compute the matrix Lp-norm, which is called

the power method [9]. Other methods, the one step estimator and iteratively re-weighted

2-norms, were derived and analyzed later in [50]. All three methods aim at solving the

following problem:

max
x∈Rn×1

‖Ax‖p subject to ‖x‖p = 1.

66

Then, with such a minimizer x, ‖A‖p = ‖Ax‖p.

1. The power method

The idea of the power method is to find the critical point of

F (x) :=
‖Ax‖p
‖x‖p

. (5.2.1)

It was proved that if x is a (nonzero) critical point of F (x) and σ = F (x), then

ψq(A
Tψp(Ax)) = σp(q−1)x,

where
1

p
+

1

q
= 1 and ψp(x) is the vector with components |xi|p−1sign(xi). Next, define the

operators S and W by

Sx = ψq(A
Tψp(Ax)) if x 6= 0,

Wx = ‖Sx‖−1
p Sx if Sx 6= 0.

The power method generates the sequence {x(k)}k≥1 by x(k+1) = Wx(k) with the expecta-

tion that x(k) converges to a critical point of F (x).

2. The one step estimator

The one step estimator uses the idea of condition number estimation and is not an iterative

method [50]. It seeks the vector x such that ‖x‖p = 1 by computing the component of x in

the order x1, x2, · · · , xn.

Suppose that the first k−1 components of x that satisfies ‖x(1 : k−1)‖p = 1 have been

determined and let γk−1 = ‖A(:, 1 : k−1)x(1 : k−1)‖p, where x(1 : k−1) and A(:, 1 : k−1)

denote a column vector consisting of x1 through xk−1 of x and a matrix consisting of the

column 1 through the column k − 1 of A, respectively. Then the next component xk is

determined and at the same time x(1 : k − 1) is revised so that x(1 : k − 1) gives the next

67

partial product a larger norm. The algorithm computes each component of x by computing

λ∗ and µ∗ such that ‖[λ∗µ∗]‖p = 1 and g(λ∗, µ∗) = maxλ,µ g(λ, µ), where g(λ, µ) = λA(:, 1 :

k − 1)x(1 : k − 1) + µA(:, k). Then, set xk = µ∗ and x(1 : k − 1)← λ∗x(1 : k − 1).

Higham [50] also proposed to combine the power method and the one step estimator. The

power method requires the starting vector x(0) with ‖x(0)‖p = 1. The combined algorithm

first computes the starting vector by the one step estimation and then computes x, which

maximize ‖Ax‖p, using the power method.

In this dissertation, we use the Higham’s algorithm to compute the matrix Lp-norm. To

compute the solution matrix using the gradient method, we let F (C0) = ‖B1 − C0V
T

0 ‖
p
Lp ,

which is a function of the matrix C0, and compute∇F (C0) using the finite difference method

(cf. Chapter 4).

5.2.2 LpMSM algorithm

LpMSM Algorithm

Step 1: Compute the particular solution B1 using the AMSM Algorithm.

Step 2: Compute C0 using the gradient descent method as follows:

Choose an initial guess C
(0)
0 , set F (0) = ‖B1 − C(0)

0 V T
0 ‖

p
Lp .

For l = 0, 1, 2, · · · , L− 1,

Determine a decreasing step length α.

Set C
(l+1)
0 = C

(l)
0 − α∇F (C

(l)
0).

Step 3: Set B = B1 − C(L)
0 V T

0 .

5.3 Numerical simulation

We assess LpMSM on a randomly generated synthetic network with 50 genes since the

computation time is too long to test a larger network. We also evaluate LpMSM on fourteen-

gene yeast cell cycle, five-gene subnetwork and nine-gene E. Coli. subnetwork. For the five-

gene yeast subnetwork, the best inferred network by LpMSM is the same as that inferred

68

by AMSM.

69

0 10 20 30 40 50 60

Number of time points
0

10

20

30

40

50

60

70

80

E
rr

or
s

(%
)

LpMSM

Figure 5.1: LpMSM on synthetic 50 genes network

ACE2

CLB1

CLB6

CLN1

CLN2

CLN3

FKH2

MBP1

MCM1

SIC1

SWI4

SWI5

SWI6

YOX1

Figure 5.2: Inferred yeast cell cycle network network. Solid and dashed lines indicate the
correctly inferred and incorrectly inferred edges by LpMSM, respectively. PPVu=0.33,
Seu=0.40, PPVd=0.21, Sed=0.24, PPVs=0.13, Ses=0.15.

70

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD

rpoH

Figure 5.3: Inferred nine-gene E. coli network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by LpMSM, respectively. PPVu=0.71, Seu=0.92,
PPVd=0.70, Sed=0.72, PPVs=0.36, Ses=0.37.

71

Chapter 6

The Entrywise Minimum Strength

Model

The Entrywise Minimum Strength Model (EMSM) uses the functional L(·) = ‖ · ‖pep for

1 ≤ p ≤ ∞ (p 6= 2), where ‖ · ‖ep is the entrywise matrix p-norm. For p = 2, ‖ · ‖ep is

same as the Frobenious matrix norm, which results in the AMSM, see Chapter 3. Thus, we

only consider 1 ≤ p ≤ ∞ but p 6= 2. For this choice, the abstract variation model (2.1.1)

becomes

min
B∈Rn×n

‖B‖pep subject to BX = Y. (6.0.1)

To construct an efficient and fast algorithm to approximate the minimizer of (6.0.1), we

solve its equivalent unconstrained minimization problem with the choice ofB1 = Y (XTX)−TXT :

min
C0∈Rn×(n−r)

‖B1 − C0V
T

0 ‖
p
ep , 1 < p <∞, p 6= 2. (6.0.2)

To solve (6.0.2), we again appeal to the gradient descent method and construct an

algorithm similar to CMSM Algorithm 2 of Chapter 4. For this model, the function F (C0)

is the entrywise matrix p-norm, that is, F (C0) = ‖B1 − C0V
T

0 ‖
p
ep .

In this chapter, we prove the well-posedness of (6.0.2) and describe the details of gradient

descent algorithm. We also present numerical experiments to show the performance of the

72

EMSM and the proposed numerical algorithm.

6.1 Existence and uniqueness of minimizers

Theorem 6.1.1. There exists a solution to problem (6.0.2).

Proof. Once again, the existence follows immediately from Theorem 2.1.1, since L(·) = ‖·‖pep

is convex.

6.2 Algorithm

Similar to the situation of the CMSM and LpMSM studied in Chapter 4 and 5, our numerical

algorithm to be introduced below for the EMSM is also of the gradient descent type. The

function to be minimized now is F (C0) = ‖B1 − C0V0‖pep . For 1 < p < ∞, we have an

explicit representation for ∇F (C0):

∇F (C0) =


−p (B1 − C0V

T
0).(p−1)V0 if p is even,

−p sign(B1 − C0V
T

0).(B1 − C0V
T

0).(p−1)V0 if p is odd,

where (B0−C0V0).(p−1) denotes the (p−1)th power of each component of the matrix (B0−

C0V
T

0). Thus, here, we compute ∇F (C0) explicitly and exactly instead of approximately

as done in Chapter 4 and 5. For p = 1 and p = ∞, the functions are not differentiable.

Unfortunately, we do not have formulas to compute ∇F (C0) for these cases. For numerical

simulation, we only consider 1 < p <∞.

EMSM Algorithm

Step 1: Compute the particular solution B1 using the AMSM Algorithm.

Step 2: Compute C0 using the gradient descent method as follows:

Choose an initial guess C
(0)
0 , set F (0) = ‖B1 − C(0)

0 V T
0 ‖

p
ep .

For l = 0, 1, 2, · · · , L− 1,

Determine a decreasing step length α.

73

Set C
(l+1)
0 = C

(l)
0 − α∇F (C

(l)
0).

Step 3: Set B = B1 − C(L)
0 V T

0 .

6.3 Numerical simulation

We assess EMSM on some randomly generated synthetic networks which contain 100 and

350 genes. We also evaluate EMSM on fourteen-gene yeast cell cycle, five-gene subnetwork

and nine-gene E. Coli. subnetwork. For the five-gene yeast subnetwork, the best inferred

network by EMSM is the same as that inferred by AMSM.

74

0 100 200 300 400

Number of time points
0

10

20

30

40

50

60

70

80

E
rr

or
s

(%
)

100 genes
350 genes

Figure 6.1: EMSM on synthetic 100 and 350 genes networks

75

ACE2

CLB1

CLB6

CLN1

CLN2

CLN3

FKH2 MBP1

MCM1

SIC1

SWI4

SWI5

SWI6

YOX1

Figure 6.2: Inferred yeast cell cycle network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by EMSM, respectively. PPVu=0.31, Seu=0.38,
PPVd=0.23, Sed=0.27, PPVs=0.13, Ses=0.15.

76

dinI

umnDCSsB

recA rpoS

recF

lexA rpoD

rpoH

Figure 6.3: Inferred nine-gene E. coli network. Solid and dashed lines indicate the correctly
inferred and incorrectly inferred edges by EMSM, respectively. PPVu=0.68, Seu=0.86,
PPVd=0.74, Sed=0.65, PPVs=0.36, Ses=0.37.

77

Chapter 7

Stochastic Differential Equation

Models and Random Matrix

Theory Thresholding Techniques

Uncertainties of microarray data arise in many places such as preparation of samples, mea-

surement errors, and equipment malfunction. Thus, raw microarray data typically contains

noise. In order to get better models for gene regulatory networks, those uncertainties should

be considered and incorporated into the mathematical models.

We propose stochastic DE models for gene regulatory networks by considering and

incorporating those uncertainties into mathematical models. We remark that the idea of

using stochastic differential equations to model genetic networks seems new, at least we are

not aware of it in the literature, although it is a pretty natural idea.

Similar to the situation of deterministic DE-modeling, the network matrices obtained

by stochastic DE models are expected to be dense. As we discussed in Chapter 3, to obtain

sparse network matrices, the computed network matrices of stochastic DE models need

to be post-processed. Motivated by the works [66, 67] of Luo et al., we propose a novel

post-processing method based on the Random Matrix Theory (RMT).

78

In this chapter, we first present our stochastic DE models and variational framework for

gene regulatory network identification. Our stochastic models and variational framework

are natural extensions to our deterministic models and framework presented in Chapter

2-6. We then give a brief introduction to RMT, which is followed by a presentation of

our RMT-based post-processing method. Finally, numerical experiments are presented for

model validation.

7.1 Stochastic differential equation models and

stochastic variational framework

To incorporate noise into DE models, we propose to replace the deterministic differential

equation models (1.3.2) and (1.3.3) by the following stochastic differential equation models:

dy(t, ω)

dt
= F(y(t, ω)) + v(ω) ω ∈ Ω. (7.1.1)

The first order approximation model of (7.1.1) is given by

dx(t, ω)

dt
= A(ω)x(t, ω) + P (ω)u(ω) ω ∈ Ω, (7.1.2)

where ω denotes a sample point and Ω denotes the sample space. More generally, (1.3.2) and

(1.3.3) need to be replaced, respectively, by the following Lengvein (stochastic differential)

equations

dy(t, ω)

dt
= F(y(t, ω)) + v(ω)ξ(t, ω) ω ∈ Ω, (7.1.3)

and

dx(t, ω)

dt
= A(ω)x(t, ω) + P (ω)u(ω)ξ(t, ω) ω ∈ Ω, (7.1.4)

79

where ξ(t, ω) denotes the white noise (cf. [59, 70]). We note that in the literature equations

(7.1.3) and (7.1.4) are often written formally as

dy(t, ω) = F(y(t, ω))dt+ v(ω)dWt ω ∈ Ω, (7.1.5)

and

dx(t, ω) = A(ω)x(t, ω)dt+ P (ω)u(ω)dWt ω ∈ Ω, (7.1.6)

where Wt, t ≥ t0 stands for the Wiener (stochastic) process (cf. [59, 70]).

Like in the case of the deterministic DE models, we assume P (ω) = I in (7.1.2). Then

(7.1.2) becomes

dx(t, ω)

dt
= A(ω)x(t, ω) + u(ω) ω ∈ Ω. (7.1.7)

We now use (7.1.7) to formulate our stochastic variational framework for identifying the

random network matrix A(ω). The formulation for (7.1.4) with P (ω) = I is similar.

We discretize (7.1.7) as it was done for the deterministic DE models. The gene expression

data x(t, ω) is measured at m+ 1 time points {tj}m+1
j=1 in a lab experiment. Therefore, we

approximate
dx(t, ω)

dt
at each time point tj (1 ≤ j ≤ m) by

dx(tj , ω)

dt
≈ x(tj+1, ω)− x(tj , ω)

tj+1 − tj
.

After discretization, equation (7.1.7) reduce to

A(ω)X(ω) = Z(ω), ω ∈ Ω, (7.1.8)

which is the stochastic counterpart part of the deterministic relation (1.3.8), where

X(ω) = [x(t1, ω),x(t2, ω), · · · ,x(tm, ω)],

Z(ω) = [z1(ω), z2(ω), · · · , zm(ω)],

80

and {zj(ω)}mj=1 stands for discrete approximations of the rate (dx(t,ω)
dt −u(ω)) at the same m

time incidences. As in the deterministic case, equation (7.1.8) has infinitely many solutions

A(ω), and the least squares method for the equation also has infinitely many solutions A(ω).

Hence, a solution selection criterion is needed to pick up the “biological solution”.

To extend the deterministic variational framework to the above problem, for each ω ∈ Ω,

let S(ω) := {B(ω) ∈ Rn×n;B(ω)X(ω) = Z(ω)}. Let L be a pre-determined (energy)

functional on Rn×n, the stochastic analogue of the variational problem (2.1.1) is

min
B(ω)∈S(ω)

L(B(ω)) ω ∈ Ω. (7.1.9)

However, problem (7.1.9) is not feasible numerically because the sample space may con-

tain infinitely many samples. One remedy for this is to consider the so-called worst case

approach, which looks for the worst outcome that might occur and makes no distinction

between outcomes according to the probability distribution function. In this case, the min-

imization problem is defined as

max
ω∈Ω

min
B(ω)∈S

L(B(ω)). (7.1.10)

Another alternative approach is to minimize the expectation value of the random variable

L(B(ω)), the overall energy of B(ω). The minimization problem in this case is defined as

min
B(ω)∈S(ω)

E(L(B(ω))). (7.1.11)

We note that problems (7.1.9) - (7.1.11) are known as stochastic optimization problems [58].

In this dissertation, to compute the solution of (7.1.9), we first choose a set of sample

points. Then, for each sample point ω ∈ Ω, we have a deterministic variational problem as

(2.1.1). Next, we solve each deterministic variational problem with a choice of the functional

L. Finally, we set the mean of computed minimizers {B(ω1), B(ω2), · · · , B(ωs)} to be the

solution of (7.1.9) [24]. The resulted matrix is not a random matrix any more. However, we

81

expect that all minimizers are close to their mean. Therefore, the mean of all minimizers

gives the structure of the inferred matrix, that is, the structure of the network.

7.2 Post-processing of stochastic differential equation models

The resulting solutions from the stochastic differential equation models are almost certainly

dense matrices. Thus, they must be post-processed to have the sparse solutions. Luo et

al. [66, 67] proposed to use random matrix theory for determining the threshold values of

correlation matrix of microarray data to discover gene functional modules. We proposed to

adopt the post-processing idea of Luo et al to determine the threshold values to post-process

the solutions of our stochastic DE models.

7.2.1 Random matrix theory (RMT)

In 1928, Wishart first introduced Random Matrix Theory in mathematical statistics study-

ing correlations between different features of a population [85]. Wigner, the theoretical

physicists, proposed the concept of statistical distribution of nuclear energy levels in the

1950s [82]. The locations of peaks in nuclear reactions of an atom are called energy levels

(see Figure 7.1). The ground state and low lying excited states have been impressively

explained. However, at higher excitations, the nuclear states are so dense and the inter-

mixing is so strong. Hence, it is unable to explain the individual states. Nuclear physicists

focused on the average properties of nuclear states at higher excitations instead explaining

the characteristics of every individual state.

The energy levels of a dynamical system are supposed to be described by the eigenvalues

of a Hermitian operator, H, called Hamiltonian [68]. However, H is unknown. Even it is

known, it is too complicated to compute eigenvalues. Wigner proposed that the local

statistical behavior of energy is identical to the eigenvalues of a large random matrix, a

matrix whose elements are random variables with a given probability law. Motivated by

Wigner’s proposal, random matrix theory has been established to analyze the statistical

82

Figure 7.1: Nuclear reaction of Lithium

behavior of the eigenvalues of random matrices such as the eigenvalue density and eigenvalue

spacing distribution of random matrices. In 1956, Wigner derived the famous Wigner’s

surmise [83],

P (s) ≈ As exp(−Bs2)

that represented the distribution of the spacing between consecutive eigenvalues of real sym-

metric random matrices. In 1962, Dyson introduced the following classification of random

matrix ensembles which model the Hamiltonians of random dynamical systems [35, 36]:

• Gaussian Orthogonal Ensembles (GOE): the family of real symmetric matrices whose

entries are independent and identically distributed (i.i.d.) Gaussian.

• Gaussian Unitary Ensembles (GUE): the family of Hermitian matrices whose entries

are i.i.d. Gaussian.

• Gaussian Sympletic Ensembles (GSE): The family of self-dual matrices whose entries

are i.i.d. Gaussian.

Later, it has been proved that Wigner’s surmise only approximates the nearest neighbor

83

spacing distribution (NNSD) of eigenvalues of GOE and it is called Wigner-Dyson distri-

bution

PGOE(s) ≈ 1

2
πs exp(−πs2/4).

Metha and Gaudin derived the exact expression for NNSD of Gaussian ensembles [69, 42].

Their expressions for the distributions are close to Wigner’s surmise. Empirical evidence

suggests that Wigner’s surmise is almost universally applicable.

Since the 1980s, scientists have been studying other mathematical properties of random

matrices such as condition numbers and singular values of random matrices. RMT has been

successfully applied to various scientific fields such as nuclear physics, quantum physics [68,

47], Riemann Hypothesis, stock market [60], complex networks [2], and biological networks

[66, 67, 65].

7.2.2 RMT thresholding techniques

In [66, 67], the authors first construct the correlation matrix of genes using microarray data.

The correlation matrix is dense which means that all genes are connected each other. They

remove elements (or edges in the network) of the correlation matrix to discover biological

networks of genes by using the Girvan and Newman algorithm [43] that gradually deletes

the edges. The question is when the deletion has to be stopped.

According to Luo et al. [66, 67], the NNSD of eigenvalues of the correlation matrix

before deleting elements follows the Poisson distribution,

PPoisson(s) = exp(−s).

At each deletion step, they computed the NNSD of eigenvalues of the correlation matrix.

They provided the evidence that the NNSD of eigenvalues of the correlation matrix transited

from the Poisson distribution to the Wigner-Dyson distribution. They proposed to stop the

the deletion procedure when NNSD of eigenvalues reaches to the Wigner-Dyson distribution.

For any post-processing method, the key issue is to determine the right threshold values,

84

which means when to stop deleting elements. Our hypothesis on post-processing step is

that the NNSD of singular values of the “true” gene regulatory network matrix follows

the Wigner-Dyson distribution. We choose the cut-off values same as deterministic DE

models and compute the NNSD of singular values for each chosen value. When the NNSD

of singular values confirms the Wigner-Dyson distribution, we stop the searching process

and select the final cut-off value as the threshold value.

7.3 Numerical simulations

In this section, we present one set of numerical experiments to test and validate the

stochastic DE model and RMT based post-processing technique. We choose the functional

L(·) = ‖ ·‖L∞ with RMSM1. We only test on a randomly generated synthetic network since

the RMT is only applicable to large size of matrices and we do not have access to large

time-series microarray data sets. The real networks that we have data only consist of less

than 15 components. Thus, it is not large enough to apply the RMT.

We generate a network matrix A, data matrix X, Y in the same way as we did for the

deterministic DE models. To test the stochastic DE model, we add 100 different Gaussian

noise to X so that we have 100 noisy data matrices. We, then recover the network matrix

A with m = 100 and m = 200. Lastly, we plot the NNSDs of singular values of the inferred

network matrix before post-processing and after post-processing with various theresholding

values.

Figure 7.2 and 7.3 show the NNSDs of singular values of inferred network matrices with

various thresholding values for m = 100 and m = 200, respectively. Solid curve represents

the Wigner-Dyson distribution and blue bars are the NNSD of singular values. In Figure

7.2, before post-processing, Stage 1 and 2 NNSDs of singular values are close to each others

and are a bit off of Winer-Dyson distribution. After Stage 3, NNSDs of singular values are

getting closer to the Wigner-Dyson distribution and NNSD of singular values at Stage 5 is

the best fit to the Wigner-Dyson distribution, overall.

85

We also observe that the NNSDs of singular values are changed at each stage in Figure

7.3. Stage 1 is the closest to the Winer-Dyson distribution.

86

(a) Before post processing (b) Stage 1

(c) Stage 2 (d) Stage 3

(e) Stage 4 (f) Stage 5

Figure 7.2: NNSDs of singular values of inferred network matrices with m = 100

87

(a) Before post processing (b) Stage 1

(c) Stage 2 (d) Stage 3

(e) Stage 4 (f) Stage 5

Figure 7.3: NNSDs of singular values of inferred network matrices with m = 200

88

Chapter 8

Conclusion and Future Directions

8.1 Conclusion

We have presented a general variational framework and several specific models within this

framework for gene regulatory network identification based on differential equation ap-

proach. Closed form solutions or efficient numerical algorithms are also developed for com-

puting the solutions of the variational models. In the framework, no priori structure condi-

tion is assumed or imposed on the gene regulatory network to be identified, the network is

determined solely by the microarray profiles of the network components, and is identified by

a variational principle which minimizes a “biological energy functional”. Such a variational

principle not only serves as a selection criterion to pick up the right biological solution but

also can be regarded as a mathematical description of the “small-world” property of gene

regulatory networks which has been observed in lab experiments.

The proposed framework, models, and numerical algorithms are evaluated and tested

on both randomly generated synthetic networks and on the benchmark subnetworks of S.

cerevisiae and E. Coli.

89

8.1.1 Synthetic gene regulatory networks

Figure 8.1 and 8.2 give head-to-head comparisons of the relative errors of all models except

LpMSM for n = 100 and n = 350. For n = 350, we only could perform the numerical

simulations on AMSM, CMSM1, RMSM1, and EMSM since the computation times of

CMSM2, RMSM2, and LpMSM are too long on a large network. Especially, LpMSM is not

efficient for a network lager than n = 100. Thus, we test LpMSM with n = 50 whose result

is presented in Chapter 5. Both results show that AMSM, CMSM2, RMSM2, and EMSM

solutions are close to each other as expected since our recovered network is an approximation

of the same true network. We note that AMSM, CMSM2, RMSM2, EMSM recover the

network matrix by minimizing matrix norms, while CMSM1 and RMSM1 recover network

matrix column-by-column by minimizing vector norms. Thus, CMSM1 and RMSM1 give

slightly different results than other methods. The results also suggest that the accuracy

of the models depend on the DCR of the data set. Although similar general patterns of

the errors are observed for all models, the AMSM, CMSM2, RMSM2, and EMSM perform

better for low DCR data sets. The errors drop significantly when DCR of the data set is

just above 0.05 (or 5%) for n = 100 and 0.029 (or 2.9%) for n = 350, whereas RMSM1

still produces large errors. However, when DCR ≥ 0.8 (or 80%) for each n, the situation is

reversed, that is, the error of the RMSM1 is smaller than those of other models which are

pretty much flat. Hence, RMSM1 outperforms the AMSM, CMSM2, RMSM2, and EMSM

for high DCR data sets. One “extreme” example is when n = 350 and m = 330 (hence,

DCR = 0.94), the RMSM1 essentially recovers the “exact network”, but the errors of the

AMSM, CMSM1, EMSM change little for 50 ≤ m ≤ 330. Overall, the error of CMSM1

changes little for different m. CMSM1 performs best among all models when DCR of

the data set is just less than 0.1 (or 10%) for n = 100 and 0.029 (or 5%) for n = 350.

The above test results suggest that the possibility to design a more accurate hybrid model

which combines the AMSM, CMSM1, and RMSM1 (using DCR as a switch) and takes the

advantage of three models.

90

0 20 40 60 80 100

Number of time points
0

50

100

E
rr

or
s

(%
)

AMSM
CMSM1
CMSM2
RMSM1
RMSM2
EMSM

Figure 8.1: Comparison of all models applied to a synthetic network with 100 genes

0 100 200 300 400

Number of time points
0

20

40

60

80

100

E
rr

or
s

(%
)

AMSM
CMSM1
RMSM1
EMSM

Figure 8.2: Comparison of AMSM, CMSM1, RMSM1, and EMSM applied to a synthetic
network with 350 genes

91

8.1.2 Benchmark subnetworks of Saccharomyces cerevisiae and E. coli

To evaluate our models on the benchmark subnetworks, we compute the PPV and Se. The

PPV measures the ratio of correctly inferred interactions by a model and total number of

interactions in the inferred network. The Se is the ratio of correctly inferred interactions

by a model over total number of interactions in the real network.

Table 8.1 shows the PPV and Se of our models on 14-gene subnetwork of yeast. The

table shows that CMSM1 result is the best overall in terms of those values. In the true

network, there are 41 interactions (activation and inhibition) in total out of 196 possible

interactions. 9 interactions in signed graph are correctly inferred by CMSM1. Other models

correctly infer 6 interactions. As a comparison, Kim et al. [56] correctly identified 8

interactions. Although PPV and Se of all models are pretty low for the signed graph,

CMSM1 show a bit better result in terms of the number of correctly identified interactions.

The PPV and Se values of all models for the five-gene subnetwork of yeast with different

types of data are shown in Table 8.2 and 8.3. First of all, it is a bit surprised that solutions

of all models are the same for each data set. Canton et al. [15] evaluated several published

algorithms using their switch-on and switch-off time series data. We compare our models

with two of those algorithms, namely, TSNI (First order ordinary differential equation)

[4] and BANJO (Bayesian network) [88] both use the time series data. For the switch-on

data, we observe that except the directed graph, our models show better PPV and Se than

BANJO. TSNI shows the best results overall. However, the recovered network using the

Table 8.1: PPV and Se values of all models on an yeast cell cycle network

Method
Undirected graph Directed graph Signed graph

PPV Se PPV Se PPV Se

AMSM 0.30 0.32 0.29 0.29 0.17 0.17
CMSM1 0.42 0.47 0.37 0.39 0.21 0.22
CMSM2 0.36 0.38 0.27 0.27 0.12 0.12
RMSM1 0.21 0.21 0.2 0.2 0.13 0.12
RMSM2 0.33 0.38 0.23 0.24 0.14 0.15
LpMSM 0.31 0.38 0.23 0.27 0.13 0.15
EMSM 0.33 0.40 0.21 0.24 0.13 0.15

92

Table 8.2: PPV and Se values comparison on a five-gene yeast network using switch-on data

Method
Undirected graph Directed graph Signed graph

PPV Se PPV Se PPV Se

TSNI 1 0.57 0.8 0.5 0.6 0.38
BANJO 0.6 0.43 0.3 0.25 0.3 0.25

Our models 0.71 0.71 0.43 0.38 0.43 0.38

switch-off data by our models is much closer to the true network. We identified 4 correct

interactions (There are 8 interactions in the true network) as a signed graph. Also, PPV

and Se values of signed graph are higher than those of TSNI and BANJO.

The last evaluation of our models using E. coli time series data is shown in Table 8.4.

ARNACE performs well to recover an undirected graph. Results of our models are close

to each other, but CMSM1 performs best for the undirected graph. For the signed graph,

PPV and Se are zero, which means that there are no occurrence of TP. Among our models,

RMSM1 shows the highest PPV and Se. It identified 19 interactions as the signed graph.

(There are 43 interactions in the true network).

The test results are promising, in particular, compared to those reported in the litera-

ture. It is expected that the performance of our models depends on the quality of microarray

data.

8.2 Future directions

Using the linearized models is only the first step towards building more realistic nonlinear

dynamic models. The study of the linearized models not only helps to develop the needed

mathematical and numerical capabilities but also provide valuable approximate information

about the underlying complicate and nonlinear gene regulatory networks. However, it is

well-known fact that complex dynamic networks are rarely described by linear models, and

nearly steady state gene expression profiles are difficult to obtain. Our experience also tells

that it is not easy to obtain the time-series microarray data near the steady state to validate

these linear model. To model the whole gene expression pathways of a genetic network,

93

Table 8.3: PPV and Se values comparison on a five-gene yeast subnetwork using switch-off
data

Method
Undirected graph Directed graph Signed graph

PPV Se PPV Se PPV Se

TSNI 1 0.57 0.8 0.38 0.2 0.13
BANJO 0.8 0.57 0.6 0.38 0.4 0.25

Our models 0.57 0.57 0.5 0.5 0.5 0.5

GAL4

CBF1GAL80

SWI5 ASH1

Figure 8.3: Inferred network by TSNI using switch-on data [15]

GAL4

CBF1GAL80

SWI5 ASH1

Figure 8.4: Inferred network by BANJO using switch-on data [15]

94

GAL4

CBF1GAL80

SWI5 ASH1

Figure 8.5: Inferred network by TSNI using switch-off data [15]

GAL4

CBF1GAL80

SWI5 ASH1

Figure 8.6: Inferred network by BANJO using switch-off data [15]

Table 8.4: PPV and Se values comparison on a fourteen-gene E.coli. subnetwork (PPV and
Se values of ARANCE, BANJO, Clustering are reported in [3])

Method
Undirected graph Directed graph Signed graph

PPV Se PPV Se PPV Se

ARANCE 0.75 0.37 - - - -
BANJO 0.73 0.69 0.61 0.39 0 0

Clustering 0.9 0.59 - - - -
AMSM 0.68 0.86 0.67 0.65 0.45 0.44
CMSM1 0.68 0.96 0.6 0.65 0.38 0.42
CMSM2 0.73 0.92 0.64 0.68 0.36 0.37
RMSM1 0.66 0.86 0.69 0.72 0.49 0.51
RMSM2 0.7 0.92 0.73 0.74 0.43 0.44
LpMSM 0.71 0.92 0.7 0.72 0.36 0.37
EMSM 0.68 0.88 0.64 0.65 0.36 0.37

95

we must consider and develop nonlinear differential equation models. As mentioned in

Subsection 1.3.1, the crucial first step is to construct/postulate the forms of the influence

function F, which clearly requires a lot of biological intuition, knowledge, experiences, and

insights, in addition to mathematical modeling experiences, knowledge, and sophistication.

Such pre-requisites also make collaboration with biologists necessary and vital in order to

be successful.

Another issue to be considered is the quality of experimental data. Currently, it is hard

to collect the experimental microarray data which exactly fit with mathematical models.

In order to evaluate mathematical models, it needs to design experiments to produce the

microarray data that meet the requirements of the models. For example, for the linearized

DE models, the microarray data should be collected around steady state point. Also, we

need to develop tools such as image processing and statistical methods to pre-process the

raw microarray data.

One important and difficult issue has to be faced in various network identification ap-

proaches/methods is thresholding. In the context of differential equation modeling, the

issue becomes how to post-process the computed network (matrix) obtained by a numerical

algorithm which faithfully computes the solution of the underlying mathematical model.

Various ad hoc or empirical techniques have been used in the literature. We have proposed

a RMT based post-processing technique in Chapter 7. Clearly, the technique is non-trivial

and non-intuitive. We plan to further investigate and develop this technique, in particular,

lay down a mathematical foundation for the RMT based thresholding technique.

96

Bibliography

97

[1] J. Bahler. Cell-cycle control of gene expression in budding and fission yeast. Annu.

Rev. Genet., 39:69, 2005.

[2] J. N. Bandyopadhyay and S. Jalan. Universality in complex networks: Random matrix

analysis. Phys. Rev. E, 76:026109, 2007.

[3] M. Bansal, V. Belcastro, A. Ambesi-Impiombata, and D. di Bernardo. How to infer

gene networks from expression profiles. Molecular Systems Biology, 3:78, 2007.

[4] M. Bansal, G. Della Gatta, and D. di Bernardo. Inference of gene regulatory networks

and compound mode of action from time course gene expression profiles. Bioinformat-

ics, 22:815, 2006.

[5] I. Barrodale and F. D. K. Roberts. An improved algorithm for discrete l1 linear ap-

proximation. SIAM J. Numer. Anal., 10:839, 1973.

[6] R. H. Bartels, A. R. Conn, and J. W. Sinclair. Minimizing techniques for piecewise

differentiable functions: The l1 solution to an overdetermined linear system. SIAM J.

Numer. Anal., 15:224, 1978.

[7] J. Ben, H. Park, J. Glick, and L. Zhang. Accurate solution to overdetermined linear

equations with error using l1 norm minimization. Comput. Optim appl., 171:737, 2000.

[8] R. Bhatia. Matrix analysis. Springer, 1997.

[9] D. W. Boyd. The power method for lp norms. Linear algebra and Appl., 9:95, 1974.

[10] P. Brazhnik, A. De la Fuente, and P. Mendes. Gene networks: how to put the function

in genomics. Trends Biotechnology, 20:467, 2002.

98

[11] R. L. Burden and J. D. Faires. Numerical Anlysis. Brooks/Cole, 2001.

[12] R. A. Byrd and D. A. Payne. Convergence of the irls algorithm for robust regression.

Technical reprt, Jonh Hopkins University (Unpublished), 313, 1979.

[13] E. J. Candès, J. Romberg, and T. Tao. Exact signal reconstruction from highly incom-

plete frequency information. IEEE Trans. Inf. Theory, 52:489, 2006.

[14] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inf. Theory,

51:4203, 2005.

[15] I. Cantone, L. Marucci, F. Iorio, M. A. Ricci, V. Belcastro, M. Bansal, S. Santini,

M. di Bernardo, D. di Bernardo, and M. P. Cosma. A yeast synthetic network for in

vivo assessment of reverse-engineering and modeling approaches. Cell, 137:172, 2009.

[16] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pur

suit. SIAM J. Sci. Comput., 1:33, 1998.

[17] T. Chen, H. L. He, and G. M. Church. Modeling gene expression with differential

equations. Pac. Sym. Biocomput., 4:29, 1999.

[18] K.-H. Cho, S.-M. Choo, S.H. Jung, J.-R. Kim, H.-S. Choi, and J. Kim. Reverse

engineering of gene regulatory networks. IET Syst. Biol., 1:149, 2007.

[19] K.-H. Cho, S.-M. Choo, P. Wellstead, and O. Wolkenhauer. A unified framework for

unraveling the functional interaction structure of a biomolecular network based on

stimulus-response experimental data. FEBS Lett., 579:4520, 2005.

[20] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, and A. Conway. A genome-

wide transcriptional analysis of the mitotic cell cycle. Mol. Cell, 2:65, 1998.

[21] J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics, 38:826,

1973.

99

[22] G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic

networks from data. Mach. Learn., 9:309, 1992.

[23] C. Cosentino, W. Curatola, F. Montefusco, M. Bansal, D. di Bernardo, and F. Amato.

Linear matrix inequalities approach to reconstruction of biological networks. IET Syst.

Biol., 1:164, 2007.

[24] A.-M. Croicu and M. Y. Hussaini. On the expected optimal value and the optimal

expected value. Appl. Math. Comput., 180:330, 2006.

[25] G. Darche. Iterative l1 deconvolution. Stanford Exploration Project, 61:99, 1998.

[26] H. de Jong. Modeling and simulation of genetic regulatory systems: a literature review.

J. Comput. Biol., 9:69, 2002.

[27] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[28] D. di Bernardo, T. S. Gardner, and J. J. Collins. Robust identification of large genetic

networks. Proc. Pacific Symp. on Biocompution, Hawaii, USA, page 486, 2004.

[29] D. di Bernardo, M. Thompson, T. Gardner, S. Chobot, E. Eastwood, A. Wojtovich,

S. Elliott, S. Schaus, and J. Collins. Chemogenomic profiling on a genome-wide scale

using reverse-engineered gene networks. Nat. Biotechnol., 23:377, 2005.

[30] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52:1289, 2006.

[31] D. L. Donoho and B. F. Logan. Signal recovery and the large sieve. SIAM J. Appl.

Math., 52:557, 1998.

[32] D. L. Donoho and P. B. Stark. Uncertainty principles and signal recovery. SIAM J.

Appl. Math., 49:906, 1998.

[33] D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear

equations by linear programming. Proc. Nat. Acad. Sci, 102:9446, 2005.

100

[34] Sorin Drăghici. Data analysis tools for DNA microarrays. Chapman and Hall/CRC,

2003.

[35] F. J. Dyson. Statistical theory of the energy levels of complex systems, I. J. Math.

Phys, 3:140, 1962.

[36] F. J. Dyson. The threefold way algebraic structure of symmetry groups and ensembles

in quantum mechanics. J. Math. Phys, 3:1200, 1962.

[37] R. W Farebrother. Unbiased l1 and l∞ estimation. Commun. Statist. Theor. Math.,

14:1941, 1985.

[38] D. E. Featherstone and K. Broadie. Wrestling with pleiotropy:genomic and topological

analysis of the yeast gene expression network. Bioessays, 24:267, 2002.

[39] N. Friedman, M. Linial, L. Nachman, and D. Pe’er. Using bayesian networks to analyze

expression data. J. Comput. Biol., 7:601, 2000.

[40] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. Inferring genetic networks

and identifying compound mode of action via expression profiling. Science, 301:102,

2003.

[41] T. S. Gardner and J. Farith. Reverse-engineering transcription control networks. Phys.

Life Rev., 2:68, 2005.

[42] M. Gaudin. Sur la loi limite de l’espacement des valeurs propres d’une matrice aleatoire.

Nucl. Phys, 25:447, 1960.

[43] M. Girvan and M. E. J. Newman. Community structure in social and biological net-

works. Proc. Natl. Acad. Sci. USA, 99:7821, 2002.

[44] I. C. Gohberg and M. G. Krein. Introduction to the theory of linear nonselfadjoint

operators. Amer. Nath. Soc. Translation, Providence, 1969.

101

[45] Gene H. Golub and Charles F. Van Loan. Matrix Computation. Johns Hopkins Uni-

versity Press, 1996.

[46] A. J. F. Griffiths, W. M. Gelbart, J. H. Miller, and R. C. Lewontin. Modern Genetic

Analysis. W. H. Freeman and Company, 1999.

[47] T. Guhr, A. Muller-Groeling, and H. A. Weidenmuller. Random-matrix theories in

quantum physics: common concepts. Phys. Rep., 299:189, 1998.

[48] G. Hardiman. Microarrays Methods and Applications. DNA Press, 2003.

[49] A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Using graphical mod-

els and genomic expression data to statistically validate models of genetic regulatory

networks. Pac. Symp. Biocomput., page 422, 2001.

[50] N. Higham. Estimating the matrix p-norm. Numer. Math., 62:539, 1992.

[51] N. Higham. Functions of Matrices: Theory and Computation. SIAM, 2008.

[52] P. J. Huber. Robust Statistics. New York: John Wiley, 1981.

[53] T. Ideker, V. Thorsson, J. A. Ranish, R. Christmas, and J. Buhler. Integrated ge-

nomic and protemic analysis of a systematically perturbed metabolic network. Science,

292:929, 2001.

[54] S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and functional

structures between genes by using bayesian networks and nonparametric regression.

Pac. Symp. Biocomput., page 175, 2002.

[55] A. Julius, M. Zavlanos, S. Boyd, and G.J. Pappas. Genetic network identification using

convex programming. IET Syst. Biol., 3:155, 2009.

[56] J. Kim, D. G. Bates, I. Postlethwaite, P. Heslop-Harrison, and K. Cho. Linear time-

varying models can reveal non-linear interactions of biomolecular regulatory networks

using multiple time-series data. Bioinformatics, 24:1286, 2008.

102

[57] S. Kim, J. Kim, and K. Cho. Inferring gene regulatory networks from temporal ex-

pression profiles under time-delay and noise. Comp. Biol. and Chem., 31:239, 2007.

[58] A. J. Kletywegt and A. Shapiro. Stochastic optimization, in the Handbook of Industrial

Engineering, Garbriel Salvendy ed., pages 2625-2650. John Wiley, New York, 3rd

edition, 2001.

[59] P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations,

volume 23 of application of mathematics (New York). Springer-Verlag, Berlin, 1992.

[60] Laloux, P. Cizeau, J. P. Bouchaud, and M. Potters. Noise dressing of financial corre-

lation matrices. Phys. Rev. Lett, 83:1467, 1999.

[61] S. Liang, S. Fuhrman, and R. Somogyi. Reveal, a general reverse engineering algorithm

for inference of genetic network architectures. Prac. Symp. Biocomout., 18:99, 1998.

[62] J. C. Liao, R. Boscolo, Y. L. Yang, L. M. Tran, C. Sabatti, and V. P. Roychowdhury.

Network component analysis: reconstruction of regulatory signals in biological systems.

Proc. Natl. Acad. Sci., 100:15522, 2003.

[63] F. Lou, J. Zhong, Y.-L. Yang, R. H. Scheuermann, and J. Zhou. Application of random

matrix theory of biological networks. Phys. Lett. A, 357:420, 2006.

[64] F. Lou, J. Zhong, Y.-L. Yang, and J. Zhou. Application of random matrix theory

to microarray data for discovering functional gene modules. Phys. Rev. E, 73:031924,

2006.

[65] F. Luo, Y. Yang, J. Zhong, H. Gao, L. Khan, and D. K. Thompson J. Zhou. Con-

structing gene co-expression networks and predicting functions of unknown genes by

random matrix theory. BMC Bioinformatics, 8:299, 2007.

[66] F. Luo, J. Zhong, Y. Yang, R. H. Scheuermann, and J. Zhou. Applications of random

matrix theory to biological networks. Phys. Lett. A, 357:420, 2006.

103

[67] F. Luo, J. Zhong, Y. Yang, and J. Zhou. Applications of random matrix theory to

microarray data for discovering functional gene modules. Phys. Rev. E, 73:031924,

2006.

[68] M. Mehta. Random matrices. 3rd edition, Elsevier, Amsterdam, 2004.

[69] M. L. Mehta. On the statistical properties of the level-spacing in nuclear spectra. Nucl.

Phys, 18:395, 1960.

[70] B. Øksendal. Stochastic differential equations, an introduction with applications.

Springer-Verlag, Berlin, 1985.

[71] R. Porreca, E. Cinquemani, J. Lygeros, and G. Ferrari-Trecate. Identification of genetic

network dynamics with unate structure. Bioinformatics, 26:1239, 2010.

[72] M. Salzmann, R. Hartley, and P. Fua. Convex optimization for deformable surface 3-d

tracking. IEEE international conference on Computer Vision, 2007.

[73] F. Santosa and W. W. Symes. Linear inversion of band-limited reflection seismograms.

SIAM J. Stat. Comput., 7:1307, 1986.

[74] R. Schatten. Norm ideals of completely continuous operators. Springer, Berlin, 1960.

[75] K. Sim and R. Hartley. Recovering camera motion using l∞ minimization. Proc. IEEE

Conf. Computer Vision and Pattern Recognition, 2006.

[76] B. Simon. Trace ideals and their applications. Cambridge University Press, Cambridge,

1979.

[77] E. Sontag, A. Kiyatkin, and B. N. Kholodenko. Inferring dynamic architecture of

cellular networks using time series of gene expression, protein and metabolite data.

Bioinformatics, 20:1877, 2004.

104

[78] T. Miyano T. Akutsu and S. Kuhara. Algorithms for identifying boolean networks and

related networks based on matrix multiplication and fingerprint function. J. Comput.

Biol., 7:331, 2000.

[79] H. L. Taylor, S. C. Banks, and J. F. McCoy. Deconvolution with the l1 norm. Geo-

physics, 44:39, 1979.

[80] J. Tegner, M. K. S. Yeung, J. Hasty, and J. J. Collins. Reverse engineering gene

networks: integrating genetic perturbations with dynamical modeling. Proc. of the

National Academy of Science, 100:5944, 2003.

[81] James Watson and Francis Crick. Molecular structure of nucleic acid. Nature, 171:737,

1953.

[82] E. P. Wigner. On the statistical distribution of the widths and spacing of nuclear

resonance levels. Proc. Cam. Phil. Soc., 47:790, 1951.

[83] E. P. Wigner. Results and theory of resonance absorption, conference on neutron

physics by Time-of-flight Gatlinburg Tennessee Nov. 1 and 2, 1956. Oak Ridge Nat’l

Lab report ORNL-2309, page 59, 1957.

[84] P. C. Winter, G. I. Hickey, and H. L. Fletcher. Genetics. BIOS, 2002.

[85] J. Wishart. Generalized product moment distribution in samples. Biometrika, 20A:32,

1928.

[86] M. Xiong, J. Li, and X. Fang. Identification of genetic networks. Genetics, 166:1037,

2004.

[87] M. K. S. Yeung, J. Hasty, and J. J. Collins. Reverse engineering gene networks us-

ing singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA,

99:6163, 2002.

105

[88] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances to

Bayesian network inference for generating causal networks from observational biological

data. Bioinformatics, 20:3594, 2004.

[89] L. Zhang, J. Dellinger, and F. Muir. Unique solutions for l1 problems. Stanford

Exploration Project, 59:87, 1988.

106

Appendices

107

Appendix A

Strictly convex matrix norm

Definition A.0.1. A functional L : Rn×n → R is called a convex functional, if for any

matrices B,C ∈ Rn×n there holds

L
(
αB + (1− α)C

)
≤ αL(B) + (1− α)L(C) ∀α ∈ (0, 1). (A.1)

Moreover, L is said to be strictly convex if (A.1) is a true inequality for B 6= C.

Definition A.0.2. A matrix norm ‖ · ‖ on Rn×n is called a strictly convex matrix norm, if

for any two matrices B,C ∈ Rn×n such that ‖B‖ = ‖C‖ =
1

2
‖B + C‖ implies B = C.

Definition A.0.3. A matrix norm ‖·‖ on Rn×n is called a strictly convex matrix norm, if for

any two distinct matrices B,C ∈ Rn×n such that ‖B‖ = ‖C‖ = 1 implies

∥∥∥∥∥B + C

2

∥∥∥∥∥ < 1.

Proposition 1. Let ‖ · ‖ be a matrix norm on Rn×n and L(·) = ‖ · ‖. The notion of the strict

convexity defined by the above three definitions satisfies the following relationships:

(i) Definition A.0.2 and Definition A.0.3 are equivalent.

(ii) Definition A.0.1 is a stronger notion than the other two.

Proof. To show (i), suppose that ‖ · ‖ is strictly convex in the sense of Definition A.0.2,

then for any two matrices B,C ∈ Rn×n with ‖B‖ = ‖C‖ = 1 and ‖B+C‖ = 2, there must

hold B = C. Equivalently, for any two distinct matrices B,C ∈ Rn×n with ‖B‖ = ‖C‖ = 1

108

there must hold ‖1

2
(B + C)‖ < 1. Hence, ‖ · ‖ is strictly convex in the sense of Definition

A.0.3.

Next, suppose that ‖ · ‖ is strictly convex in the sense of Definition A.0.3, then for any

two distinct matrices B,C ∈ Rn×n with ‖B‖ = ‖C‖ = 1 there holds
∥∥1

2(B + C)
∥∥ < 1 or

‖B+C‖ < 2. Suppose ‖B‖ = ‖C‖ =
1

2
‖B+C‖. Clearly, if ‖B‖ = ‖C‖ = 0 then B = C = 0.

Now suppose ‖B‖ = ‖C‖ 6= 0, set B′ =
B

‖B‖
, C ′ =

C

‖C‖
, then ‖B′‖ = ‖C ′‖ = 1 . If

B 6= C, then B′ 6= C ′. But 1 = ‖B′‖ = ‖C ′‖ =
1

2
‖B′ + C ′‖ contradicts with the convexity

assumption (in the sense of Definition A.0.3). Hence, B′ = C ′, or B = C. Therefore, ‖ · ‖

is strictly convex in the sense of Definition A.0.2.

(ii) can be proved using a counterexample. Frobineous norm is strictly convex in the

sense of Definition A.0.2 (cf. Chapter 3). We now prove that every matrix norm is not

strictly convex in the sense of Definition A.0.1. We choose two distinct matrices B and

C = mB for a nonzero constant m. Let L be any norm, then

L(αB + (1− α)C) =L(αB + (1− α)mB)

=L((α+ (1− α)m)B)

=|α+ (1− α)m|L(B) (since L is a norm)

=(α+ (1− α)m)L(B). (α, 1− α,m are nonnegative)

The right-hand side of (A.1) is

αL(B) + (1− α)L(C) = αL(B) + (1− α)L(mB) (since L is a norm)

= αL(B) + (1− α)mL(B)

= (α+ (1− α)m)L(B).

Thus, (A.1) holds for two distinct matrices B and C, this then proves the claim that all

matrix norms are not strictly convex in the sense of Definition A.0.1. Therefore, the strict

convexity of Definition A.0.1 is a stronger notion than that of the other two definitions.

109

For a general functional, Definition A.0.1 is often used to verify the strict convexity.

Definition A.0.2 and Definition A.0.3 are used for special functionals which are matrix

norms or vector norms.

Singular value decomposition (SVD)

Theorem A.0.1. (Singular value decomposition)

For any given matrix M ∈ Rm×n with m < n, there exists a decomposition (see [27] for a

proof)

M = UΛVT ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Λ ∈ Rm×n is non-negative

diagonal matrix. The decomposition is called the singular value decomposition of M.

Remark A.0.1. (Properties of SVD)[27, 51, 45]

(i) A SVD exists for any (real or complex) matrix of any size (square or rectangular).

(ii) Diagonal values of Λ are called the singular values of M.

(iii) The diagonal values of Λ are σi = {
√
λi} where {λi}mi=1 are the eigenvalues of MTM

and MMT .

Assume that σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σm = 0, then

(iv) rank(M) = r: number of nonzero singular values.

(v) Columns of U corresponding to non-zero entries of M span the range of M , i.e.

range(M) = span{u1,u2, · · · ,ur}.

(vi) Columns of V corresponding to zero entries of M span the null-space of M , i.e.

null(M) = span{vr+1,vr+2, · · · ,vn}.

110

Unitary invariant norm

Definition A.0.4. (Unitary invariant norm)[8]

A matrix norm ‖ · ‖ is called an unitary invariant norm, if for any matrix A ∈ Rn×m (or

Cn×m) there holds ‖A‖ = ‖UAV ‖ for all unitary matrices U, V .

111

Appendix B

The following codes are written in Matlabr. All the m-files for the numerical tests are

listed below. The function pnorm used in LpMSM is from [50].

Table B.1: List of m-files

Function name Description

GRN Compute solutions of all models.
CMSM1 Compute a CMSM1 solution.
CMSM2 Compute a CMSM2 solution.
RMSM1 Compute a RMSM1 solution.
RMSM2 Compute a RMSM2 solution.
EMSM Compute a EMSM solution.
LpMSM Compute a LpMSM solution.
Infer Produce a post-processed regulatory matrix.
PS Compute PPV and Se values for undirected, directed,

and signed graphs.
NNSD Plot the NNSD of eigenvalues of matrix.

112

%%%

function [A_AMSM,A_CMSM1,A_CMSM2,A_RMSM1,

A_RMSM2,A_EMSM,A_LpMSM]=GRN(X,Y,C,N,q)

% GRN computes a solution of min||A|| subject to AX=Y

% using all models.

%% Input

% X : n by m Time-series microarray data matrix

% (n: number of genes, m: number of time points).

% Y : n by m rate of changes of time-series matrix.

% C : n by (n-m) initial guess matrix for models that use the

% gradient descent method.

% N : number of iteration for gradient descent method.

% q : scalar for EMSM (entrywise p norm)and LpMSM (matrix p norm).

%%Output

% Solutions of all models.

%%%

% AMSM solution

Z=X/(X’*X);

A_AMSM=Y*Z’;

% Singular value decomposition of X’

[U,S,V]=svd(X’);

[n,m]=size(X);

p=rank(X’);

s=n-p;

V0=V(:,p+1:n)

% CMSM1 solution

A_CMSM1=CMSM1(A_AMSM,V0,p);

% CMSM2 solution

113

A_CMSM2=CMSM2(A_AMSM,V0,C,N);

% RMSM1 solution

A_RMSM1=RMSM1(A_AMSM,X,V0,n,s,p);

% RMSM2 solution

A_RMSM2=RMSM2(A_AMSM,V0,C,N);

% EMSM solution

A_EMSM=EMSM(A_AMSM,V0,C,N,q);

% LpMSM solution

A_LpMSM=LpMSM(A_AMSM,V0,C,N,q);

114

%%%

function A_CMSM1 = CMSM1(A,B,p)

% CMSM1 computes a solution of CMSM1 by computing

% C0 of min||A’-C0’*B||Linfinity column-by column using linear

% programming.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

% p: rank of X’.

%%Output

% A_CMSM1: CMSM1 solution.

%%%

[n,n]=size(A);

% initialize for C0

C0=zeros(n-p,n);

% Compute each column of C0 using LP function.

% Take each column of A for the right hand side vector of linear

% system.

% B is coefficient matrix.

for i=1:n

b=A(i,:)’;

C0(:,i)=LP(B,b);

end

% Assemble CMSM1 solution C0’*V2’ is the general solution

A_CMSM1=A-C0’*V0’;

%%%

function x_cheb=LP(A,b)

115

% LP computes a solution of minimizing residual of linear system

% in the vector l infinity norm using linear programming method.

%%Input

% A : Coefficient matrix of linear system.

% b : Right hand side vector of linear system.

%% Output

% x_cheb : Solution vector of l infinity minimization.

%%%

% Convert a linear system to linear programming problem.

[m,n]=size(A);

f = [zeros(n,1); 1];

Ane = [+A, -ones(m,1) ; ...

-A, -ones(m,1)];

bne = [+b; -b];

xt = linprog(f,Ane,bne);

x_cheb = xt(1:n,:);

116

%%%

function A_CMSM2=CMSM2(A,B,C,N)

% CMSM2 computes a solution of CMSM2 by computing

% C0 of min||A-C0*B’||L1 using gradient descent

% method.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

% C: Initial guess of C0.

% N: Number of maximum iterations.

%%Output

% A_CMSM2: CMSM2 solution.

%%%

TolFun = 1e-8; %|f(x)| < TolFun wanted

TolX = 1e-6; %|x(k)- x(k - 1)|<TolX wanted

% Gradient Descent method

x=C;

fx0 = norm(A-x*B’,1);

for k=1:N

z=grad_L1(A,B,x);

z=z/norm(z,1);

a=alpha_L1(A,B,x);

if a==0

break

else

x=x-a*z;

fx = norm(A-x*B’,1);

end

117

if(norm(x - x_0,1) < TolX & abs(fx - fx0) < TolFun),

fprintf(1, ’k = %d\n’,k);

break;

end

x_0 = x;

fx0 = fx;

fprintf(1, ’k = %d\n’,k);

end

if k == N,

fprintf(1,’Just best in %d iterations:’,N),

end

% Assemble CMSM2 solution.

A_CMSM2=A-x*B’;

%%%

function GradA=grad_L1(A,B,C)

% grad_L1 computes gradient of F(C)=||A-C*B’||_L1 using finite

% difference approximation.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

%%Output

% GradA: gradient of ||A-C*B’||_L1.

%%%

[n,m]=size(C);

GradA=zeros(n,m);

h=0.01;

for i=1:n

118

for j=1:m

LC=C; RC=C;

LC(i,j)=C(i,j)+h;

RC(i,j)=C(i,j)-h;

GradA(i,j)=(norm(A-LC*B’,1)-norm(A-RC*B’,1))/2*h;

end

end

%%%

function y=alpha_L1(A,B,C)

% alpha_L1 calculates a decreasing step length alpha for the

% gradient descent technique for minimizing functions.

%%%

g_1=norm(A-C*B’,1);

z=grad_L1(A,B,C);

if norm(z,1)==0

y=0;

else

z=z/norm(z,1);

alpha_1=0;

alpha_3=1;

g_3=norm(A-(C-alpha_3*z)*B’,1);

while g_3>=g_1

alpha_3=(alpha_3)/2;

g_3=norm(A-(C-alpha_3*z)*B’,1);

end

alpha_2=alpha_3/2;

g_2=norm(A-(C-alpha_3*z)*B’,1);

119

h_1=(g_2-g_1)/alpha_2;

h_2=(g_3-g_2)/(alpha_3-alpha_2);

h_3=(h_2-h_1)/alpha_3;

alpha_0=0.5*(alpha_2-(h_1/h_3));

g_0=norm(A-(C-alpha_3*z)*B’,1);

if min(g_0,g_3)==g_0

y=alpha_0;

end

if min(g_0,g_3)==g_3

y=alpha_3;

end

end

120

%%%

function A_RMSM1 = RMSM1(A,B,p)

% RMSM1 computes a solution of RMSM1 by computing

% C0 of min||A’-C0’*B||L1 column-by column using IRLS.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

% p: rank of X’.

%%Output

% A_RMSM1: RMSM1 solution.

%%%

[n,n]=size(A1);

eps=1e-5;

tol1=1e-3;

maxit=100;

% Initializing C0.

C0=zeros(n-p,n);

% Compute each column of C0 using IRLS function.

% Take each column of A for the right hand side vector of linear system.

% B is coefficient matrix of linear system.

for i=1:n

b=A(i,:)’;

C0(:,i)=IRLS(B,b,eps,tol1,maxit,1);

end

% C2’*V2’ is the general solution.

A_RMSM1=A_1-C)’*B’;

%%%

121

function z=IRLS(A,b,eps,tol1,maxit,p)

% IRLS computes a solution of minimizing residual of linear system

% in the vector l1 norm using IRLS method.

%%Input

% A : Coefficient matrix of linear system.

% b : Right hand side vector of linear system.

%% Output

% x_cheb : Solution vector of l1 minimization.

%%%

[n,m]=size(B)

% Initial guess for the first iteration

W=eye(n,n);

k=0;

while k <= maxit

k=k+1;

% compute vector z of B’*W*b*z=B’*W*b

z=(B’*W*B)\(B’*W*b);

% compute new W with previous E

w=b-B*z;

for i=1:n

if abs(w(i)) > eps

w(i)=abs(w(i))^(p-2);

else

w(i)=eps^(p-2);

end

end

W=diag(w);

% check the residual

122

residual=B’*W*B*z-B’*W*b;

if norm(residual) < tol1

% fprintf(1, ’k = %d\n’,k);

break

end

end

123

%%%

function A_RMSM2=RMSM2(A,B,C,N)

% RMSM2 computes a solution of RMSM2 by computing

% C0 of min||A-C0*B’||Linfinity using gradient descent method.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

% C: Initial guess of C0.

% N: Number of maximum iterations.

%%Output

% A_RMSM2: RMSM2 solution.

%%%

TolFun = 1e-5; %|f(x)| < TolFun wanted

TolX = 1e-5; %|x(k)- x(k - 1)|<TolX wanted

% Gradient descent method.

x=C;

fx0 = norm(A-x*B’,inf);

for k=1:N

z=grad_Linf(A,B,x);

z=z/norm(z,inf);

a=alpha_Linf(A,B,x);

if a==0

break

else

x=x-a*z;

fx = norm(A-x*B’,inf);

end

if(norm(x - x_0,inf) < TolX & abs(fx - fx0) < TolFun),

124

% fprintf(1, ’k = %d\n’,k);

break;

end

x_0 = x;

fx0 = fx;

fprintf(1, ’k = %d\n’,k);

end

if k == N,

fprintf(1,’Just best in %d iterations:’,N),

end

% Assemble RMSM2 solution.

A_RMSM2=A-x*B’;

%%%

function GradA=grad_Linf(A,B,C)

% grad_Linf computes gradient of F(C)=||A-C*B’||_Linfinity using finite

% difference approximation.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

%%Output

% GradA: gradient of ||A-C*B’||_Linfinity at C.

%%%

GradA=zeros(n,m);

h=0.01;

for i=1:n

for j=1:m

LC=C; RC=C;

125

LC(i,j)=C(i,j)+h;

RC(i,j)=C(i,j)-h;

GradA(i,j)=(norm(A-LC*B’,inf)-norm(A-RC*B’,inf))/2*h;

end

end

%%%

function y=alpha_Linf(A,B,C)

% alpha_Linfinity calculates a decreasing step length alpha for the

% gradient descent technique for minimizing functions.

%%%

g_1=norm(A-C*B’,inf);

z=grad_Linf(A,B,C);

if norm(z,inf)==0

y=0;

else

z=z/norm(z,inf);

alpha_1=0;

alpha_3=1;

g_3=norm(A-(C-alpha_3*z)*B’,inf);

while g_3>=g_1

alpha_3=(alpha_3)/2;

g_3=norm(A-(C-alpha_3*z)*B’,inf);

end

alpha_2=alpha_3/2;

g_2=norm(A-(C-alpha_3*z)*B’,inf);

h_1=(g_2-g_1)/alpha_2;

h_2=(g_3-g_2)/(alpha_3-alpha_2);

126

h_3=(h_2-h_1)/alpha_3;

alpha_0=0.5*(alpha_2-(h_1/h_3));

g_0=norm(A-(C-alpha_3*z)*B’,inf);

if min(g_0,g_3)==g_0

y=alpha_0;

end

if min(g_0,g_3)==g_3

y=alpha_3;

end

end

127

%%%

function A_EMSM=EMSM(A,B,C,N,p)

% EMSM computes a solution of EMSM by computing

% C0 of min(||A-C0*B’||ep)^p using gradient descent method.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

% C: Initial guess of C0.

% N: Number of maximum iterations.

% p: Scalar of entrywise p norm.

%%Output

% A_EMSM: EMSM solution.

%%%

TolFun = 1e-3; %|f(x)| < TolFun wanted

TolX = 1e-6; %|x(k)- x(k - 1)|<TolX wanted

% Gradient descent method.

x=C;

fx0 = elm_norm(A-x*B’,p);

for k=1:N

z=grad_elm(A,B,x,p);

z=z/elm_norm(z,p);

a=alpha_elm(A,B,x,p);

if a==0

break

else

x=x-a*z;

fx = elm_norm(A-x*B’,p);

end

128

if (norm(x - x_0,’fro’) < TolX & abs(fx - fx0) < TolFun)

fprintf(1, ’k = %d\n’,k);

break;

end

x_0 = x ;

fx0 = fx;

end

if k == N,

fprintf(1,’Just best in %d iterations:’,N),

end

% Assemble A_EMSM solution.

A_EMSM=A-x*B’;

%%%

function a=elm_norm(A,p)

% elm_norm computes the pth power of entrywise p norm of matrix.

%% Input

% A: n by m matrix.

%% Output

% a: pth power of entrywise p norm of matrix A.

%%%

a=(sum(sum((abs(A).^q))));

%%

function GradA=grad_elm(A,B,C,p)

% grad_elm computes gradient of F(C)=(||A-C*B’||_elm)^p.

%% Input

% A: Particular solution.

129

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

%%Output

% GradA: gradient of (||A-C*B’||_elm)^p at C.

%%%

M=A-B*C’;

S=M./abs(M);

if mod(p,2)==0

D=-p*M.^(p-1)*C;

else

D=-p*S.*(M.^(p-1))*C;

end

%%%

function y=alpha_elm(A,B,C,p)

% alpha_elm calculates a decreasing step length alpha for the

% gradient descent technique for minimizing functions.

%%%

g_1=elm_norm(A-C*B’,p);

z=grad_elm(A,B,C,p);

if elm_norm(z,p)==0

y=0;

else

z=z/elm_norm(z,p);

alpha_1=0;

alpha_3=10;

g_3=elm_norm(A-(C-alpha_3*z)*B’,p);

%%%% error part %%%%

while g_3>=g_1

130

alpha_3=(alpha_3)/2;

g_3=elm_norm(A-(C-alpha_3*z)*B’,p);

end

%%%%%%%%%%%%%%%%%%%%%%%%%

alpha_2=alpha_3/2;

g_2=elm_norm(A-(C-alpha_3*z)*B’,p);

h_1=(g_2-g_1)/alpha_2;

h_2=(g_3-g_2)/(alpha_3-alpha_2);

h_3=(h_2-h_1)/alpha_3;

alpha_0=0.5*(alpha_2-(h_1/h_3));

g_0=elm_norm(A-(C-alpha_3*z)*B’,p);

if min(g_0,g_3)==g_0

y=alpha_0;

end

if min(g_0,g_3)==g_3

y=alpha_3;

end

end

131

%%%

function A_LpMSM=LpMSM(A,B,C,N,p)

% EMSM computes a solution of RMSM2 by computing

% C0 of min(||A-C0*B’||Lp)^p using gradient descent method.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

% C: Initial guess of C0.

% N: Number of maximum iterations.

% p: Scalar of matrix p norm.

%%Output

% A_LpMSM: LpMSM solution.

%%%

TolFun = 1e-3;%|f(x)| < TolFun wanted

TolX = 1e-6; %|x(k)- x(k - 1)|<TolX wanted

% Gradient descent meothod.

x=C;

fx0 = (pnorm(A-x*B’,p))^p;

for k=1:N

z=grad_Lp(A,B,x,p);

z=z/pnorm(z,p);

a=alpha_Lp(A,B,x,p);

if a==0

break

else

x=x-a*z;

fx = (pnorm(A-x*B’,p))^p;

end

132

if (norm(x - x_0,’fro’) < TolX &abs(fx - fx0) < TolFun)

% fprintf(1, ’k = %d\n’,k);

break;

end

x_0 = x ;

fx0 = fx;

end

if k == N,

fprintf(1,’Just best in %d iterations:’,N),

end

% Assemble A_LpMSM solution.

A_LpMSM=A-x*B’;

%%%

%%%

function est=pnorm(A, p, tol, noprint)

% pnorm computes matrix p norm.

%%%

if nargin < 2, error(’must specify norm via second parameter’), end

[m,n]=size(A);

if min(m,n) == 1, est= norm(A,p); return, end

if nargin < 4, noprint = 0;end

if nargin < 3, tol = 1e-4; end

% Stage I. Use algorithm OSE to get starting vector for power method.

%Form y=B*x, at each stage choosing x(k)=c and scaling previous

%x(k+1:n) by s, where norm([c,s],p)=1.

sm =9; % Number of samples.

y=zeros(m,1); x=zeros(n,1);

133

for k=1:n

if k == 1

c =1; s=0;

else W= [A(:,k) y];

if p == 2 % special case. Solve exactly for 2-norm.

[UI,S,V]=svd(full(W));

c = V(1,1); s=V(2,1);

else

fopt = 0;

for th=seqa(0,pi,sm)

c1 = cos(th); s1 = sin(th);

nrm = norm ([c1 s1],p);

c1=c1/nrm; s1=s1/nrm;

f = norm(W*[c1 s1]’, p);

if f > fopt

fopt = f;

c = c1; s = s1;

end

end

end

end

x(k)=c;

y=x(k)*A(:,k)+s*y;

if k > 1, x(1:k-1)=s*x(1:k-1); end

end

est = norm(y,p);

if noprint, fprint(’Alg OSE: %9.4e\n’, est), end

%Stage II. Apply algorithm PM(the power method).

134

q = dual(p);

k=1;

while 1

y=A*x;

est_old=est;

est = norm(y,p);

z=A’*dual(y,p);

if noprint

fprint(’%2.0f: norm(y) = %9.4e, norm(z) = %9.4e’,k, norm(y,p), norm(z,q)’)

fprint{’ real_incr(est) = %9.4e\n’, (est-est_old)/est}

end

if (norm(z,q) <= z’*x | abs(est-est_old)/est <= tol) & k > 1

return

end

x=dual(z,q);

k=k+1;

end

%%%

function y = dual(x, p)

%%%

if max(size(x)) == 1 & nargin == 1

p=x;

end

if p == 1

q = inf;

else

q=1/(1-1/p);

135

end

if max(size(x)) == 1 & nargin == 1

y=q;

return

end

if norm(x,inf) == 0, y = x; return, end

if p == 1

y = sign(x)+(x == 0);

elseif p ==inf

[xmax, k]= max(abs(x));

f = find(abs(x)==xmax); k=f(1);

y=zeros(size(x));

y(k)=sign(x(k));

else

x=x/norm(x,inf);

y=abs(x).^(p-1) .*(sign(x) + (x==0));

y = y/norm(y,q);

end

%%%

function y = seqa(a, b, n)

%SEQA Generate an additive sequence.

% Y = SEQA(A, B, N) produces a row vector comprising N equally

% spaced numbers starting at A and finishing at B.

% If N is omitted then 10 points are generated.

%%%

if nargin == 2, n = 10; end

if n <= 1

136

y = a;

return

end

y = [a+(0:n-2)*(b-a)/(n-1), b];

%%%

%%%

%%%

function GradA=grad_Lp(A,B,C,p)

grad_Lp computes gradient of F(C)=(||A-C*B’||_Lp)^p.

%% Input

% A: Particular solution.

% B: V0=V(:,p+1:n) where V is from [U,S,V]=svd(X’).

%%Output

% GradA: gradient of (||A-C*B’||_Lp)^p at C.

%%%

[n,m]=size(C);

GradA=zeros(n,m);

h=0.01;

for i=1:n

for j=1:m

LC=C; RC=C;

LC(i,j)=C(i,j)+h;

RC(i,j)=C(i,j)-h;

GradA(i,j)=((pnorm(A-LC*B’,p))^p-(pnorm(A-RC*B’,p))^p)/2*h;

end

end

137

%%%

function y=alpha_Lp(A,B,C,p)

% alpha_Lp calculates a decreasing step length alpha for the

% gradient descent technique for minimizing functions.

%%%

g_1=(pnorm(A-C*B’,p))^p;

z=grad_Lp(A,B,C,p);

if pnorm(z,p)==0

y=0;

else

z=z/pnorm(z,p);

alpha_1=0;

alpha_3=10;

g_3=(pnorm(A-(C-alpha_3*z)*B’,p))^p;

%%%% error part %%%%

while g_3>=g_1

alpha_3=(alpha_3)/2;

g_3=(pnorm(A-(C-alpha_3*z)*B’,p))^p;

end

%%%%%%%%%%%%%%%%%%%%%%%%%

alpha_2=alpha_3/2;

g_2=(pnorm(A-(C-alpha_3*z)*B’,p))^p;

h_1=(g_2-g_1)/alpha_2;

h_2=(g_3-g_2)/(alpha_3-alpha_2);

h_3=(h_2-h_1)/alpha_3;

alpha_0=0.5*(alpha_2-(h_1/h_3));

g_0=(pnorm(A-(C-alpha_3*z)*B’,p))^p;

if min(g_0,g_3)==g_0

138

y=alpha_0;

end

if min(g_0,g_3)==g_3

y=alpha_3;

end

end

139

%%%

function B=infer(A,r)

% infer produces the post-processed regulatory network by setting

% elements of matrix that are less than a threshold value.

%% Input

% A: Result matrix from each model.

% x: Magnitude value.

%% Output

% B: Post-processed matrix.

%%%

[n,m]=size(A);

M=max(max(A));

% Normalize matrix

A=A/M;

% Find a threshold value

e=r*min(min(abs(A)));

for i=1:c

for j=1:d

%remove self connection

if i==j

A(i,j)= 0;

elseif abs(A(i,j)) < e

A(i,j)=0;

end

end

end

B=A;

140

%%%

function [uPPV,uSe, dPPV, dSe,sPPV,sSe,r,p]=PS(A,B);

% PS computes the PPV and Se of inferred network.

%% Input

% A: Real network(signed network).

% B:Inferred network.

%% Output

% uPPV: PPV value of undirected graph.

% uSe: Se value of undirected graph.

% dPPV: PPV value of directed graph.

% dSe: Se value of directed graph.

% sPPV: PPV value of signed graph.

% sSe: Se value of signed graph.

% r: number of nonzero elements in the real network.

% p: number of nonzero elements in the post-processed

% inferred network.

%%%

[n,m]=size(A);

% Initialize undirected (U), directed(D), signed(S) graphs of

% real network and inferred network .

UA=zeros(n,m); DA=zeros(n,m); SA=zeros(n,m);

UB=zeros(n,m); DB=zeros(n,m); SB=zeros(n,m);

% Post-process an inferred network

B=infer(C);

% Counting number of nonzero elements in the real network and

% the post-processed inferred network.

r=0;p=0

for i=1:n

141

for j=1:n

if A(i,j)~=0

r=r+1;

end

if B(i,j)~=0

p=p+1;

end

end

end

for i=1:n

for j=1:m

% Convert real network to undirected, directed, Signed network

if A(i,j)~= 0

UA(i,j)=1;

UA(j,i)=1;

DA(i,j)=1;

if A(i,j)>0

SA(i,j)=1;

else

SA(i,j)=-1;

end

end

% Convert inferred network to undirected, directed, Signed network

if B(i,j)~= 0

UB(i,j) = 1;

UB(j,i)=1;

DB(i,j)=1;

if B(i,j)>0

142

SB(i,j)=1;

else

SB(i,j)=-1;

end

end

end

end

% Count number of TP, FP, and FN for each type of graphs

uTP=0;uFP=0;uFN=0;dTP=0;dFP=0;dFN=0;sTP=0;sFP=0;sFN=0;

for i=1:n

for j=1:m

if UA(i,j)==1 & UB(i,j)==1

uTP=1+uTP;

elseif UA(i,j)==0 & UB(i,j)==1

uFP=1+uFP;

elseif UA(i,j)==1 & UB(i,j)==0

uFN=1+uFN;

end

if DA(i,j)==1 & DB(i,j)==1

dTP=1+dTP;

elseif DA(i,j)==0 & DB(i,j)==1

dFP=1+dFP;

elseif DA(i,j)==1 & DB(i,j)==0

dFN=1+dFN;

end

if SA(i,j)~=0 & SA(i,j)==SB(i,j)

sTP=1+sTP;

elseif SB(i,j)~= 0 & SA(i,j)~=SB(i,j)

143

sFP=1+sFP;

end

if SA(i,j)~= 0 & SA(i,j) ~= SB(i,j)

sFN=1+sFN;

end

end

end

% Calculate PPV and Se values of each type of graphs

uPPV=uTP/(uTP+uFP);

uSe=uTP/(uTP+uFN);

dPPV=dTP/(dTP+dFP);

dSe=dTP/(dTP+dFN);

sPPV=sTP/(sTP+sFP);

sSe=sTP/(sTP+sFN);

144

%%%

function NNSD(A)

% NNSD plots the NNSD of singular values of matrix A.

%% Input

% A : n times n matrix

%%%

[n,m]=size(A);

% Nationalizing spacing vector

S=zeros(n-1,1);

E=sort(svd(A));

Y=[1:n]’;

N=bar(E,Y);

hold on

X=E(1:n-10);

YY=Y(1:n-10);

P=polyfit(X,YY,1);

e=polyval(P,E);

plot(E,e)

for i=1:n-1

S(i)=e(i+1)-e(i);

end

ds=max(S)/sqrt(n);

XX=[min(S):ds:max(S)];

hist(S,XX);

n_elements= histc(abs(S),XX);

c_elements = n_elements/(ds*(n-1));

hold on

w=[0:0.01:4];

145

WD=pi*w.*exp(-pi*w.^2/4)./2;

plot(w,WD,’b’)

WX=pi*XX.*exp(-pi*XX.^2/4)./2;

ERR=norm(c_elements’-WX,’fro’);

xlabel(’s’)

ylabel(’P(s)’)

title(’NNSD of eigenvalues’)

146

Vita

Miun Yoon was born in Busan, Korea (Republic of) on February 6, 1980. After completing

high school at Busan Jin girl’s high school in 1998, she attended Dong-A University in

Korea (March 1998 - February 2003), where she received her Bachelor of Science degree in

Mathematics. During that period, she studied English in Canada for one year. She then

entered the University of Tennessee at Knoxville in the fall of 2003. In December, 2006, she

graduated from the University of Tennessee, Knoxville with a Master of Science degree in

Mathematics.

147

	Differential Equation Models and Numerical Methods for Reverse Engineering Genetic Regulatory Networks
	Recommended Citation

