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Abstract

Graph-based Regularization in Machine Learning:

Discovering Driver Modules in Biological Networks

by

Xi Gao

A dissertation submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy at Virginia Commonwealth University

Virginia Commonwealth University, 2015

Director: Dr. Tomasz Arodz, Department of Computer Science

Curiosity of human nature drives us to explore the origins of what makes each of us di�er-

ent. From ancient legends and mythology, Mendel’s law, Punnett square to modern genetic

research, we carry on this old but eternal question. Thanks to technological revolution, to-

day’s scientists try to answer this question using easily measurable gene expression and other

profiling data. However, the exploration can easily get lost in the data of growing volume, di-

mension, noise and complexity. This dissertation is aimed at developing new machine learning

methods that take data from di�erent classes as input, augment them with knowledge of fea-

ture relationships, and train classification models that serve two goals: 1) class prediction for

previously unseen samples; 2) knowledge discovery of the underlying causes of class di�erences.

Application of our methods in genetic studies can help scientist take advantage of existing

biological networks, generate diagnosis with higher accuracy, and discover the driver networks

behind the di�erences. We proposed three new graph-based regularization algorithms. Graph

Connectivity Constrained AdaBoost algorithm combines a connectivity module, a deletion

function, and a model retraining procedure with the AdaBoost classifier. Graph-regularized

Linear Programming Support Vector Machine integrates penalty term based on submodular

graph cut function into linear classifier’s objective function. Proximal Graph LogisticBoost

adds lasso and graph-based penalties into logistic risk function of an ensemble classifier. Re-

sults of tests of our models on simulated biological datasets show that the proposed methods

are able to produce accurate, sparse classifiers, and can help discover true genetic di�erences

between phenotypes.





Chapter 1

Introduction

1.1 Motivation

In the past two decades, techniques for exploration of biological systems grew swiftly. Gene

expression profile measurement became easier, faster and cheaper. Array-based methods such

as DNA microarrays and sequence-based techniques like RNA-seq are taking the main stage

in biological and medical experiments. Other techniques that operate at genetic, epigenetic,

transcriptomic, proteomic and metabolomic level are also in rapid progress. In result, sci-

entists can capture global snapshots of thousands gene expression levels of many patients.

Increasingly, they are also able to place them in the context of gene mutations, promoter

methylation, chromatin states, protein abundances, and lipid profiles.

Rapidly growing volumes of experimental data are full of promise, but snapshots with

so many variables pose a challenge – they are no longer easily interpretable. Results from

profiling experiments are increasingly easy to obtain, but become notoriously hard to process

and understand. The purposes of gene expression and other profiling analyses is to formulate

novel and plausible hypotheses to narrow down possible new knowledge of studied objects,

such as the explanations of a certain disease. Then, further detailed experiments focusing on

narrowed list of targets should be performed to confirm the hypotheses. However, due to the

scale, noise and complexity of profiling data, formulating reasonable hypotheses becomes a

major bottleneck.

Machine learning field of computer science has a long history of relationships with bi-
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ological research. Concepts from biology inspired many machine learning algorithms such

as artificial neural network, likewise the broad application of machine learning algorithms

benefits many biology fields, especially genetic research. By their nature, machine learning

algorithms learn from existing data to derive models for prediction, classification and pattern

recognition. This facilitates the process of hypotheses generation and reasoning about molec-

ular mechanisms in many areas of genetic research, including high-throughput gene expression

analysis. In unsupervised studies, clustering algorithms group genes or patients based on the

distances calculated from the expression matrix. In supervised studies, classification models

with high prediction accuracy can serve as diagnostic or prognostic rules. Compact models

with selected small number of variables, or features, can help scientists narrow down from

countless possible hypotheses to a selected few, and raise evidence to illustrate the underlying

basis of the molecular di�erences between phenotypes.

Despite many advances, traditional machine learning algorithms struggle with forming

models that are accurate, interpretable and concise when faced with highly-dimensional pro-

filing data. One reason is that classification methods based on statistical learning are purely

data-driven. They do not use existing knowledge when they analyze the data. They miss

on the rapidly growing domain knowledge related to genetic research – gene ontologies, gene

regulatory interactions, protein-protein interactions. Many databases with useful information

are available online and a large number of them are organized in the form of biological net-

work. Can machine learning algorithms be designed to comprehend domain knowledge and

use it for analyzing gene expression data? Can such new algorithms improve classification

performances? Driven by these questions, we steered our research towards designing algo-

rithms for incorporating domain knowledge in the form of biological networks into machine

learning methods in a way that leads to classification models with improved accuracy and

interpretability.

There is an abundant knowledge of gene regulatory and protein-protein interactions, but

what are the potential benefits of using biological networks in model training? First, in su-

pervised machine learning, selecting informative features for training is the key to building

successful models. The immense number of features in the analysis of gene profiles makes

many learning methods lose power. The nature of graph-based biological networks illustrate
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the relationships between genes - these relationships reveal closeness and dependency between

features, and can counter the e�ects of statistical noise inherent in datasets with small number

of samples. Combined with methods from graph theory, these feature-to-feature relationships

could be used in feature grouping, extraction and selection. For example, grouping of genes

into sets, based on pathways in a network or other information, resulted in the move from

univariate analysis to gene set enrichment analysis. In machine learning, we could use fea-

ture relationships as a source of constraints on models, to guide training and optimization.

Second, previous domain knowledge could help rationalize experiment design. Gene expres-

sion analysis used to focus on single gene expression variation between phenotypes. However,

when genetic research provide more gene regulation information in terms of network, many

researchers start di�erential co-expression analysis [28, 29, 60] that leads to fruitful result.

Third, models built from biological networks are easier to interpret. In univariate gene di�er-

ential expression analysis or traditional supervised feature selection studies, multiple single

selected genes leave scientists no biological mechanism to follow up on, but network-guided

expression analysis select significant changed gene subnetworks or pathways to be explored

further. Fourth, limiting the models to subnetworks can lead to simpler models. What are the

potential benefits of choosing simpler classifiers? Simple models mean shorter testing time,

so given the same accuracy, simpler models are more e�cient. Also, simple models are less

prone to overfitting. Furthermore, as we stated before, smaller connected models are easier

to interpret biologically.

1.2 Contributions of the Dissertation

In this study we propose three method for constructing classifiers that predict the phenotype

of samples. Even though many state-of-art methodologies including machine learning intend

to construct systems to mine out the di�erences between phenotypes through gene expression,

there is shortage of methods that build high-accuracy classifiers that can facilitate biology

elucidation.

Our first method is Graph Connectivity Constrained AdaBoost. By adding network con-

nectivity constraint, deletion function and model retraining procedure to Adaboost, we con-
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structed a new supervised machine learning classification algorithm. We tested our method

on simulated data with known di�erences between classes. Our proposed method shows

higher predicting accuracy, flexibility and interpretability than state-of-the-art methods. Our

second method is Graph Regularized Linear SVM. By adding graph regularization term in

to linear SVM objective function, we encourage linear SVM to select features that organize

small highly internally connected independent subnetworks. We test our graph regularized

linear SVM with other linear SVM methods on three biology datasets and three non-biology

datasets. Results show our Graph Regularized Linear SVM method outperform other linear

SVM methods. Our third method is Proximal Graph LogisticBoost. We modify the risk func-

tion of LogisticBoost by adding convex extension of submodular graph cut set function and

integrating it into boosting through proximal gradient descent. Proximal graph LogisticBoost

highly improved the performance of AdaBoost and LogisticBoost in biological datasets.

In summary, the major contributions of the research are

1. We integrated biological network knowledge with machine learning algorithms for gene

expression analysis.

2. We proposed three new graph-based supervised classification methods that has been

shown to:

(a) predict sample classes with high accuracy;

(b) produce sparse classifiers;

(c) discover the true genetic di�erences between di�erent phenotypes.

3. We improved performance of AdaBoost with our Graph Connectivity Constrained Ad-

aBoost by including:

(a) network connectivity penalty module;

(b) deletion function;

(c) variable importance feature selection model retraining procedure.

4. We improved performance of linear SVMs with our Graph Regularized Linear SVM by

including:
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(a) graph regularization term into SVM objective function;

5. We improved boosting with our Proximal Graph LogisticBoost by including:

(a) graph regularization term into logistic risk function;

(b) lasso regularization term into logistic risk function;

6. More generally, we demonstrated how to incorporate nonlinear, non-di�erentiable

penalty terms, e.g. those based on submodular set functions, into boosting.

1.3 Structure of the Dissertation

The rest of this dissertation is organized in the following way. In Chapter 2 we review the

background relevant to our research. Specifically, in Section 2.1 we explore major types and

sources of biological networks. In Section 2.2 we go through the major challenges of gene

expression analysis and summarize the state-of-the-art methods that approach the problem

from di�erent angles. In Section 2.3 we recapitulate basic knowledge of machine learning that

is the foundation of our research.

In Chapter 3, we introduce the experimental framework and the datasets we will use

in evaluating the proposed methods in subsequent chapters. In Section 3.1 we explain the

cross-validation setup we used. Also, we introduce the metrics that measure the performance

of classification methods. In Section 3.2 and Section 3.3, we describe three non-biological

datasets and three biological datasets we used for evaluating our methods.

In Chapter 4 we introduce a new machine learning classification algorithm we developed

for solving the problem of graph-based learning. We introduce classical AdaBoost algorithm

that our algorithm is based on in Section 4.1. Then, in Section 4.2 we describe the design of

the new algorithm, Graph Connectivity Constrained AdaBoost, and the details of the connec-

tivity penalty module, deletion function and the model retraining procedure. Connectivity

module integrates biological network knowledge into model training, while deletion function

and retraining procedure lead to smaller classifiers of higher accuracy. We analyze our method

and show their performance in Sections 4.3 and 4.4.
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In Chapter 5, we introduce graph regularization in linear SVM. In Section 5.1 we introduce

linear SVM and the convex extensions of submodular functions that will form the basis for

the graph regularization. In Section 5.2, we propose our Graph Regularized Linear SVM

method. In Section 5.3 we present results of our proposed method along with other linear

SVM methods.

In Chapter 6, we introduce our submodular graph regularized boosting method. We

explain boosting theory in the perspective of gradient descent in Section 6.1. We elaborate on

details of the new Proximal Graph LogisticBoost algorithm in Section 6.2. Then we compare

the new graph-based boosting method results along with state-of-art results in Section 6.3.

Finally, in Chapter 7, we summarize the conclusions from our current solutions to the

problem of classification and finding di�erentially expressed modules in biological networks.



Chapter 2

Background

Our work is focused on di�erential analysis of molecular profiles, such as gene expression

data, by using machine learning methods, and by extending them with knowledge of biological

networks. In this Chapter, we provide background information about these three focus areas.

2.1 Biological Networks

Graph is a data structure broadly used to represent objects as well as their relationships.

Biological objects such as genes and proteins organized in a graph form a biological network.

In bioinformatics, this typically includes gene regulatory networks, protein-protein interaction

networks, signaling pathway networks or metabolic networks. Depending on the type of the

interactions, these networks can be classified as a directed or undirected graphs. As the

knowledge of biochemistry and molecular biology accumulates, biological networks become

more and more complex. Large, comprehensive networks with large number of nodes and edges

provide scientists opportunities, but also challenges. How to e�ciently store and organize

these networks and mine out the hidden biological information behind the labyrinthine graphs

are two major issues. Various databases are built for biological networks and many existing

and new graph algorithms have been used in conjunction with these networks to answer

biological questions.

Here we review two major biological networks we have been using in our research -

BioGRID and PhosphoNetworks. BioGRID is a public database that contains comprehen-
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sive information on genetic and protein-protein interactions collected from multiple sources

for human and other model organisms [49]. It was first created in 2003 and it is continu-

ously updated [44]. There are 217,928 human genetic and physical interactions in total in the

2013 version of BioGRID network we downloaded. Most BioGRID network interactions are

gathered from literature studies, and the experimental method used for discovering the inter-

action is recorded in BioGRID along the interactions. A study based on Bayesian learning

showed di�erences in confidence that can be assigned to interactions discovered by di�erent

experimental system [58]. This di�erence in confidence of evidence is presented as probability

scores, where higher score means higher confidence in the evidence behind the interaction.

Another biological network we used is focused on a subset of protein-protein interactions.

PhosphoNetworks is a public biological network database that focuses on human kinase-

substrate phosphorylation relationships [22, 23, 38]. Rather than being collected from lit-

erature, all the interactions stored in PhosphoNetworks are validated by proteomic-based

strategy. Phosphorylation reactions of 289 human kinases on 4,191 human proteins are tested

and 3,656 phosphorylation relationships are identified and stored in the database.

2.2 Di�erential Analysis of Gene Expression

As genome-wide expression profiles became more available, computational methods aimed

at discovering di�erences between two or more phenotypes entered into a rapid development

phase to deal with the newly available breadth of data. Because of the relatively small

sample size and large feature space of genome-wide expression data, traditional univariate

analysis based on comparison of means or correlation with class variable showed multiple

disadvantages:

1. low statistical power resulting from ignoring the fact that groups of genes act together

in a biological function and mild change of expression level of each gene could result

in significant cell malfunction or hyper-function that leads to phenotype di�erences.

Treating genes independently reduces the ability to identify genes that act as a set but

with non-significant expression level changes by themselves;

2. no individual statistically significant gene may be identified after multiple hypothesis
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correction for large number of variables;

3. if some genes are identified as significant, there is often little overlap of genes in exper-

iments conducted by independent groups;

4. identified genes cannot tell us much about the biological processes and pathways involved

in the studied pathology.

Various categories of methods are designed to overcome these disadvantages of traditional

univariate methods. Below, we review the major current solutions for the above problems.

2.2.1 Di�erential Co-expression

Di�erential co-expression analysis is gaining attention in recent years as a tool for finding phe-

notypic di�erences that are more complex than univariate di�erences. The approach aims at

detecting pairs of genes that show di�erences in gene regulation and cellular signaling between

two phenotypes. Di�erential co-expression brings a new perspective on di�erences between

phenotypes – that a specific phenotype could result from di�erences in gene regulation that

do not significantly alter average expression levels of genes, but alter the pattern of behavior

of the genes in tandem. For example, expression levels of a pair of genes may be tightly

correlated in one phenotype, where one of the genes regulates the other, but uncorrelated

in another phenotype, where the regulation is lost due to mutation or other reasons. This

idea has been proven true in a lot of biological conditions such as obesity [52], aging [48] and

cancer [57].

Existing di�erential co-expression detection methods usually measure some gene pair re-

lationship score separately in each phenotype condition, then compare the di�erence of these

scores. The score most often used is the Pearson correlation coe�cient, applied in conjunction

with Fisher’s Z transformation [7, 61] that yields a probability distribution of the di�erences

in correlation. However, Pearson correlation coe�cient is highly a�ected by outlying samples.

E�orts to make correlation more resilient to outliers were undertaken by using biweight mid-

correlation [25]. Rank-based and entropy-based measurements [31], as well as F-statistic [29]

are also used. In terms of the number of gene as a unit in the di�erential co-expression

network, some methods aim at gene pairs while others aim at gene modules [28,40,60].
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2.2.2 Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) [50] is designed to improve the disadvantages of tra-

ditional statistical methods. GSEA takes genes in a pre-defined gene set as a group and uses

it to assess the results of univariate tests. In e�ect, GSEA translates results from the level

of independent genes to a level of pre-defined, biologically meaningful sets of genes. These

pre-defined gene sets could be derived from existing biological knowledge. Genes acting to-

gether in the same cellular process or same signaling pathway could be grouped together. For

example, known oncology genes could be defined as a group. By doing this, genes functioning

as a group could be tested together, revealing the cellular function changes associated with

disease phenotypes. Based on the list of genes sorted according to the correlation between

their expression levels and sample classes obtained from a statistical test, GSEA defines an

enrichment score. GSEA operates by going through the sorted list of genes, increasing a

score for each gene from the pre-defined set and decreasing it for genes from outside the set.

The increment is proportional to the correlation between the gene’s expression level and the

sample class, so if genes from the set are concentrated at the top or at the bottom of the list,

the GSEA score will be far from null. Significance level of the enrichment score is calculated

by permuting genes and adjusted for multiple hypotheses testing using false discovery rate

(FDR). GSEA was originally validated on leukemia and lung cancer data sets and the results

showed the method is able to discovery strong significant gene sets while univariate analysis

find little significant gene and no overlap between repeat experiments [50].

Gene set enrichment analysis, even though it overcomes a lot of disadvantages of traditional

univariate analysis, has its limitations. It only tests genes in a set together as a whole but

fails to take the topology of inter-gene relationships into consideration. Moreover, as it is only

based on pre-defined gene sets, it has no power to discover new gene sets that di�erentiate

biological phenotypes.

2.2.3 Di�erential Sub-network Detection

Based on observed data, can we tell which genes changed expression as a group under di�erent

experimental conditions and what are the signaling pathways connecting these genes? In order
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to move beyond pre-defined pathways employed in gene set enrichment analyses and be able to

answer questions like this, research in computational biology started to focus on methods for

detecting active modules under certain experiment conditions. Ideker and his team was the

first one who started to tackle this problem [24]. They first build up a statistical scoring system

for sub-networks to detect how much the expression level of such sub-network changed under

certain condition. Then, using simulated annealing, they search the full network to find the

sub-network with the optimal score heuristically. After obtaining high-scoring sub-networks

of genes, they used Fisher’s exact test and random walk approach to determine statistical

significance of discovered sub-networks. Cytoscape, a commonly used software in network

biology, employed this sub-network searching algorithm as a plug-in, ActiveModules, and it

has been applied in many biological domains, such as diabetes [32]. The ActiveModules sub-

network searching algorithm has been extended by combining it with di�erential co-expression

method, thus replacing genes by gene interactions as the input [17]. Rather than picking up the

sub-network of genes, the methods intends to pick up the sub-network of gene-interactions

that changed most under experiment conditions. Pearson correlation coe�cient is used to

represent the edge scores of pairs of genes, and again simulated annealing is used to pick

up the optimal sub-network of gene edges with the most statistically significant accumulated

edge score.

Chuang et al. [8] used a greedy approach for gene sub-network discovery and applied it in

breast cancer metastasis research. In their algorithm, they give an activity score to each gene

sub-network by averaging gene expressions of such sub-network. Then they calculate mutual

information of activity score of each sub-network and sample classes. They take each single

gene as a seed, and grow corresponding sub-network using such seed greedily. Sub-network

with local maximum mutual information score will finally be chosen.

Most gene sub-network detection methods try to search for connected gene groups that,

in aggregate, exhibit statistically significant di�erential expression. Another approach to this

problem is to use an additive score for the group, based on the univariate scores of individual

genes. Then, the task is to find a connected component from a graph that maximizes the

score. With non-negative scores, the maximum is the whole graph, so a penalty is used

to limit the size of the discovered subnetwork. If the penalty is assigned to each edge in the
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subnetwork, the optimal solution is a spanning tree, known as the prize-collecting Steiner tree.

Steiner tree problem is NP-hard and has been studied extensively [11, 27, 36, 59]. Based on

Dreyfus-Wagner algorithm [11], Scott et al. [46] developed their Steiner tree algorithm to pick

up meaningful gene sub-network. They calculate p-values of di�erential expression for each

gene and used ≠ log(1 ≠ p) as prize for each gene. Based on a known gene network structure

and user-defined gene prizes, their algorithm could pick up the sub-network that represents

regulatory pathway altered under experimental condition. Bailly-Bechet et al. approached

the sub-network detection problem the same way with an improved solver for the Steiner tree

problem [2].

2.3 Machine Learning

Many of the most successful methods for analyzing data coming from biological experiments

involve machine learning. Machine learning is an important discipline in computer science. It

emerged from early artificial intelligence field and touches many di�erent fields of science and

industry, such as biology, neuroscience, image processing, robotics and language processing.

The main task of machine learning is to learn, recognize and predict patterns from data.

By applying machine learning algorithms, we turn raw records into new knowledge. Arhur

Samuel defined machine learning in 1959 as a “Field of study that gives computers the ability

to learn without being explicitly programmed”. This points to the generalization ability of

machine learning algorithms. A good framework of supervised machine learning algorithm

should be autonomous. Given training data and domain knowledge, algorithms should be able

to derive model for future prediction by integrating information without human interference.

2.3.1 Basic Terms

In our study we focus on supervised learning algorithms. In supervised machine learning,

features are individual measurable properties or attributes that have been recorded; samples

are individual objects whose features have been recorded; classes are the labels of samples

that indicate their categories. Well-behaved features, samples and sample classes are crucial to

the success of machine learning algorithms. Good features are supposed to be discriminative
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and independent. That means there is little overlapped information or association between

features. In practice, this ideal is rarely reached. This opens the opportunity for our proposed

graph-based regularization methods, which make use of known relationships between features

captured in a form of a graph. Some examples of features are age, gender, p53 expression

value. Good samples are supposed to be independent and identically distributed. That means

first there is little association between samples; second all samples of the same class should

be polled from the same population. The number of classes should be small compared to the

number of samples. Often, machine learning algorithms are designed for problems where only

two classes are present. Such binary sample classes are usually represented by 1/0 or 1/-1.

For example class label 1 represent healthy people and class label -1 represent cancer patients.

In our study all classes are labeled in 1/-1.

2.3.2 Algorithm Types

Depending on the types of their input and output data, machine learning algorithms could be

organized into four major fields - supervised learning, unsupervised learning, semi-supervised

learning and reinforcement learning. In supervised learning, the training data always come

in pairs with data labels - we know the correct answers to sample classes. Supervised learning

algorithms take samples values and sample classes as input, learn the associations between

them in training stage, then try to predict sample classes for new sample values in testing

stage based on the learned associations. The most popular supervised learning algorithms

today are Support Vector Machine (SVM), Artificial Neural Network (ANN), decision tree

and ensemble learning (bagging, boosting and random forest).

In unsupervised learning, there is no label for any sample, so there is no training and

testing stages as in supervised learning. Unsupervised learning algorithms aim at recognizing

the patterns and inner structure of data. For example, clustering algorithms group samples

based on their closeness to each other, while association rules extract abstract rules of

objects’ relationships from inventory of object sets. Semi-supervised learning is situated

between supervised and unsupervised learning. Usually semi-supervised learning data are

comprised of large amount of unlabeled and small amount of labeled data.

Reinforcement learning is inspired by behaviorist psychology. Most reinforcement
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learning algorithms try to learn from previous actions that lead to punishments or rewards

so that algorithms’ future actions maximize cumulative rewards. It is widely studied in

disciplines like game theory, control theory, and operations research. Reinforcement learning

models are composed of 1) a set of environment states S, 2) a set of actions A, 3) rules

of transitioning between states, 4) rules that determine the scalar immediate rewards of a

transition, 5) rules that describe what the agent observes. An example of reinforcement

learning application is an autopilot system. We set environment states as di�erent road

systems, a set of actions as move forward, backward, or turn, rules to transitioning between

di�erent road systems, rules that determine punishments and rewards for wrong or correct

operations and rules that describe observed results.

2.3.3 Supervised Learning Algorithms

Our research is focused on supervised learning algorithms. Supervised methods can be cat-

egorized based on the properties of data labels. If the data labels an algorithm takes and

produces are both continuous, then the algorithm is a regression algorithm; otherwise, if

the data labels are discrete categorical numbers (usually binarized as 1/0 or 1/-1), then the

algorithm is a classification algorithm. We focus here on classification algorithms, so below

we provide a brief review of the most popular supervised learning algorithms commonly used

in classification analysis.

Support Vector Machine (SVM) in its modern form was published in 1995 by Vladimir

N. Vapnik and Corinna Cortes [9]. In training phase, SVM looks for a hyperplane that

maximizes the margin between two classes of samples. Those samples lying on the margin

are called support vectors. Kernel trick in SVM maps samples onto a high-dimensional space

that leads to e�cient non-linear classification. Soft margin SVM allows for accepting samples

lying on the wrong sides of the margin, rendering higher generalization power and limiting

overtraining. SVM can be reformulated for regression analysis too. More details about the

basic, linear version of SVM will be presented in Chapter 5.1.1.

Artificial Neural Network (ANN) is comprised of input, output and optional hidden

layers of nodes that are interconnected between layers. To train an ANN we feed the data

through the input layer through hidden layers and collect result from the output layer. By
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comparing results with sample labels, we calculate errors and correct weights on connections

between nodes. Eventually, when all weights converge, a trained neural network system is able

to predict sample classes with high accuracy. But ANN is a black box model and its weights

are hard to interpret. The first model of ANN was introduced in 1943 [35]. It was once a very

popular research topic until 1969, when Marvin Minsky and Seymour Papert’s publication put

the research into stagnation [37]. They revealed two problems about ANN - single layer neural

networks cannot solve “exclusive-or problem”; and multi-layered networks with linear nodes

can be reduced to single layer networks. The backpropagation algorithm [43,54] and an ANN

model with nonlinear nodes in hidden layers successfully solved the “exclusive-or problem” and

neural network regained attention. Even though in the 1990s SVM and other new machine

learning methods such as ensemble learning reduced popularity of neural networks, recent

research in deep learning [20] resulted in another explosion of interest in the field.

Decision Tree uses a tree-like structure as the classification model. All the training

samples pass through the root node, and are directed towards the leaves by decisions at each

node. Each node of the tree contains a split based on a threshold of a selected feature. The

split guides the samples that reached the node into the node’s left and right child. Each of

the leaves of the tree indicates a single class to be assigned to samples that reach the leaf. In

the training stage we train a decision tree, typically in a greedy fashion, and in the testing

stage decision tree could predict sample classes by letting samples go from the root through

splits to leaves. Decision tree is not a black box model so it is simpler to understand and

interpret. However, as it is not resistant to overfitting and is highly susceptible to noise in the

training set, usually decision tree cannot get results with high accuracy in complicated data

sets. On the other hand, due to its low computational complexity and inherent instability,

decision trees are commonly used as base classifiers in ensemble learning (bagging, random

forest, boosting).

Decision Stump is a very simple type of decision tree, in which the tree has just one

level. That is, we predict one class for all samples that have the value of the feature higher

than the threshold, and the other class for all samples for which the value of the feature is

below the threshold. Which feature is the deciding feature, what is the threshold, and which

class is above the threshold and which is below is decided based on the training data. We
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chose one feature, one split or threshold on that feature, and the orientation of that split, in

a way that minimizes the classification error on the training set.

Ensemble classifiers aggregate multiple learning models to predict results. This highly

enhances the prediction accuracy and model resistance to overfitting. Major ensemble methods

are bagging, random forest and boosting. Bagging is also called bootstrap aggregating. It

was proposed by Leo Breiman in 1996 [4]. The idea of bagging is to create multiple training

sets of the same size by random sampling with replacement from original training set. Models

are built upon those new training sets and final prediction is the average of predictions of all

the models. Random forest [6, 10] is the application of bagging technique in feature spaces.

In addition to sampling samples as in bagging, random forest sample features for multiple

model training. Boosting is another ensemble classifier that is superficially similar to bagging,

with the added weights of base models, and weights of points that focus training on samples

that are hard to classify, typically because they are close to the decision boundary separating

the classes. However, it has a deeper interpretation as an iterative method for optimizing the

risk of the classifier. Our work is based on extending boosting to improve its accuracy on

biological datasets, and we discuss boosting separately in more detail in Sections 4.1.1, 6.1.1

and 6.1.2.

2.3.4 Regularization in Supervised Learning

Classification algorithms such as those described above extract models by learning from train-

ing samples data and their categories. Then, the trained model, or a classifier, is used to pre-

dict unknown categories for new data samples. Classifiers should generalize well to previously

unseen samples, and should also be parsimonious and interpretable.

Many classification problems involve a feature space that is very highly dimensional. For

example, in biological classification problems, the number of experimental genes or proteins

are almost always much larger than the number of patients. As a result, the density of

training samples in the feature space is very low, which may result in overfitting. Overfitting

happens when classifiers describe training data too well, and they lose their robustness and

generalization ability. Thus, overfitted classifiers usually perform poorly in prediction and

are unstable to noise fluctuation. When feature dimensions are much higher than training
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sample sizes, classifiers are usually overly complex. Complex classifiers that contain excessive

number of parameters are often overfitted.

Various methods were invented to deal with overfitting and regularization is one of the

most important class of techniques. Regularization aims to limit overfitting by penalizing

model complexity. L
1

and L
2

regularization are classic regularization paradigms that were

initialy used in regression, but are also used in classification.

L
2

regularization adds L
2

norm of parameter weights into loss function to control model

complexity. For example, in a linear model, the sum of squares of weights of features in

the model would be incorporated into the loss function. Ridge regression [21] is a statistical

application of L
2

regularization. Classical linear SVM is another example. However, L
2

regularization’s feature weight decay e�ect cannot e�ectively reduce feature numbers, since

penalty drops very quickly as feature weights approach zero, and there’s little incentive to

actually reach null feature weight and eliminate the feature from the model completely. As a

result, classical linear SVM classifiers can still contain many parameters with small weights.

To obtain more parsimonious classifiers, feature selection methods such as recursive feature

elimination [19] are usually combined with SVM. These external feature selection methods are

called wrapper. They rank features by their importance and remove less important features

to reduce feature size. By testing numerous feature sizes, wrappers choose the best feature

subset for model training. Wrappers are very computational expensive and unstable due to

its greedy disposition [18]. One would desire a regularization method with embedded feature

selection property that does feature selection and model construction simultaneously. L
1

regularization can accomplish such e�ect by driving some feature weights to zero. This leads

to sparse models that are preferred [39]. LASSO [51] and LARS [14] are example of statistical

methods involving L
1

regularization. Zou and Hastie proposed Elastic net regularization [64]

that combines L
1

and L
2

penalty parts. The L
1

penalty part contributes to the sparsity of

models and L
2

penalty partially releases L
1

from its feature selection limitations. Additionally,

L
2

penalty part promotes a grouping e�ect that encourages selection of related features as a

group.

The methods described above are all purely data-driven. Besides experimental data,

domain knowledge is helpful to model success. For example, in genetic study, gene groupings
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or interactions established through decades of biology experiments can play an important role

in illuminating new studies. In image processing, neighboring pixels are often similar, with

variation that can be attributed more to noise than to the actual di�erence. In recent years,

group LASSO was introduced to incorporate additional information about groups formed by

features. Also, pre-defined quadratic spatial kernels over features were used to improve image

processing using AdaBoost [56]. Quadratic penalties on graphs were also proposed for linear

regression [30].



Chapter 3

Evaluation of Supervised Machine

Learning Methods

In this Chapter we describe how the methods we propose in this dissertation will be evaluated.

This includes the description of performance metrics and the validation procedures. We also

present the datasets that will be used for evaluating the methods, and propose our own method

for creating realistic, simulated biological two-class datasets.

3.1 Evaluation Scheme

To evaluate supervised learning algorithms, we usually partition samples into training and

testing parts. We feed algorithms training samples and their classes as input, and let algo-

rithms learn a model that recognizes the patterns in the data. Then we can generate predicted

classes for testing samples using the model learned from training samples and classes. By com-

paring the predicted test sample classes to the known true test sample classes, we evaluate

the algorithm’s performance on test data. The most common problem in supervised machine

learning algorithms is overfitting. It is also called overtraining. In supervised machine

learning it means the learning algorithms selects too complicated models to fit training data

accurately so that the models fit to noise and loose generalization power to predict future data

accurately. The opposite side of overfitting is underfitting. It is also called undertraining.

Underfitting means machine learning algorithms select too simple models to fit training data.
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In the situation of underfitting, models have equally low predicting power over both training

and testing samples.

Cross-validation is mainly used in supervised learning and it is a useful technique to

avoid overfitting. It partitions experiment samples into several di�erent parts called “folds”

(e.g. five-fold cross validation partitions samples into five parts). In classification problems,

each part is supposed to have the same proportion of samples from each class. Cross validation

chooses one part of the partitions as “testing set” while the rest serve as “training set”.

Machine learning algorithms extract models from training sets in “training stage” and predict

on testing sets in “testing stage”. We could evaluate algorithms by checking their average

performance on all di�erent cross-validation training/testing sets derived from given dataset.

3.1.1 Cross-validation Framework

For testing the methods, we store and use the same cross-validation labels for a given dataset.

When we use cross validation to test the method performances on a dataset, we have to avoid

using di�erent cross-validation partitions of data for di�erent methods, because di�erent data

partition introduce noise to the estimate of the method’s performance. We generate and

save 10 independent five-fold cross validation labels for each dataset as specified in Algorithm

1. We then test methods for any given dataset using cross-validation labels generated as

specified in Algorithm 2. We go through five-fold cross validation of this data set when

testing performances of methods. For each method, we average the results of those 50 runs.

Algorithm 1 Cross-validation Label Generation
for each dataset d do

for j Ω run{1, ..., 10} do
for i Ω class{1, ≠1} do

Si = (sample œ class);
SÕ

i = Permute(S);
for k Ω {1, ..., m} do

label(SÕ
i(k)) = 1 + (k mod 5);

end for
label(SÕ

i,sort) = sort label(SÕ
i) according to Index(Si);

end for
save five-fold cross validation label(Ssort) for jth run of data d to file as Sd,j .

end for
end for
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Algorithm 2 Cross-validation Framework
for each dataset d do

for theMethod Ω {1, ..., number of methods} do
for j Ω run{1, ..., 10} do

label(Sd,j) Ω sample cross validation label of jth run, dataset d;
for i Ω fold{1, ..., 5} do

Strain Ω label(Sd,j) ”= i;
Stest Ω label(Sd,j) = i;
resultj,i(theMethod, d) = Method(Strain, Stest);

end for
end for
result(theMethod, d) =

10q
j=1

5q
i=1

resultj,i(theMethod, d);

end for
resultÕ(d) = sort result(d) according to AUROC value in result(d);
save resultÕ(d) for all Methods for data d;

end for

Given a dataset, we compare the average results of all methods and sort them by their mean

AUROC value, which we introduce below in Section 3.1.2. Experiment results are presented

in the result and discussion section by the end of each method chapter.

3.1.2 Performance Evaluation

There are many ways to measure the performance of an algorithm. In supervised learning, we

assume we know the true label of some test samples so that we could evaluate our algorithm

by comparing the predicted values of labels for testing samples to the true ones. A table

called confusion matrix or contingency table (Table 3.1) shows di�erent possible scenarios.

True positives (TP) and true negatives (TN) are correctly classified testing samples. False

negative (FN) is rejection error, also called type I error. False negatives are true positive

samples that are predicted negative. False positive (FP) is acceptance error, also called type

II error. False positives are true negative samples that are predicted positive. From the

Table 3.1: Confusion Matrix
XXXXXXXXXXXTruth

Prediction Positive Negative Total

Positive True Positive (TP) False Negative (FN) P
Negative False Positive (FP) True Negative (TN) N
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contents of the confusion matrix, we can calculate a set of values that are often used to

measure the quality of predictions generated by supervised classification machine learning

algorithms.

Sensitivity is also called recall. It means how often the algorithm finds out true positive

samples. It is an estimate probability that a true positive sample will be predicted correctly.

Sensitivity = TP/P = TP/(TP + FN) (3.1)

Specificity means how often the algorithm finds true negative samples. It is an estimated

probability that a true negative sample will be predicted correctly.

Specificity = TN/N = TN/(FP + TN) (3.2)

Accuracy means how often the algorithm finds true sample labels. It is an estimated

probability that a sample will be predicted correctly.

Accuracy = (TP + TN)/(P + N) (3.3)

Precision means how often the predicted positive samples are truly positive. It is an

estimated confidence of a predicted positive sample.

Precision = TP/(TP + FP ) (3.4)

False positive rate (FP rate) means how often the true negative samples are falsely

predicted positive.

FPrate = FP/N = FP/(FP + TN) = 1 ≠ Specificity (3.5)

False Discovery rate (FDR) means how often the predicted positive samples are falsely

predicted.

FDR = FP/(FP + TP ) = 1 ≠ Precision (3.6)
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Receiver Operating Characteristics Curve (ROC curve) is used to analyze per-

formance of binary classifiers that return a continuous decision that is later converted into a

binary prediction using a threshold. ROC curve is a smooth line connecting dots plotted in

the space of FP rate and sensitivity. Each dot represents the value of FP rate and sensitivity

of tested algorithm at a given threshold for classification. Area under the ROC curve (AUC

or AUROC) equals to the probability that the classifier will di�erentiate a randomly cho-

sen true positive from a random chosen true negative sample. Its power is equivalent to the

Wilcoxon/Mann-Whitney U rank test.

3.2 Benchmark Non-biological Datasets

While our work is focused on biological network and data, we have identified three datasets

from outside of the biological field, as a way to show the generality of our methods.

3.2.1 Gaussian Dataset

We have created an artificial, toy dataset with the size small enough to all be convenient

during algorithm development. The dataset has 10000 samples and 100 features, connected

by a random graph depicted in Fig 3.1. In the graph, three small connected subgraphs of

di�erent topology are identified, labeled as red, green and cyan. We created three datasets

corresponding to these three colors. In each dataset features corresponding to one of the three

subgraphs are the discriminative features. All other features are Gaussian random noise.

We tested Heuristic Graph AdaBoost and Graph Regularized Linear SVM on three dif-

ferent Gaussian datasets. We used five fold nested cross validation for parameter tuning and

testing results.

3.2.2 Time Series Dataset

We have used a real-world time series datasets with 121 samples and 637 features. The

dataset describes a two-class problem of di�erentiating two types of atmospheric lightnings,

based on features that describe electromagnetic power density of the atmosphere measured

from a satellite in regular time intervals in the sub-microsecond range. The series of such
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measurements together forms a time series that describes a single lightning event.

In classical classifier training using e.g. SVM or boosting, the information that the features

correspond to consecutive time points would be lost. To show how graph-based regularization

can help in time series data, we have constructed a graph in which each feature is connected

to the feature representing the previous time step. We have used the graph as an additional

knowledge in graph-based regularization.

We tested Heuristic Graph AdaBoost and Graph Regularized Linear SVM on time series

datasets. We used five fold nested cross validation for parameter tuning and testing results.

3.2.3 Image Analysis Dataset

Our next dataset is incorporated to demonstrate how graph-based regularization can help

with image analysis. The NIST (National Institute of Standards and Technology) handwrit-

ten digits database that contains Special Database 1 which is sampled from American Census

Bureau employees and Special Database 3 which is sampled from American high school stu-

dents. NIST is a hard dataset for image processing as its training (Special Database 1) and

testing (Special Database 3) samples are from di�erent population. Each image of a digit

contains 28 by 28 pixels, that is, 784 features. MNIST (Mixed National Institute of Stan-

dards and Technology) handwritten digits dataset mixed Special Database 1 and 3 from NIST

dataset. It then split the mixed samples into training set of 60,000 images and testing set of

10,000 images. MNIST is, compare to NIST, an easier dataset for image processing, and is

widely used for machine learning method testing, including our tests in this dissertation. We

Figure 3.1: Gaussian dataset and its feature network - a random graph with 100 nodes.
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have used the pixels in the images as features, and we constructed a regularizing graph by

treating each pixel as a vertex, and adding an edge between adjacent pixels. That is, a pixel

is connected to it’s top, bottom, left and right neighbor.

We tested Heuristic Graph AdaBoost and Graph Regularized Linear SVM on three dif-

ferent Gaussian datasets. We used five fold cross validation for parameter tuning on MNIST

training dataset. Then we tested methods on MNIST test set using parameter chosen from

previous step.

3.3 Simulated Biological Datasets

We tested Heuristic Graph AdaBoost, Graph Regularized Linear SVM and Proximal Ad-

aBoost on biological datasets. For testing Graph Regularized Linear SVM, we used five fold

nested cross validation for parameter tuning and testing results. For Heuristic Graph Ad-

aBoost, we used 10 replicates of two fold cross validation for parameter tuning and testing

results. For Proximal AdaBoost, we used five fold cross validation to choose optimal param-

eters then test on ONE test set.

3.3.1 Motivation for Simulating Biological Datasets

Our research is dedicated to developing new algorithms that detect the underlying di�er-

ences between phenotypes using gene expression data and gene network information. Gene

expression profiles with di�erent phenotypes are organized in a matrix of feature values for

each sample and a vector of class labels. Each column of the matrix is a gene acting as a

feature while each row is a sample, typically corresponding to a patient. Every sample has

a corresponding class label 1 or -1 to indicate which phenotype group it belongs to. Gene

network is organized in adjacency matrix that indicates the relationships between features.

The two major tasks of the new algorithms are to 1) obtain models from training data

and matching networks to predict classes for previously unseen samples, given sample gene

expression profile; 2) extract the hypotheses of underlying di�erences between two phenotypes

from the model. Performance of algorithms with respect to the first task can be assessed using

methods such as cross-validation. However, validating the performance of algorithms on the
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second task is problematic: 1) the true underneath network structures of gene regulation

and protein interactions are unknown; 2) the true di�erences between two phenotypes are

unknown. Even though gene expression profiles and network information for real life datasets

are widely available, there is only limited information about the causes of di�erences between

phenotypes. Moreover, most available human biological networks are incomplete maps of

the genetic interactions. Results of algorithms integrating these incomplete networks with

complete genetic expression information are not completely valid or comparable. For the

purpose of algorithm development and evaluation, data simulation becomes our best option.

3.3.2 Dataset Simulation Framework

Proper experiment datasets should have gene expression values of two classes from the same

network structure. Sample values of class one are generated from the intact network, while

sample values of class two are from the network with selected regulation or signaling damage.

The regulation damage is achieved by altering the dissociation constant k of corresponding

edges. Dissociation constant k of edge A æ B specifies strength of regulation of B by A.

To shorten testing time, we started with networks of limited size but with preserved

basic regulation pathways. We extracted desired networks from existing high confidence

biological network PhosphoNetworks [23] for simulation. The network extraction details are

explained in Subsection 3.3.3, Algorithm 4. All selected impaired edges are connected. We

modify dissociation constant k based on network size and type of impairment. Molecular and

experimental noises are added to all simulated datasets. Normalization procedure is applied

to all noised datasets. We use GeneNetWeaver software [45] to simulate two sample classes of

gene expression profiles. The GeneNetWeaver simulation model are illustrated in Subsection

3.3.3.1 and the datasets we obtained from the simulations are described in subsection 3.3.4.

Machine learning method performance evaluation criteria are listed in Section 3.1.2. In our

research, we use area under the ROC (receiver operating characteristic) curve as the final

metric to evaluate all method we test. The complete pipeline for data simulation and method

evaluation is outlined in Algorithm 3.
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Algorithm 3 Data Simulation Pipeline
choose a base network N ;
datanorm Ω GeneNetWeaver simulation from N ;
define impaired network Nimpaired with chosen impaired edges Eimpaired from N ;
dissociation constant kÕ(Eimpaired) = x · k(Eimpaired);
dataimpaired Ω GeneNetWeaver simulation from Nimpaired with k;
d = union(datanorm, dataimpaired)
result(d) = crossValidation(data)

Algorithm 4 Subnetwork Extraction for Simulation
Require: : 1) A biological network G with m nodes.

2) Node size n of desired subnetwork GÕ.
Select p the longest of all shortest paths in G;
for i Ω genes{1, ..., m} do

di = the distance of node i to p;
end for
V Õ Ω sort all the vertices V = (v

1

, v
2

, ..., vm) in G by corresponding D = (d
1

, d
2

, ..., dm);
select the top n nodes from V Õ;
GÕ Ω edges EÕ in G with both nodes in V Õ.

3.3.3 Base Network Extraction

The first step of simulation is to extract a well-structured network of desired size. The ex-

tracted networks should preserve some biological pathways and other network properties. Net-

work structures generated from random graph models such as Watts-Strogatz model (small-

wold), Barabási–Albert model (scale-free) and Erd�s–Rényi model (independent edges) do not

capture statistically overrepresented biological network properties such as modularity and net-

work motifs occurrences [42, 47]. Applying raw existing subnetwork extraction methods will

break pathways and render graph-based machine learning methods irrelevant. For example,

sub-networks of PhosphoNetworks generated from random extraction by GeneNetWeaver have

longest path of only 3 edges. Networks for our experiment preferably should have at least one

complete long signaling pathway with other pathways growing along it. To achieve this task,

we designed an extraction method shown below in Algorithm 4.

3.3.3.1 GeneNetWeaver Simulation Theory

GeneNetWeaver (GNW) [45] is an open-source software for in silico simulation of gene ex-

pression data based on an underlying gene regulatory network. Originally it was designed
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to evaluate network inference methods. Theory behind the simulation model is described

in [33] and we summarize it here because it is needed to explain our way of creating di�erent

phenotypes.

Expression value simulations are based on a network structure. Given a network, for

each gene i, GNW simulates F RNA
i , the change rate of mRNA concentration, and F P rot

i , the

change rate of protein concentration. Function fi(·) serves as the activation function ranging

from 0 to 1 representing the relative activation of gene i. Furthermore, mi is the maximum

transcription rate, ri is the translation rate, ⁄RNA
i and ⁄P rot

i are the mRNA and protein

degradation rates and x, y are vectors containing all mRNA and protein concentration levels,

respectively. The dynamical model is

F RNA
i (x, y) = dxi

dt
= mi · fi(y) ≠ ⁄RNA

i · xi (3.7)

F P rot
i (x, y) = dyi

dt
= ri · xi ≠ ⁄P rot

i · yi (3.8)

Random fluctuations and molecular noise in transcription and translation process are modeled

be changing a dynamic model of the form

dXt

dt
= V (Xt) ≠ D(Xt) (3.9)

into a model
dXt

dt
= V (Xt) ≠ D(Xt) + c

3Ò
V (Xt)÷v +

Ò
D(Xt)÷d

4
, (3.10)

where V (Xt) is the RNA or protein production; D(Xt) is the degradation; ÷v and ÷d are

independent Gaussian noise processes; and c is a constant to control the amplitude of the

noise.

The relationships between a transcription-factor (TF) j and gene i (j æ i) is modeled by

the probability of states of gene i. State S
1

means TF j is bound to the promoter region of

gene i while state S
0

means not bound. The probability of TF j and gene i binding P{S
1

}

depends on yj , the concentration of TF j, on kij , the dissociation constant of the TF from
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promoter region, and on nij , the Hill coe�cient. The probability can be expressed as

P{S
1

} = ‰j

1 + ‰j
with ‰j =

A
yj

kij

Bn
ij

. (3.11)

If –
0

is the relative activation for state S
0

and –
1

the relative activation for state S
1

, given

P{S
1

}, we could derive P{S
0

} as its complement, and define the function describing mean

activation of gene i given the concentration yj of TF j:

f(yj)i = –
0

P{S
0

} + –
1

P{S
1

} = –
0

+ –
1

‰j

1 + ‰j
(3.12)

In real biological network, the interaction relationships are more complicated than one to one:

one gene could be controlled by N TFs. With each TF possibly bound or not bound to such

gene, we will have 2N states in total. Thus the function describing mean activation of gene i

given concentrations y of its N regulators could be calculated as

f(y) =
2

N ≠1ÿ

m=0

–mP{Sm} (3.13)

Here is an example how to calculate the activation a gene that is regulated by two TFs:

f(y
1

, y
2

) = –
0

+ –
1

v
1

+ –
2

v
2

+ –
3

flv
1

v
2

1 + v
1

+ v
2

+ flv
1

v
2

with vj = (yj/kj)n
j (3.14)

3.3.3.2 Modeling Di�erent Phenotypes

For testing our methods, we need datasets that contain samples from two di�erent phenotypes.

To generate such datasets, we need to simulate sample expression values for two phenotypes

separately. We first use GNW to simulate normal samples with selected network structure.

We choose stochastic simulation with multifactorial molecular and experimental noise added.

GNW software will set all simulation parameters automatically. Along with the normal sample

expression values, we get a normal network model with parameters from GNW. We create

a pathological network model by modifying dissociation constants k of the selected impaired

edges and keeping other parameters intact. We feed back this pathological network model

to GNW software and it will generate the pathological sample expression values. By doing
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this, we could ensure samples from both classes come from the same network structure with

the same other simulation parameters and same amount of noise added. The only di�erences

are the dissociation constants of impaired edges. We treat these edges and their incident

vertices as the “true di�erences” between two phenotypes. As we can tell from equation 3.11,

the modification of dissociation constant kij of the simulation model changes the regulation

strength of TF j over gene i. By altering dissociation constants of selected edges, multiple

related gene regulation relationships are impaired in simulated pathological situation.

We applied such modeling procedure to two di�erent network structures - PhosphoFull

and Phospho200 network. Because PhosphoFull network has 4375 edges while Phospho200

network has only 591 edges, we increase dissociation constants of the same set of impaired

edges 30 times in PhosphoFull network while 2 times in Phospho200 network. To simulate gene

mutations of the same pathway, we used a similar modeling procedure on Phospho200 network,

but instead of impairing all edges in our predefined set, we create five di�erent mutation

models for five di�erent impaired edges from the same set. Each mutation model contains the

same set of parameters as the normal network model but with one edge dissociation constant

increased 10 times. We simulate one fifth of pathological samples using each mutation model

and put these samples together as a whole pathological expression set. This mutation dataset

is called Phospho200 Mutation. It models the real-world situation where pathology is based

on alteration of a single pathway, but in individual patients di�erent components of that

pathway are altered. All datasets are described in details in subsection 3.3.4.

3.3.4 Simulated Datasets used in Experiments

3.3.4.1 PhosphoFull Network Dataset

PhosphoFull network dataset is simulated from base network PhosphoNetworks [23]. Phos-

phoNetworks is a recently published kinase-substrate network that contains downloadable

1291 human kinases and 4375 kinase-substrate phosphorylation relationships. All the pro-

tein prosphorylation interactions recorded in PhosphoNetworks are validated by proteomic

methods so all the edges in PhosphoNetworks have uniformed confidence. For class 1, the

normal phenotype, we simulate a data matrix of 100 samples for these 1291 gene features.
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For class -1, the pathological phenotype, we select the edges between nodes PLK1, CHEK2,

EIF2AK2, FYN, MAPK8, increase the dissociation constant k for these edges 30 times in the

same simulation model we used for class 1 data. By doing this, we obtain another data matrix

of the same dimension for class -1. PhosphoFull network is displayed in Figure 3.2 and the

core of the network composed of nodes with both non-zero in and out degrees are magnified

in Fig 3.3. Edges with augmented dissociation constants are marked red in both figures and

listed in Table 3.2.

Table 3.2: PhosphoNetwork Edges with Modified Dissociation Constant

PLK1 æ CHEK2

PLK1 æ MAPK8

CHEK2 æ EIF2AK2

EIF2AK2 æ PLK1

EIF2AK2 æ CHEK2

EIF2AK2 æ EIF2S1

FY N æ EIF2AK2

3.3.4.2 Phospho200 Network Dataset

As we explained in previous sections, to save experiment time and to have a clearer picture

of basic pathway structure of experiment network, we extracted Phospho200 network with

200 nodes from PhosphoNetworks using Algorithm 4. The longest shortest path from Phos-

phoNetworks is GSK3A æ CDK9 æ CHEK2 æ EIF2AK2 æ PLK1 æ MAPK8 æ

MAPK1 æ FGR æ CSNK2A1 æ EPHA3 æ MAP3K8 æ MAP3K14 æ MAP4K5 æ

CAT . We extracted 186 nodes which are closest to the longest shortest path, together with

the 14 nodes on the longest shortest path form Phospho200 network structure. Figure 3.4

and Figure 3.5 display Phospho200 network structure and its core. Phospho200 dataset sim-

ulation procedures are the same as simulation in PhosphoFull dataset in Subsection 3.3.4.1.

Dissociation constants are augmented 2 times for impaired edges listed in Table 3.2.
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Figure 3.2: Complete view of PhosphoFull network. Edges marked red between diamond red
nodes are impaired. Dissociation constants of impaired edges are increased thirty times for
pathological phenotype data simulation. Left grid contains nodes that have null in-degree
while right grid groups nodes with no outbound edges.

3.3.4.3 Phospho200 Mutation Network Dataset

Phospho200 Mutation network dataset use the same network structure as Phospho200 network

as described in Subsection 3.3.4.2 and depicted in Figure 3.4 and Figure 3.5. The di�erences

between Phospho2002 dataset and Phospho200 Mutation datasets are 1) Phospho200 Muta-

tion dataset simulate gene expression profiles of patients with di�erent single gene regulation

mutations on the same pathway, while in Phospho200, all the patients have all genes on the

same pathway impaired. 2) Phospho200 Mutation dataset modifies the dissociation constant

of each patient’s impaired edge by the factor of 10 while Phospho200 dataset modifies the dis-

sociation constants of each patient’s impaired edges by the factor of 2. Among 100 simulated

patient samples, we match each 20 patient to one impaired edge in Table 3.2. This makes

mutation dataset tougher for knowledge discovery but more true to the genetic changes in

complex diseases like cancer.
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Figure 3.3: Core of the PhosphoFull network after removing nodes with null in- or out-
degree. Edges marked red between diamond red nodes are impaired. Dissociation constants
of impaired edges are increased thirty times for pathological phenotype data simulation.
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Figure 3.4: Phospho200 network extracted from full PhosphoNetwork. Edges marked red
between diamond red nodes are impaired. Dissociation constants of impaired edges are in-
creased two times for pathological phenotype data simulation. Left grid contains nodes that
have null in-degree while right grid groups nodes with no outbound edges.

Figure 3.5: Core of the Phospho200 network after removing nodes with null in- or out-
degree. Edges marked red between diamond red nodes are impaired. Dissociation constants
of impaired edges are increased two times for pathological phenotype data simulation.



Chapter 4

Graph Connectivity Constrained

AdaBoost

In this Chapter, we propose a new algorithm for incorporating graph information into training

of the ensemble classifier AdaBoost. We will first introduce the classical AdaBoost algorithm,

and then present our proposed method and the results of evaluating it on a number of datasets.

4.1 Background

4.1.1 AdaBoost Algorithm

AdaBoost is a supervised classification machine learning algorithm published by Yoav Freund

and Robert Schapire in 1997 [15]. Like all ensemble methods, AdaBoost trains a set of T weak

classifiers ht, where t = 1, ..., T . AdaBoost name comes from “Adaptive Boosting”. Adaptive

means the method adjusts to the error rates Át of individual weak classifiers. Boosting means

that weak classification method can be turned into a strong one, by aggregating many trained

weak models. AdaBoost with decision tree as the base classifier is considered to be among

the best out-of-the-box classifiers.

Let us begin with introducing the pseudocode of traditional Adaboost algorithm. There

are two additional sets of variables in AdaBoost compared to basic ensemble scheme. Sample

weights wt(i) are introduced for each sample i and for each iteration t. Weights of all samples

for a given iteration form a distribution, that is, they sum up to 1. Also, weights –t are
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assigned to each trained weak model ht. In our notation, I(a) returns 1 if condition a is met,

and 0 if not.

Algorithm 5 AdaBoost Algorithm
Require: training data and classes: (x

1

, y
1

), ..., (xm, ym),
where xi œ Rf , yi œ Y = {≠1, +1}

Ensure: H(x) = sign
1qT

t=1

–tht(x)
2

for i Ω samples{1, ..., m} do
w

1

(i) = 1/m;
end for
for t Ω iteration{1, ..., T} do

train weak classifier ht to minimize error Át =
mq

i=1

I(ht(xi) ”= yi)wi(t)

assign –t = 1

2

ln 1≠‘
t

Á
t

for classifier ht

update sample weights

wt+1

(i) = wt(i) ◊
I

e≠–
t if ht(xi) = yi

e–
t if ht(xi) ”= yi

normalize wt+1

by a constant Zt+1

so that it
mq

i=1

wt+1

(i) = 1.
end for

Essentially, AdaBoost trains a series of weak classifiers. Each weak classifier is induced,

through evolving sample weights w, to learn to classify correctly the training samples that

were misclassified by previously trained weak classifiers. All the trained weak classifiers form

an ensemble that comes to the final decision by voting. The higher the accuracy of the weak

classifier on the training set, the higher is the strength of its vote.

4.2 Proposed Method for Graph Connectivity Constrained

AdaBoost

In AdaBoost, each feature is treated independently. This is not optimal if features represent

genes or proteins. Previous knowledge in molecular biology reveals relationships between genes

or proteins. This knowledge, though incomplete, should be taken into consideration during

training of the discriminative model, since preference should be given to sets of features that

represent biologically plausible groups or pathways. To incorporate biological knowledge in

a form of a graph linking features, we will enhance the model to give preference to features
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that form connected subgraphs of the biological network.

Another limitation of AdaBoost is that once a weak classifier is chosen, it cannot be

removed, nor its weight can be modified. This might introduce redundancy into the assembled

classifier, especially if it is trained in an incremental way under connectivity constraints. If

we want a sparse composed classifier with minimal number of necessary classifiers, the ability

to flexibly delete redundant classifiers is needed for AdaBoost.

4.2.1 Connectivity-deletion AdaBoost

In this proposal, we show an approach to solving the graph-regularized ensemble learning

problem. We extended AdaBoost by adding a connectivity penalty module and a deletion

function. During AdaBoost classifier training iterations, we only include new weak classifiers

trained on features connected in the graph to the features used by previously trained weak

classifiers. Also, in the every Td-th run, we test if by removing worst classifier or removing

classifiers of the worst feature we could improve the risk function while maintaining the

connectivity constrain. As we will see below, this connectivity-deletion AdaBoost shows

better result on experimental datasets than traditional AdaBoost. The pseudo-code of the

proposed method, along with connectivity module and two variants of the deletion function

are illustrated in Algorithms 6, 7, 8, 9.

The framework of our proposed method is specified in Algorithm 6. The proposed method

takes training data, sample class information and feature network information as input. Sam-

ple weights are initialized equal. They get updated and normalized by the end of each classifier

generation loop. Inside the classifier generation loop, we use connectivity penalty module to

select the desired new classifier. Then we apply deletion function to test if an existing classifier

is detrimental to the performance of the composite classifier and can be deleted. Finally, we

update sample weights using the newly defined composite classifier, which is expanded with

the newly trained weak classifier, but may also be reduced by the deletion function. After

T iterations, the algorithm returns the ensemble classifier H with weights – and variable

importance matrix. Based on the results the proposed method provides the option of feature

selection model retraining step that leads to a sparse classifier.

Compared to traditional AdaBoost (Algorithm 5 in Section 4.1.1), the proposed method
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Algorithm 6 AdaCPDFC/AdaCPDTC - Connectivity-deletion AdaBoost
Require: : training data X and classes Y : (x

1

, y
1

), ..., (xm, ym),
where xi œ Rf , yi œ Y = {≠1, +1};
network information of gene features G.

Ensure: H(x) - resulting classifier.
for i Ω samples{1, ..., m} do

w
1

(i) = 1/m;
end for
for t Ω iteration{1, ..., T} do

ht = connectivityPenalty(Ht≠1

, w, X, Y, G);
assign –t = 1

2

ln 1≠‘
t

‘
t

for classifier ht;
Ht = connectivityDeletion(Ht, G, t, Td, cP );
update sample weights: wi(t + 1) = exp(≠yiHt(xi));
normalize wt+1

so that it
mq

i=1

wt+1

= 1;
end for
H(x) = sign

1qT
t=1

–tht(x)
2

optional: H=retrain(H, –, imp, l)
where imp is the variable importance matrix of all classifiers and all features
and l is the desired new feature size.

holds three novel elements: it 1) utilizes network information, 2) contains deletion function,

3) adds a retraining option. Connectivity penalty module is specified in Algorithm 7; deletion

function includes two options - tree based (Algorithm 8) and feature based (Algorithm 9)

deletion. The method makes use of network information in both connectivity penalty module

and deletion function. The variable importance-based feature selection and model retraining

option can not only improve the performance of proposed method but select the potentially

impaired genes and subnetworks.

4.2.2 Connectivity Penalty Module

Connectivity penalty module (Algorithm 7) aims to select a best classifier with connected

features and minimized training error. The input of module are current composite classifier

Ht≠1

, sample weights w, training data and classes X, Y , and gene feature network information

G. First we select a set of all the gene features that are used in the current composite classifier

Ht≠1

. We call this set of features subN in the module. We train decision tree treesubN

using features from subN only and calculate its training error ‘subN . Then, according to the

connectivity information from G, we select all the first degree neighbor gene features of subN .
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Algorithm 7 Connectivity Penalty Module
Ensure: ht = connectivityPenalty(Ht≠1

, w, X, Y, G)
subN = all the selected features from Ht≠1

;
train decision tree (treesubN ) using subN with training error ‘subN ;
neibs = all the direct upstream and downstream neighbors of subN from G;
bigN = union(subN , neibs);
train decision stump stumpbigN using bigN ;
find the feature fbest in stumpbigN ;
bestN = all the direct upstream and downstream neighbors of fbest;
train decision tree (treebest) using bestN with training error ‘bestN ;
if ‘bestN < ‘subN · 0.95 then

return ht = treebest;
else

return ht = treesubN

end if

We call these features neibs in the module. We combine features from subN and neibs to

form bigN . We train decision stump stumpbigN using features from bigN and call the feature

selected in decision stump fbest. We then include all the first degree neighbor gene features of

fbest together with fbest to form a new subnetwork, bestN . We then train decision tree treebest

using features in bestN and calculate its training error ÁbestN . Now we compare training error

ÁsubN of treesubN and ÁbestN of treebestN . If training error ÁbestN from treebestN is less than

95 % of error ÁsubN from treesubN , we accept treebestN ; otherwise we accept treesubN . At this

step, we have a new decision tree classifier selected. We allowed extending the set of features

to form a larger connected set, but only if the classifier trained using those features is better

than a classifier trained using features that were selected previously.

This module adds four properties to selected classifiers: 1) new classifier selects features

only from a set that is connected in the graph; 2) all features of the composite classifier H

come from a connected set in the graph; 3) no matter what feature the algorithm choose

first, the connected features of the composite classifier H grow as a connected set to cover the

potential impaired gene subnetwork area; 4) the composite classifier growing direction (new

classifier ht) always lowers the training error.
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4.2.3 Deletion Function

Deletion function gives the method an ability to delete redundant classifiers from the compos-

ite classifier. We introduced two ways of deletion - tree based and feature based. Tree-based

deletion searches for the worst weak classifier (decision tree) and removes it if this improves

the performance of the composite classifier. Feature-based deletion searches for the worst

gene feature and removes all classifiers that contain this feature if the removal improves the

performance of the composite classifier. The connectivity module in Section 4.2.2 allows for

extending the set of connected features in composite classifier to cover the “true impaired gene

subnetwork” area. Our deletion function will remove “false-positive genes” from selected fea-

tures and make the composite classifier “move” towards the “true impaired gene subnetwork”

rather than just “grow” to incorporate it.

Both feature-based and tree-based deletion require input data that includes current com-

posite classifier Ht after adding new classifier ht, network information G, current iteration

count t, and user defined parameters Td and cP . The deletion happens in every Td iterations.

We take modulo of current iteration count t over deletion frequency parameter Td and if it

equals zero then we start the deletion algorithm. Parameter cP defines the stress we put on

enforced connectivity - larger cP indicates smaller emphasis.

4.2.3.1 Tree-based Deletion with Enforced Connectivity

The details of implementation of Tree-based Deletion with enforced Connectivity (DTC)

module are explained in Algorithm 8. First we take all the gene features fall used in current

composite classifier Ht. Based on gene network information, we calculate how many connected

components Gc, how many features Gv are in fall, and how big is the training error GÁ of Ht.

Plugging in the user defined parameter cP , we can calculate the error-feature-connectivity

penalty score Gp using formula Gp = Ge + (Gv + Gc)/cP . Then we go through each i-th

weak classifier (decision tree) in the composite classifier Ht and tentatively remove that i-th

classifier from Ht. In each deletion iteration we get a new composite classifier H≠i and we

calculate its corresponding error-feature-connectivity penalty score using the same formula

GpList(i) = GeList(i) + (GvList(i) + GcList(i))/cP . After all deletion iterations, we get
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Algorithm 8 Tree-based Deletion with enforced Connectivity (DTC)
Ensure: Ht = DTC(Ht, G, t, Td, cP ):

if t mod Td = 0 then
fall = all the features from Ht;
Gc = the number of connected components of fall;
Gv = the number of features of fall;
Ge = training error of Ht;
the error-feature-connectivity penalty score of Ht: Gp = Ge + (Gv + Gc)/cP ;
for i Ω trees{1, ..., t} do

H≠i = delete hi from the Ht;
f≠i = features from H≠i;
GcList(i) = the number of connectivity components of f≠i;
GvList(i) = the number of features of f≠i;
the error-feature-connectivity penalty score of H≠i:
GpList(i) = GeList(i) + (GvList(i) + GcList(i))/cP ;

end for
find the index k of Gpmin in GpList;
if Gpmin < Gp then

return Ht = H≠k (delete hk);
else

return Ht = Ht (no deletion);
end if

end if

the list of error-feature-connectivity penalty scores GpList for all classifier deletions. We take

the minimum value Gpk from GpList and compare with the score Gp of current composite

classifier Ht. If such Gpk is less than Gp then we accept the k-th classifier deletion from Ht

and return the composite classifier H≠k without k-th classifier; or else, we reject deletion for

this round.

4.2.3.2 Feature-based Deletion with Enforced Connectivity

Feature-based Deletion with enforced Connectivity (DFC) module presented in Algorithm

9 has a lot in common with the tree based deletion. Again, first we take all the gene features

fall used in current composite classifier Ht. Based on gene network information, we calculate

how many connected components Gc we have in fall, and how big is the training error GÁ.

Using cP , we calculate the error-connectivity penalty score Gp from the formula Gp = Ge +

Gc/cP . This penalty formula does not include feature count because we already know we only

delete one feature at a time so all deletions are equal in that respect. We go through each
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Algorithm 9 Feature-based Deletion with enforced Connectivity (DFC)
Ensure: Ht = DTC(Ht, G, t, Td, cP ):

if t mod Td = 0 then
fall = all the features from Ht;
Gc = the number of connected components of fall;
Ge = training error of Ht;
the connectivity penalty score of Ht: Gp = Ge + Gc/cP ;
m = the number of features of fall;
for i Ω features{1, ..., f} do

H≠i = classifiers after deleting all the classifiers {hj} contain feature fi from the Ht;
GcList(i) = the number of connectivity components of f≠i, where f≠i = delete feature
i from fall;
the connectivity penalty score of H≠i: H≠i = GeList(i) + GcList(i)/cP ;

end for
find the index k of Gpmin in GpList;
if Gpmin < Gp then

return Ht = H≠k (delete all {hj} containing fk).
else

return Ht = Ht (no deletion)
end if

end if

gene feature and tentatively remove all classifiers {hj} that contain the i-th gene feature from

the composite classifier Ht. In each deletion iteration i we get a new composite classifier H≠i.

We calculate its corresponding error-connectivity penalty score using the formula GpList(i) =

GeList(i) + GcList(i)/cP . After all deletion iterations, we get the list of error-connectivity

penalty scores GpList for all feature deletions. We take the minimum value Gpk from GpList

and compare with the score Gp of current composite classifier Ht. If such Gpk is less than

Gp then we accept the k-th feature deletion corresponding to Gpk and return the composite

classifier H≠k without k-th gene feature; or else, we reject deletion for this round.

4.2.4 Model Retraining

The methods outlined above aim at limiting the number and connectivity structure of the

selected features. This may have detrimental e�ect on the accuracy of the resulting classifier.

In order to improve the accuracy, while keeping only a small set of features, we introduce

model retraining as a final step in our framework. Model retraining uses the top selected

features, and trains a completely new classifier that uses only those features.
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Algorithm 10 Variable Importance-based Retraining
Require: : decision trees {h

1

, h
2

, ..., hT };
classifier weights – Ω {–

1

, –
2

, ..., –T };
variable important score matrix imp Ω {imp

1

, imp
2

, ..., impT };
where impt Ω genefeaturescores{impt,1, impt,2, ..., impt,m};
desired new feature size l.

Ensure: H(x) - resulting classifier.

imp =
Tq

t=1

impt · –t;

fsort Ω sort features according to imp in descending order;
fnew Ω top l features from fsort;
H Ω new classifier training using data that includes only fnew.

Because AdaBoost is not a black box model, besides training a composed classifier for

prediction, we could also rank features based on their decision tree variable importance scores

from weighted classifiers. Variable importance score is a property of decision tree. It is used

to measure how important the features is for di�erentiating samples from di�erent classes.

Features with high variable importance score are considered to be more crucial. Features not

selected by the decision tree have null variable importance.

Pseudocode for Variable Importance-based Retraining step is shown in Algorithm 10. In

our proposed method, each classifier ht has a corresponding variable importance scores impt

for all the m features. We define feature weight score as the sum of tree-specific importance

scores weighted by the tree importance in the ensemble

imp =
Tÿ

t=1

impt · –t (4.1)

where –t in 4.1 is the weight for classifier ht. We sort all the features in a descending order

according to imp and select best 5, 10, 15 and 25 features as di�erential gene subnetworks.

To test if these selected features can improve the performance of our method by shrinking

feature space, we apply either SVM or AdaBoost on data with only these selected features.

4.3 Computational Complexity

Computational complexity of traditional AdaBoost with decision tree as weak classifier is

O(T (m + tree)), where T is the number of AdaBoost iterations, m is the sample size and



44 Graph Connectivity Constrained AdaBoost

tree is the complexity of training a decision tree. Complexity of training a tree on a dataset

with m samples and f features is O(f · m log m + f · m · htree), where htree is the height of

the trained tree. The first term corresponds to pre-sorting all samples independently along

all features, and the second one to actually constructing the tree using the sorted samples.

Optimistically htree = 1 if there is a feature that perfectly separates all the samples into two

classes. Pessimistically, if at every level, the feature only separates one sample away from the

rest of the samples, the tree will have htree = m levels. In a balanced tree where the fraction

of samples that go to one side is bounded, for example at most 90% of samples goes to one

side, the tree will have htree = log m levels. So the worst case computational complexity of

traditional AdaBoost with decision tree as weak classifier is O(T · f · m2), but typically one

can expect complexity of O(T · f · m log m).

The proposed method adds a connectivity module, deletion function and retraining proce-

dure to traditional AdaBoost framework. The retraining procedure is a traditional AdaBoost,

so here we will analyze only the computational complexity of the connectivity module and the

deletion function. Connectivity module is described in Algorithm 7. We assume the number

selected features in Ht≠1

is V , then training treesubN takes O(m log m · V ). Construction of

the neighbors list may pessimistically involve a large fraction of the edges in the graph, and

may take O(E). Training stumpbigN takes O(m · V Õ) where V Õ is the number of features in

bigN . Searching bestN takes O(V Õ) and train treebest takes O(m log m · V ÕÕ) where V ÕÕ is the

number of features in bestN . Pessimistically, if most features in a given dataset have been

used in Ht≠1

, V ¥ V Õ ¥ V ÕÕ ¥ f where f is the total number of features, and also the number

of nodes in the graph. So the computational complexity of connectivity penalty module in

total is O(f · m log m + E), which for a dense graph can lead to O(f · m log m + f2).

Feature-based deletion function consumes more time than tree-based deletion function.

Both deletion functions require a parameter Td to define how often such deletion function

is performed - every Td iterations the deletion function will be executed. In both deletion

functions, searching for the number of connected components takes O(E + f) where f is the

number of nodes in the network equal to the number of features. This needs to be done for

each tentatively removed feature, that is, f times. Also, f times, the algorithm has to inspect

each of t trees, and remove those that contain the tentatively removed feature, and evaluate
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the performance of the ensemble classifiers of up to t≠1 trees on m samples. So, for the single

feature, quantifying the e�ect of its removal takes O(E +f +t+(t≠1)m), which for f features

to be analyzed adds up to O(f(E +f +tm)), which for a dense graph can lead to O(f3 +ftm).

Tree-based deletion function is similar to feature-based deletion function. However, instead

of inspecting every gene and every classifier contains such gene, it only goes through each

classifier, and the performance evaluation can be obtained by subtracting results from that

one classifier from results for the ensemble, involving only O(m) time. The computational

complexity in total is O(t(E + f + m)), which for a dense graph becomes O(t(f2 + m)).

Summing up all the components of our proposed method, the computational complex-

ity of our method is pessimistically O(Tfm log m + Tf3 + T 2fm) for dense graphs, and

O(Tfm log m + Tf2 + T 2fm) for sparse graphs.

4.4 Results and Discussion

We systematically assess the proposed algorithms and compare them to state-of-art methods

on three datasets simulated from GeneNetWeaver as described in Chapter 3.3.2 and 3.3.3.1.

In this section we present the complete performance results grouped by dataset, in Tables

4.2, 4.3 and 4.4. Methods are inspected from three aspects: 1) classification power, 2) model

complexity, 3) the ability to detect the known “true di�erences” between phenotypes. In each

table, methods are sorted by their AUROC, the gold standard statistic for model evaluation

in terms of their predictive power. Model complexity is quantified as the number of features

used by the trained final model. The ability to detect di�erences between phenotypes is

measured by counting how many of the features used by the model come from two sets: the

set of known “true impaired genes” and the set of first degree downstream neighboring genes

of these “true impaired genes”. As we explained in Chapter 3.3.4, these “true impaired genes”

are directly linked to edges with modified dissociation constants in data simulation. The

damaged regulation relationships influence downstream neighbor genes of the “true impaired

genes” too. We present both how many known true features and first degree downstream

neighbors of known true features are present in the features included in the models for each

dataset.
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Table 4.1: Abbreviations of Module Names

Method Type Abbreviation Module Name

Method frameworks Ada AdaBoost framework
SVM Support Vector Machine framework

Connectivity module CP Connectivity Penalty

Deletion functions DTC Deletion module, Tree based, enforced Connectivity
DFC Deletion module, Feature based, enforced Connectivity

Model retraining _Ada AdaBoost retrained using selected features
_SVM Support Vector Machine retrained using selected features

Baseline methods
allFeatureSVM Support Vector Machine using all Features
allFeatureAda AdaBoost using all Features
OracleSVM Support Vector Machine using known true impaired genes
OracleAda AdaBoost using known true impaired genes

As explained in section 4.2, the originality of our proposed method includes: 1) connectiv-

ity penalty module, 2) feature or tree based deletion function, 3) variable importance-based

feature selection model retraining procedure. We test the individual and synergistic impact

of these new parts of our proposed method, and compare the results of these methods to

the performances of two state-of-the-art methods, AdaBoost and SVM, refered to as “Ada”

and “SVM” respectively. The network connectivity constrain, connectivity penalty module

is simplified as “CP” in our study. Deletion function has two versions - tree-based with en-

forced connectivity and feature-based with enforced connectivity. Here we call them “DTC”

and “DFC”, respectively. Variable importance-based model retraining procedure takes the

variable importance scores for all feature as provided by the already trained ensemble, and

trains a new final model using traditional AdaBoost or SVM on the top scoring features.

Here we use an extension “_Ada” and “_SVM” to other methods to indicate that the model

retraining procedure has been applied as the last step.

We use four configurations of state-of-the-art methods for comparison with our proposed

methods. “allFeatureSVM ” denotes a non-linear SVM model trained on a given dataset using

all its features. “OracleSVM” denotes a non-linear SVM model trained on a given dataset

using only the known true impaired gene features. “allFeatureAda” denotes traditional Ad-

aBoost without any of our proposed extensions trained on a dataset with all features, while

“OracleAda” denotes AdaBoost trained using only the known true impaired gene features.

Results of the “allFeatureSVM” and “allFeatureAda” methods give us the baselines of how
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well these two state-of-the-art methods perform on a given dataset. “OracleSVM” and “Ora-

cleAda” give us the performance of SVM and AdaBoost, if they were equipped with an oracle

that points them to the features that capture the true di�erences between two phenotypes,

which would allow them to discard all the other features. For real datasets, such an oracle

typically does not exist. The performance goal of our proposed method is to achieve accu-

racy as close as possible to the one obtained with the help of the oracle. The method types,

abbreviations and full names are organized in Table 4.1. The details of these modules are

explained in section 4.2.

All methods are implemented in MATLAB 7.10.0(R2010a). We use libsvm-3.17 MATLAB

package as an SVM implementation. We use the default parameter setting from libsvm - radial

basis function kernel for two-class classification SVM. We implemented our own AdaBoost

function in MATLAB and used MATLAB’s toolbox for decision trees. We set the number

of iterations T = 200 for all AdaBoost-based methods. Even though in our experiments we

selected top 5, 10, 15, 20 and 25 gene features for all model retraining procedures, because

the baseline “OracleAda” and “OracleSVM” functions use only five features in their models,

here we only present and compare results for model retraining involving top 5 features.

4.4.1 Phospho200 Dataset

The Phospho200 dataset information is available in Chapter 3.3.4.2. Phospho200 network

is extracted from PhosphoNetwork [23]. The network topology is depicted in Fig 3.4, and

the nodes with non-zero both in and out degrees are magnified in Fig 3.5. The details of

Phospho200 dataset simulation is explained in Chapter 3.3.2. Table 4.2 presents quantitative

evaluation results of listed methods on this dataset.

We compare our results to the baseline methods “OracleAda”, “OracleSVM”, “allFea-

tureAda” and “allfeaturesSVM”. “OracleAda” and “OracleSVM” are two ideal situations, in

which we know what are the true damaged genes in pathologic phenotype. Their results are

produced by employing only these known “true features” in traditional AdaBoost and SVM

algorithms. These two methods do not have any application to real life, because in real life

experiments we rarely know which features are responsible for the di�erences between classes.

Machine learning algorithms can only build models by inferring which features possibly dis-
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criminate two phenotypes. Actually, discovering the true features that divide the normal and

the pathological samples is a main task of our research, so the two methods based on true

features are only an unattainable hypothetical best performance of two top machine learning

classification methods.

In Phospho200 dataset, “OracleAda” has the highest AUROC value 0.8706, which we can

treat as the standard of the best possible performance of algorithms from the AdaBoost family.

Our proposed methods “AdaCPDFC_Ada” and “AdaCPDFC_SVM” with AUROC values of

0.8079 and 0.7930 are second and third. These two configurations both are our full proposed

method: a union of AdaBoost framework, connectivity penalty module, deletion function

(feature-based deletion with enforced connectivity function) and variable importance-based

model retraining procedure. The only di�erence is that AdaCPDFC_Ada uses traditional Ad-

aBoost algorithm while AdaCPDFC_SVM uses SVM algorithm for model retraining. Behind

our full proposed method comes “OracleSVM” with AUROC value 0.7893. The variations

of our full proposed method with feature based deletion yield better result than the “un-

beatable” ideal baseline result “OracleSVM”. Other two variations of our proposed method,

with tree-based deletion, AdaCPDTC_Ada and AdaCPDTC_SVM, with AUROC values of

0.7845 and 0.7665, follow tightly behind “OracleSVM” too. This shows the success of model

building of our proposed method on Phosph200 dataset. Also, the results show a preference of

feature-based deletion to tree-based deletion. In feature-based deletion function, we inspect

Table 4.2: Results for Phospho200 Dataset

Method ROC Feature count True features True downstream neighbors
OracleAda 0.8706 5 5 4

AdaCPDFC_Ada 0.8079 5 1.75 3.6
AdaCPDFC_SVM 0.7930 5 1.75 3.6

OracleSVM 0.7893 5 5 4
AdaCPDTC_Ada 0.7845 5 1.7 3.5

AdaCPDTC_SVM 0.7665 5 1.7 3.5
AdaCP_Ada 0.7539 5 1.7 3.8

AdaCP_SVM 0.7536 5 1.7 3.8
Ada_Ada 0.6943 5 0.9 3.3

AdaCP 0.6770 79.3 4.95 31.2
allFeatureAda 0.6743 179.4 4.9 59.7

allFeatureSVM 0.6113 200 5 66
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all genes selected by composite classifier. We go through each gene and test the training

error of a new composite classifier without decision trees that contain such gene. We accept

the deletion that improves the training error most, and remove all classifiers that contain

the identified redundant gene feature. In tree-based deletion function, we inspect all decision

trees that form the composite classifier. We tentatively remove each decision tree from the

composite classifier and accept the one that lowers the training error most. In e�ect, only

one tree can be removed at a time, and the deletion may not actually reduce the number of

features used by the model.

Combination of connectivity penalty module and model retraining procedure perform well,

but not as good as our full proposed method. The methods of AdaCP_Ada and AdaCP_SVM

have AUROC values of 0.7539 and 0.7536. This shows the importance of deletion function.

Deletion function generates small classifiers with important features. Then the AUROC val-

ues drop to 0.6943 and 0.6770 when we use model retraining procedure and connectivity

module individually. Ada_Ada is the traditional AdaBoost algorithm with model retraining

procedure. AdaCP is AdaBoost framework with connectivity penalty module. Traditional Ad-

aBoost Algorithm has 0.6743 as its AUROC value while SVM using all features has 0.6113.

The results show that individual usage of connectivity penalty module or model retraining

procedure cannot significantly enhance the performance of AdaBoost for Phospho200 dataset.

In terms of model simplicity, “OracleAda” and “OracleSVM” employ only five features

in their models because there are five known impaired gene features. To match the feature

number in the ideal situation, we also selected five features in model retraining procedure.

All the proposed methods that involve model retraining are set up to produce models with

five features only. Traditional AdaBoost used 179.4 features on average over 10 runs of

five-fold cross validations while SVM used all 200 features. So the full proposed method not

only improves classification accuracy, but provides much simpler models. Furthermore, among

these top five selected features, four variations of our full proposed method (AdaCPDFC_Ada,

AdaCPDFC_SVM, AdaCPDTC_Ada and AdaCPDTC_SVM) manage to discover 1.75 true

features and more than 3.5 true feature’s first degree downstream neighbors on average over

10 runs of five-fold cross validations.

In summary, the combination of three new modules that constitute our proposed method
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yields very good results - it has higher AUROC score than the ideal performance of SVM, tra-

ditional AdaBoost and SVM over all features and any performance of an individual function.

Moreover, our proposed method generates models with only a few features that drastically

shrink the number of features traditional AdaBoost and SVM use. The proposed method is

accurate, sparse and, although not perfectly, recovers the true sources of changes.

We can also observe that methods that use AdaBoost show consistently better results

than methods that use SVM: “allFeatureAda” has greater AUROC than “allfeatureSVM”,

“OracleAda” has greater AUROC than “OracleSVM” and model retrain procedure favors

“_Ada over “_SVM” too. This might be because AdaBoost does not require parameter

tuning, and we are only using default kernel and parameters for SVM model. Full parameter

study may improve the results for SVM, but our results can be view as the comparison of the

methods when they are treated as out-of-the-box classifiers.

4.4.2 Phospho200 Mutation Dataset

Phospho200 Mutation dataset is a harder classification problem than Phospho200 dataset.

The Phospho200 Mutation data is designed to simulate patients with single gene mutation

and single gene pair deregulation along a disease pathway. Among 100 pathologic samples, ev-

ery 20 samples share one unique gene mutations. These 5 mutations together define a disease

pathway. We increased the dissociation constants of damaged gene regulations 10 times. In

Phopho200 dataset, all 100 pathologic samples have all 5 mutations, and we increase dissocia-

tion constants of the damaged gene relations 2 times. So similar to a real biological situation,

there are greater but less uniform gene expression alterations in the mutation dataset. The

Phospho200 Mutation dataset information is available in Chapter 3.3.4.3. Phospho200 Mu-

tation dataset and Phospho200 network use the same network structure, which is extracted

from PhosphoNetwork [23]. The network topology is depicted in Figures 3.4 and 3.5. The

details of data set simulation is explained in Chapter 3.3.2.

Table 4.3 presents quantitative evaluation results of listed methods on Phospho200

Mutation dataset. Two variations of our full proposed method, AdaCPDFC_Ada and

AdaCPDFC_SVM have high AUROC values of 0.8079 and 0.7930. The results are close

to the ideal result “OracleSVM” with AUROC value 0.8134. This confirms the advantage
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Table 4.3: Results for Phospho200 Mutation Dataset

Method ROC Feature count True features True downstream neighbors
OracleAda 0.8680 5 5 4

OracleSVM 0.8134 5 5 4
AdaCPDFC_Ada 0.8079 5 1.75 3.6

AdaCP_Ada 0.8078 5 1.9 3.7
AdaCP_SVM 0.8058 5 1.9 3.7

AdaCPDFC_SVM 0.7930 5 1.75 3.6
AdaCPDTC_Ada 0.7845 5 1.7 3.5

AdaCPDTC_SVM 0.7665 5 1.7 3.5
allFeatureAda 0.7181 181.75 4.95 60.35

AdaCP 0.7174 76.65 4.8 31.4
Ada_Ada 0.7141 5 1 3.55

allFeatureSVM 0.6434 200 5 66

of our full proposed method in classification problems. The full proposed method with tree

based deletion function has good AUROC values of 0.7845 and 0.7665 too. However, in mu-

tation dataset, excluding the tree based deletion procedure actually enhances the method

performance. AdaCP_Ada and AdaCP_SVM obtain higher values of AUROC values of

0.8078 and 0.8058, which is an even better results than AdaCPDFC_SVM, AdaCPDTC_Ada

and AdaCPDTC_SVM. From the results of Phosph200 dataset and Phosph200 mutation

dataset, we can see AdaCPDFC_Ada has a consistent best performance among all practical

methods. We also find a consistent order of four variations of our full proposed method:

AdaCPDFC_Ada, AdaCPDFC_SVM, AdaCPDTC_Ada and AdaCPDTC_SVM, indicat-

ing feature-based deletion outperforms tree-based deletion. Connectivity penalty module and

model retraining procedure alone again fail to show better results than traditional AdaBoost,

but they still performs much better than SVM with default parameter over all features.

In terms of model complexity, we get similar result to Phopho200 dataset. All full proposed

methods build models with only five features, among which 1.7 to 1.9 features are true features

and 3.5 to 3.7 features are first downstream neighbors of true features. All the presented results

are averaged over 10 runs of 5 fold cross validation.

To sum up, in both Phospho200 and Phospho200 Mutation dataset: 1) proposed method

yields good results that are competitive with “OracleSVM”, although there is still room

for improvement compared to “OracleAda”; 2) the full proposed method AdaCPDFC_Ada
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works best; 3) out of the box, with default parameters, AdaBoost-based methods perform

better than corresponding methods based on SVM; 4) combination of connectivity, deletion

and retraining performs best in Phopho200 dataset, while the combination of connectivity

and retraining show some advantages in mutation dataset; 5) all proposed methods largely

improve the performance of traditional AdaBoost algorithm.

4.4.3 PhosphoFull Dataset

PhosphoFull dataset has 200 samples and 1291 features. It is much bigger dataset than

Phospho200 and Phosph200 Mutation dataset. It contains the same five impaired relationships

as Phospho200. For those impaired relationships, we increased the dissociation constants

30 times in PhosphoFull dataset, for all 100 pathologic samples. The PhosphoFull dataset

information is available in Chapter 3.3.4.1.

Table 4.4 presents quantitative evaluation results of listed methods on PhosphoFull

dataset. In this dataset, three variations of our full proposed method obtained AUROC

scores only slightly below “OracleSVM” and “OracleAda”. The order of the four variations of

our proposed method changed compared to previous datasets, but again feature-based dele-

tion outperforms tree-based deletion. AdaCPDFC_SVM performs best with AUROC value

of 0.7882, followed by 0.7747 from AdaCPDTC_SVM and 0.7653 from AdaCPDFC_Ada.

Then we have the methods combine connectivity penalty module and model retraining pro-

Table 4.4: Results for PhosphoFull Dataset

Method ROC Feature count True features True downstream neighbors
OracleAda 0.8025 5 5 4

OracleSVM 0.7974 5 5 4
AdaCPDFC_SVM 0.7882 5 1.55 3.2
AdaCPDTC_SVM 0.7747 5 1.6 2.95
AdaCPDFC_Ada 0.7653 5 1.55 3.2

AdaCP_SVM 0.7587 5 1.6 2.85
allFeatureAda 0.7585 437.5 3.55 68.1
AdaCP_Ada 0.7582 5 1.6 2.85

Ada_Ada 0.7472 5 1.25 3.3
AdaCPDTC_Ada 0.7456 5 1.6 2.95

AdaCP 0.7071 118.05 3.5 35.45
allFeatureSVM 0.5425 1291 5 148
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cedure AdaCP_SVM with 0.7587. Though AdaCP_Ada, Ada_Ada, AdaCPDTC_Ada and

AdaCP fail to beat the AUROC value of traditional AdaBoost “allFeatureAda”, they man-

age to surpass “allFeatureSVM”. Furthermore, all methods with model retraining procedure

include only 5 features in their models. Compared to 437.5 features in traditional AdaBoost

model, our methods provide much smaller classifiers with improved AUROC results. Our full

proposed methods recovered 1.55 to 1.6 true features and 2.95 to 3.2 first degree neighbors of

true features among 5 features they select. This is similar discovery rate to Phospho200 and

Phosph200 mutation dataset.

In a nutshell, our proposed Graph Connectivity Constrained AdaBoost method is able to

produce classifiers with high accuracy, small number of features and discover part of the true

genetic di�erence between phenotypes in larger dataset.



Chapter 5

Linear Support Vector Machine

with Submodular Graph

Regularization

In this Chapter, we propose a new method for graph regularization in linear Support Vector

Machines (SVM), by introducing a graph penalty that is based on the theory of submodular

set functions. We will first review the SVM and Linear Programming SVM algorithms, as well

as the relevant background about submodular set functions, and then present our proposed

method Graph Regularized Linear SVM and the results of its evaluation.

5.1 Background

5.1.1 Linear Programming Support Vector Machine

Linear Support Vector Machines aim at searching for an optimal decision hyperplane to max-

imize sample margin. Because we can geometrically prove the norm of feature weights is

inversely proportional to margin M = 2

Î—Î , we can solve the classification problem by looking

for a set of feature weights — that minimizes the squared L
2

norm of — and the total sample
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risk expressed as the sum of slack variables ›

minimize 1
2Î—Î2

2

+ C
mÿ

i=1

›i (5.1)

subject to ›i Ø 0, yi(xT
i — + b) Ø 1 ≠ ›i. (5.2)

By yi we represent the class of sample i, and the feature values of sample i are represented

by the vector xi.

The objective function in 5.1 is comprised of two terms. The first term 1

2

Î—Î2

2

is deducted

from geometry of SVM. It can also be understood as a regularization term of feature im-

portance. The second term C
mq

i=1

›i bounds from above the number of misclassified samples.

Because of the constrain ›i Ø 1 ≠ yi(xT
i — + b), total sample risk can also be written in the

form of C
mq

i=1

L((yi(xT
i — + b))), where L is the hinge loss of the classifier that represents how

much error the model makes. The second term guides SVM to select support vectors from

samples.

The first term in the objective function in 5.1 is in the form of L
2

-norm of feature weights.

Even though L
2

is the traditional from of SVM feature regularization, it is not the only possible

form. Several authors [26,62] proposed SVMs that use the L
1

-norm of feature weights, Î—Î
1

,

to replace the L
2

-norm term 1

2

Î—Î2

2

. This pushes more feature weights to zero and leads to a

sparser SVM model as a result. Because Î—Î
1

=
Fq

j=1

|—j |, L
1

feature weight regularization of

linear soft margin SVM can be presented as

minimize
Fÿ

j=1

|—j | + C
mÿ

i=1

›i (5.3)

subject to ›i Ø 0, yi(xT
i — + b) Ø 1 ≠ ›i. (5.4)

This version of SVM can be solved by Linear Programming and is often referred to as Linear

Programming SVM, or LP SVM.

Hybrid approaches have also been proposed before. The Doubly Regularized SVM is the

application of elastic net regularization, that is, for L
2

and L
1

norm in SVM [53]. Zou [63]

proposed a hybrid linear SVM to improve the performance of LP SVM. In the objective
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function of L
1

feature regularization of SVM, Zou adjust the L
1

-norm penalty term using

the feature weights from the L
2

-norm SVM result. Hybrid SVM is a way to achieve better

classification accuracy and feature selection ability than traditional L
1

-norm and L
2

-norm of

SVM.

5.1.2 Submodular Functions and their Convex Extensions

In our graph regularization, we will be adding a penalty based on a submodular set function

defined over the set of selected features. To that end, below we review basic results from the

theory of submodular set functions.

A real-valued set function � defined on the power set 2V of a set V = 1, ..., F is submodular

[1] if and only if

’A, B, {a} ™ V, A ™ B, �(A fi {a}) ≠ �(A) Ø �(B fi {a}) ≠ �(B). (5.5)

This equation demonstrates the diminishing return property of submodular set functions.

That is, as the size of the input set of submodular function grows, the increase of output

value by adding the same element {a} decreases.

To give some intuition, consider equipping every element j in the set V with a fixed

weight wj . First, let us define a set function �
1

(S) =
q

jœS
wj . For this set function, the weak

inequality in eq. (5.5) always holds with equality. �
1

(S) is an example of a modular function.

Now consider another set function �
2

(S) = max
jœS

wj . Adding an element may increase the

maximum of w over the set, but the increase we see by adding it to A is greater than or

equal to the increase we see by adding it to B, which contains all the elements from A, and

some more, perhaps with higher weights. Thus, eq. (5.5) always holds, the function �
2

is

submodular.

Finally, consider a set function �
3

(S) = ≠ max
jœS

wj . For this function, the reverse of

inequality in eq. (5.5) is always true, and that function �
3

is said to be supermodular. For

every submodular function, its negation is supermodular.

A modular function is both submodular and supermodular. One important example is

the set cardinality function, that is, the �
1

(S) defined above for the case where all wj = 1.
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That function is modular, and thus also submodular.

One well-known submodular function is graph cut capacity, defined for a graph G with

vertices V and edge weights Gjk. The graph cut function �G for a selected subset of vertices

S µ V is the sum of edge weights between vertices in S and all other vertices in V (see Figs.

5.1 and 5.2). For undirected graphs, graph cut function can be formulated in the following

way

�G(S) =
ÿ

jœS

ÿ

k /œS
Gjk, (5.6)

while for directed graphs, graph cut function can be written as

�G(S) =
ÿ

jœS

ÿ

k /œS
Gjk +

ÿ

jœS

ÿ

k /œS
Gkj . (5.7)

We can prove that eq. (5.6) represents a submodular set function, by showing that it

meets the condition as expressed in eq. (5.5). We will use G(A ¡ B) to represent the sum

of weights of edges linking nodes in set A and nodes in set B. For every set A, B ™ V with

A ™ B and every x œ V \ B, proving �G(A fi {x}) ≠ �G(A) Ø �G(B fi {x}) ≠ �G(B) is thus

Figure 5.1: Graph cut regularizer penalizes undirected edges that cross set S boundary.

Figure 5.2: Graph cut regularizer penalizes directed edges that cross set S boundary.
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Figure 5.3: By adding element x, a smaller set A receives bigger increase of edge numbers
that cross the expanded set boundary than a larger set B. U represents the universe of set
elements, equal to the set of graph vertices V .

equivalent to proving that

G((Afi{x}) ¡ (V \(Afi{x})))≠G(A ¡ (V \A)) Ø G((Bfi{x}) ¡ (V \(Bfi{x})))≠G(B ¡ (V \B)).

(5.8)

Looking at the left-hand side, we can see that

G((Afi{x}) ¡ (V \ (Afi{x})))≠G(A ¡ (V \A)) = G({x} ¡ (V \ (Afi{x})))≠G(A ¡ {x}).

(5.9)

Similarly, on the right-hand side we have

G((B fi{x}) ¡ (V \(B fi{x})))≠G(B ¡ (U \B)) = G({x} ¡ (V \(B fi{x})))≠G(B ¡ {x}).

(5.10)

Because A ™ B, we know that G({x} ¡ (V \ (A fi {x}))) Ø G({x} ¡ (U \ (B fi {x}))) and

that G(A ¡ {x}) Æ G(B ¡ {x}), which immediately lead to the proof that graph cut is

submodular. The configuration involving A, B, and x is depicted in Fig. 5.3.

One interesting property of submodular set function is their relationship with convex and

concave functions. Notably, for every submodular set function defined over subsets of set V

with cardinality F , we can construct its Lovasz extension onto unit hypercube in RF . Every

dimension corresponds to one element in the set V , and for a set S µ V , we can denote by

supp(S) a vector in [0, 1]F that represents the support of the set S, that is, a vector with 1

at coordinates corresponding to elements from V that are in S, and 0 at other coordinates.

In that way, supp(S) corresponds to a corner of the unit hypercube [0, 1]F .

Lovasz extension of a submodular set function � : 2V æ R is equivalent to the set
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Figure 5.4: Graph cut set function and its values for a single specific edge are defined at
points (0,0), (0,1), (1,0), (1,1). We assume Gjk = 1 in the plot.

function’s convex closure [13], defined as a function �L : [0, 1]F æ R that is the point-wise

highest convex function from [0, 1]F to R such that �L(supp(S)) = �(S). From convexity

and from equality of the submodular set function to its Lovasz extensions at the corners

of the unit hypercube, we can conclude that the minimum of the extension is equal to the

minimum of the set function, and is attained at one of the corners of the unit hypercube.

Often, the practice is to extend the function beyond the unit hypercube, while preserving the

above characteristics. For example, for the set cardinality function �L(S) =
q

jœS
1, the Lovasz

extension is

�L
L(—) =

Fÿ

j=1

|—j | , (5.11)

which is known in the machine learning community as the LASSO regularization term.

For the graph cut submodular set function �G(S) =
q

jœS

q

k /œS
Gjk (eq. 5.6) defined over a

graph with F vertices and edge weights Gjk, the Lovasz extension is

�L
G(—) =

Fÿ

j=1

Fÿ

k=1

Gjk |—j ≠ —k| . (5.12)

This can be seen by observing that the function can be decomposed into terms corresponding

to individual pairs j and k connected by an edge, and analyzing the behavior of �L
G for —j and

—k. For specific j and k, the graph cut function �G in eq. (5.6) has values only at four points

- (0, 0), (1, 0) (0, 1) (1, 1). Such function is illustrated in Fig. 5.4. When nodes j and k are

both inside or both outside the selected subset S of nodes, we have �G(0, 0) = �G(1, 1) = 0.

When node j is inside S and node k is outside S, or node k is inside S and node j is outside

S, we have �G(1, 0) = �G(0, 1) = 1.
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Figure 5.5: Lovasz extention of the graph cut submodular function is convex, piece-wise linear,
and equal to the original submodular set function at the corners of the unit hypercube, (0,0),
(0,1), (1,0), (1,1). We assume Gjk = 1 in the plot.

Since �L
G has to be highest point-wise convex function, we see that �L

G = 0 everywhere on

the line connecting (0,0) with (1,1). By the same argument, it has to be linear on both sides

of that line. The function in eq. (5.12) is the only one that meets those requirements. Any

point-wise higher function will no longer be convex. The function is depicted in Fig. 5.5.

5.2 Proposed Method for Submodular Graph-based Regular-

ization in Linear SVM

5.2.1 Graph-based Regularization in SVM

In this Chapter, we propose graph regularized LP SVM. This new classification algorithm lets

prior knowledge of feature relationships play a role in model training. It summarizes feature

relationships as a graph regularization penalty term and integrates such term into SVM loss

function. The graph regularization term derived from feature network G can provide us with

another perspective on feature importance for feature selection: features that are neighbors of

a very important feature are likely to be more important themselves. The graph regularization

term drives the algorithm towards selecting clusters of related features, instead of a collection

of independent features. The connected features may yield better classification results and

more interpretable models.

One way of adding a term that promotes the selection of connected subsets of features is

to penalize for every edge (in the feature graph G) that connects a feature selected by the

model with a feature that is not selected. The submodular graph cut function �G(S), where
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S represents the set of features with non-zero coe�cients —j in the SVM model represents

that type of penalty. While graph cut function �G is a set function and we cannot directly

add it to the objective function being optimized by SVM, we can have an equivalent function

defined over the corners of the unit hypercube in RF , that is, over the support of feature

coe�cients vector —

�G(supp(—)) =
Fÿ

j=1

Fÿ

k=1

Gjk |supp(—j) ≠ supp(—k)| , (5.13)

where

supp(—j) =

Y
__]

__[

0, if —j = 0,

1, if —j ”= 0.

(5.14)

While feature weights indicate the feature importance in a linear SVM model, the support

of feature weights vector indicates if features are selected in the model or not. The 0/1

values from support of — divide features into two groups, forming a cut in the feature network

graph. Graph cut function defined in eq. (5.13) goes through each edge of feature network

and counts how many edges the cut crosses. Given the same graph G and the same number

of features being selected, to obtain a smaller cut we have to minimize |supp(—j) ≠ supp(—k)|

when Gjk ”= 0. In a graph, this means we want adjacent nodes connected by an edge to

be the same group, either both selected or both not selected. So, if we add such graph cut

function to SVM objective function, it will drive our models to favor the selection of features

that cluster together. However, the graph cut function is non-convex and non-linear. Adding

such a term into SVM objective function will make the problem untractable.

To solve this problem, instead of adding �G(supp(—)) we can use its Lovasz extension �L
G,

which is defined of the vector of feature weights —, and is convex, although not di�erentiable.

Thus, we use the Lovasz extension of graph cut submodular set function as the final graph

regularization term and add it to the LP SVM objective function, and we obtain our proposed
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Graph Regularized Linear SVM

minimize C
mÿ

i=1

›i +
Fÿ

j=1

|—j | + C Õ
Fÿ

j=1

Fÿ

k=1

|—j ≠ —k| Gjk (5.15)

subject to ›i Ø 0, yi(xT
i — + b) Ø 1 ≠ ›i, (5.16)

In order to solve linear programming problem with absolute values, we introduce new

variables —+

j and —≠
j for each variable —j . As long as the coe�cient in front of —j is non-

negative in the objective function, which is the case in our linear program, we will obtain

positive feature weights —+

j and the absolute value of negative feature weights —≠
j so that

|—j | = —+

j + —≠
j and —j = —+

j ≠ —≠
j . We also let djk = —j ≠ —k so that |—j ≠ —k| = |djk| and

introduce new variables d+

jk and d≠
jk for each variable djk. In this way |djk| = d+

jk + d≠
jk and

djk = d+

jk ≠ d≠
jk is true.

From —j ≠ —k = djk, djk = d+

jk ≠ d≠
jk, —j = —+

j ≠ —≠
j , —k = —+

k ≠ —≠
k , we derive another

constraint d+

jk ≠ d≠
jk ≠ —+

j + —≠
j + —+

k ≠ —≠
j = 0. Now the optimization defining our proposed

Graph Regularized Linear SVM can be readily seen as a linear programming problem

minimize C
mÿ

i=1

›i +
Fÿ

j=1

(—+

j + —≠
j ) + C Õ

Fÿ

j=1

Fÿ

k=1

(d+

jk + d≠
jk)Gjk (5.17)

subject to ›i, —+

j , —≠
j , d+

jk, d≠
jk Ø 0, (5.18)

yi(xT
i — + b) Ø 1 ≠ ›i, (5.19)

d+

jk ≠ d≠
jk ≠ —+

j + —≠
j + —+

k ≠ —≠
j = 0. (5.20)

The problem can be solved e�ciently using standard techniques.

5.3 Results and Discussion

5.3.1 Biological Datasets

We compare our Graph Regularized Linear SVM (GLPSVM) method results with LP SVM

and classical linear SVM with L
1

norm over slack variables (L1SVM). We list the area under

ROC curve value and model feature number for each method in the Table 5.1.
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Table 5.1: Linear SVM results for Phospho200 Dataset

Method AUROC Feature count
GLPSVM 0.8600 5

LPSVM 0.8455 16
L1SVM 0.7470 99

Table 5.2: Linear SVM results for PhosphoFull Dataset

Method AUROC Feature count
GLPSVM 0.8015 20

LPSVM 0.7895 10
L1SVM 0.6330 644

Graph Regularized Linear SVM has higher AUROC value and lower selected feature num-

ber than LP SVM and L1 SVM. We can say graph regularization improves the performance

of LP SVM by increasing prediction accuracy and reducing model size in Phosph200 dataset.

PhosphoFull dataset results are listed in Table 5.2. Graph Regularized Linear SVM obtains

higher AUROC value than LP SVM and L1 SVM. However, LP SVM selected smaller number

of features than Graph Regularized Linear SVM.

Phosph200 mutation dataset results are listed in Table 5.3. Graph Regularized Linear

SVM outperforms LP SVM and L1 SVM by its higher AUROC value and smaller model size.

In summary, in biological dataset Phospho200, PhosphoFull and Phospho200 Mutation,

Graph Regularized Linear SVM performs best among all methods. Graph regularized SVM

consistently achieves higher ROC values than LP VM and L1 SVM. It also controls the size

of selected features small. From the results, we can conclude that Graph Regularized Linear

SVM performs well on biological datasets.

Table 5.3: Linear SVM results for Phospho200 Mutation Dataset

Method AUROC Feature count
L1SVM 0.6667 93

GLPSVM 0.6542 29
LPSVM 0.6347 28
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Table 5.4: Linear SVM results for Gaussian Red Dataset

Method AUROC Feature count
GLPSVM 0.9250 11

LPSVM 0.9130 23
L1SVM 0.8000 56

Table 5.5: Linear SVM results for Gaussian Cyan Dataset

Method AUROC Feature count
GLPSVM 0.9090 45

LPSVM 0.9020 22
L1SVM 0.7550 55

5.3.2 Benchmark Non-biological Datasets

We also compared results of Graph Regularized Linear SVM with LP SVM and L1 SVM on

three simulated Gaussian datasets. The results are presented in Tables 5.4 5.5 5.6. Graph

Regularized Linear SVM and LP SVM perform consistently better than L1 SVM in all three

Gaussian datasets. Graph Regularized Linear SVM and LP SVM obtain higher AUROC

values than L1 SVM and select fewer features for models. In Red and Cyan datasets, Graph

Regularized Linear SVM achieves higher AUROC values than LP SVM. In Red dataset, such

di�erence is greater and Graph Regularized Linear SVM selects smaller number of features.

In Cyan dataset, such di�erence is vague and GLPSVM selects larger number of features.

In Green dataset, Graph Regularized Linear SVM has lower AUROC value than LP SVM.

However, Graph Regularized Linear SVM selects less features. From results of Gaussian

datasets, we can conclude that, graph-regularization works better if the di�erential subnetwork

is more internally connected and less connected to other nodes that are not in the subnetwork.

We also compared the proposed Graph Regularized Linear SVM with LP SVM and L1

SVM on time series dataset. Results in Table 5.7 shows GLPSVM obtains higher ROC than

LP SVM and L1 SVM. However, GLPSVM selects largest number of features among all three

Table 5.6: Linear SVM results for Gaussian Green Dataset

Method AUROC Feature count
LPSVM 0.9160 29

GLPSVM 0.9040 18
L1SVM 0.8105 54
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Table 5.7: Linear SVM results for time series Dataset

Method AUROC Feature count
GLPSVM 0.7381 449

LPSVM 0.7240 25
L1SVM 0.6981 390

Table 5.8: Linear SVM results for MNIST Dataset

Method Error Rate [%] Feature count
GLPSVM 5.29 696

L1SVM 5.41 536
LPSVM 5.62 160

methods. Finally, we wanted to test the e�ect of graph regularization in image analysis so we

applied the same set of three SVM methods to MNIST handwriting digits dataset. Results

are presented in Table 5.8. It should be noted that the Error Rate and not the AUROC is the

community standard for presenting the results on this dataset, since the sizes of the classes are

equal. From the table we can tell that the proposed Graph Regularized Linear SVM reduced

the prediction error rate of LP SVM. However, it selects more features than LPSVM.



Chapter 6

Boosting with Proximal Descent

and Submodular Graph

Regularization

In this Chapter, we propose a new method for graph regularization in boosting, by introducing

a graph penalty that is based on the theory of submodular set functions. We will first review

the theory of boosting viewed as a descent method. We will also provide introduction the the

proximal gradient technique that will be essential for our proposed graph-based regularization

in boosting. Then, we will present our proposed method ProxGraphLogisticBoost and the

results of its evaluation.

6.1 Background

6.1.1 AdaBoost as a Descent Method in Functional Space

The AdaBoost ensemble learning algorithm 5 reviewed in Chapter 4.1.1 can be seen as a

method for minimizing a risk functional through the coordinate-wise steepest descent. Ad-

aBoost and other modern classification algorithms are more powerful than classical meth-

ods because they aim at maximizing the margin rather than minimizing error of classi-

fiers [5, 12, 16, 34]. For a binary classifier H, the margin of a sample (xi, yi) is defined as
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yiH(xi). The task of a good classifier is to maximize the margins of all training samples.

However, not every sample weights the same - adjusting the decision boundary to move sam-

ples from the wrong side of the decision boundary to the right side is much more important

than moving samples that are already on the right side of decision boundary and far away

from it even farther. A loss function L : R æ R of sample margins is needed to represent such

non-uniformity of importance. In AdaBoost, exponential function of negated sample margin

is used as loss function. AdaBoost aims to find a model H that minimizes the average value

of the loss function of all sample margins in the training set, also referred to as the empirical

risk R[H] of the hypothesis H. Given the training set S = {(x
1

, y
1

), ..., (xm, ym)}, where

xi œ RN , yi œ Y = {≠1, +1}, the empirical risk is

R[H] = 1
m

mÿ

i=1

L(≠yiH(xi)). (6.1)

Empirical risk is a functional R : F æ R defined over a space F of decision functions taking

values in [-1,1].

Following the optimization explanation of boosting [34], we can start with defining an

inner product < f, g > for f, g œ F as their similarity over the training set

< f, g >= 1
m

mÿ

i=1

f(xi)g(xi). (6.2)

For a functional R : F æ R, we define its gradient as the functional ÒR such that

lim
–æ0

R[F + –f ] ≠ R[F ]≠ < ÒR[F ], –f >

–
= 0. (6.3)

Plugging in the definitions of the risk (6.1) and the inner product (6.2), we obtain a limit that

links gradient of the risk functional with the loss function

lim
–æ0

1

m

mq
i=1

L(≠yi(F (xi) + –f(xi)) ≠ 1

m

mq
i=1

L(≠yi(F (xi)) ≠ 1

m

mq
i=1

ÒR[F ](xi)–f(xi)

–
= 0.

(6.4)

The limit converges if all terms related to individual samples xi inside the sum converge.

Since f(xi) is a real number for a single sample xi, we can treat it as a multiplicative constant
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in front of – which does not a�ect convergence to zero

lim
(–f(x

i

))æ0

L(≠yi(F (xi) + (–f(xi)))) ≠ L(≠yi(F (xi)) ≠ ÒR[F ](xi)(–f(xi))
(–f(xi))

= 0. (6.5)

For an individual sample xi, we can treat F (xi) and –f(xi) as real variables, with F (xi) = ŷi

and –f(xi) = �ŷi, leading to

lim
�ŷ

i

æ0

L(≠yi(ŷi + �ŷi)) ≠ L(≠yiŷi) ≠ ÒR[F ](xi)�ŷi

�ŷi
= 0, (6.6)

which shows that ÒR[F ](xi) meets the condition of the classical derivative of L(≠yiŷi) inter-

preted as a function of ŷi

ÒR[F ](xi) = ˆL(≠yiŷi)
ˆŷi

----
ŷ

i

=F (x
i

)

= ˆL(zi)
ˆzi

----
z

i

=≠y
i

F (x
i

)

ˆzi

ˆŷi

----
ŷ

i

=F (x
i

)

, (6.7)

where we have introduced zi = ≠yiF (xi). Thus we obtain the final representation of the

gradient of the risk functional R applied to function F and evaluated at xi

ÒR[F ](xi) = ≠yi
ˆL(zi)

ˆzi

----
z

i

=≠y
i

F (x
i

)

. (6.8)

In AdaBoost, we build the final ensemble in an iterative fashion. At the start of iteration

t, we have a fixed ensemble model Ht≠1

and we are aiming to expand it to Ht = Ht≠1

+ –tht.

Thus, we need to find the new classifier ht so that the value of R[Ht] is lower than R[Ht≠1

].

Specifically, our goal in iteration t is to find a decision function ht and a parameter –t that

result in the smallest risk

(ht, –t) = arg min
h,–

R[Ht≠1

+ –h]. (6.9)

The direction the risk decreases most rapidly is simply the negative of the gradient of risk at

Ht≠1

, that is, ≠ÒR[Ht≠1

]. Ideally, we would set the new ht to be the direction along which

our risk functional decrease most rapidly from its current value of Ht≠1

and the new –t to how
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far we are going to move in that direction. That is, we would like to choose ht = ≠ÒR[Ht≠1

].

But we may not always find such classifier in the space H of models returned by our particular

weak classification algorithm, so in practice we choose a classifier ht that maximizes the inner

product È≠ÒR[Ht≠1

]), htÍ. We terminate the algorithm when ÈÒR[Ht≠1

], htÍ = 0 which

means when the ht can no longer point to the downhill direction of risk functional R[H].

From the definition of the inner product (6.2) and the final form of the gradient of H

(6.8), we can express the criterion to be maximized for the new weak classifier ht as

≠ÈÒR[Ht≠1

], htÍ = 1
m

mÿ

i=1

h(xi)yi
ˆL(zi)

ˆzi

----
z

i

=≠y
i

H
t≠1(x

i

)

. (6.10)

We can treat the derivative as a weight of a sample xi at iteration t, that is, after Ht≠1

is

fixed

wi(t) = 1
Zt

ˆL(zi)
ˆzi

----
z

i

=≠y
i

H
t≠1(x

i

)

, (6.11)

where Zt is a normalization constant making wi(t) a distribution

Zt =
mÿ

i=1

ˆL(zi)
ˆzi

----
z

i

=≠y
i

H
t≠1(x

i

)

. (6.12)

Plugging the weights into the inner product, we obtain the criterion to be maximized as

≠ÈÒR[Ht≠1

], htÍ = Zt

m

mÿ

i=1

yiwi(t)ht(xi) = Zt

m
“t, (6.13)

where “t œ [≠1, 1] is often called the edge of a classifier and is related to the weighted error

Á = 1≠“
2

. All variables except ht are fixed at the start of iteration t, so as long as a new

classifier ht minimizes the weighted error of the classifier, and thus maximizes the weighted

edge on the training set, it also maximizes the inner product of itself with ≠ÒR[Ht≠1

]. That

means it is the classifier close to the gradient direction of current risk function.

For the exponential loss function L(zi) = exp(zi), we recover the weights as presented in

Algorithm 5

≠ÈÒR[Ht≠1

], htÍ = 1
m

mÿ

i=1

yi exp(≠yiHt≠1

(xi))h(xi) = Zt

m

mÿ

i=1

yiwi(t)h(xi), (6.14)
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where

wi(t) = 1
Zt

exp(≠yiHt≠1

(xi)). (6.15)

We can observe that the weights for the next iteration, if we ignore the normalization con-

stants, are

wi(t + 1) = exp(≠yiHt(xi)) = exp(≠yiHt≠1

(xi) ≠ yi–tht(xi)) = wi(t) exp(≠yi–tht(xi)),

(6.16)

which is equivalent to the iterative update used in the AdaBoost algorithm if we observe that

yiht(xi) is either 1 or -1, depending on whether xi is classified correctly by ht. We see that

gradient descent defines how AdaBoost sets its sample weight distribution and how it sets

the optimization goal for training the new weak classifier. Since the exponential loss function

used in AdaBoost is convex, gradient descent will not be trapped in a local minimum.

Once the weak classifier ht for iteration t is trained, we can interpret the empirical risk

for the exponential loss as just a real-valued function of a single real variable – and find the

optimal value of – by tools from real analysis. After dropping the multiplicative constant Z
t

m

for convenience, we can define R(–t) : R æ R as

R(–t) =
mÿ

i=1

exp(≠yiHt≠1

(xi) ≠ yi–tht(xi)) =
mÿ

i=1

wi(t) exp(≠yiht(xi)–t), (6.17)

where everything except –t is constant by the time we set to choose –t. We then partition

the sum into terms relating to misclassified and correctly classified samples, obtaining

R(–t) = e≠–
t

ÿ

i:h
t

(x
i

)=y
i

wi(t) + e–
t

ÿ

i:h
t

(x
i

) ”=y
i

wi(t)

= e≠–
t

Q

a
mÿ

i=1

wi(t) ≠
ÿ

i:h
t

(x
i

) ”=y
i

wi(t)

R

b + e–
t

ÿ

i:h
t

(x
i

) ”=y
i

wi(t)

= e≠–
t + (e–

t ≠ e≠–
t)

ÿ

i:h
t

(x
i

) ”=y
i

wi(t)

= e≠–
t + (e–

t ≠ e≠–
t)

mÿ

i=1

I(ht(xi) ”= yi)wi(t)

= e≠–
t + (e–

t ≠ e≠–
t)Át. (6.18)
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To find the minimum, we take derivative

ˆR(–t)
ˆ–t

= ≠e≠–
t + (e–

t + e≠–
t)Át. (6.19)

Setting the derivative equal to zero we obtain

0 = ≠1 + (e2–
t + 1)Át. (6.20)

which leads to
1 ≠ Át

Át
= e2–

t (6.21)

from where we obtain

–t = 1
2 ln 1 ≠ Át

Át
. (6.22)

This is exactly how AdaBoost defines weight of each classifier weight in Algorithm 5. If

classifier ht makes less errors on weighted samples then it will get larger weight –t in the

ensemble.

6.1.2 Boosting as a Descent Method in the Space of Real Vectors

For a specific training set of m samples, the space of possible weak classifiers H is finite as long

as the weak learning algorithm is deterministic. There are 2m possible binary classification

outcomes from a classifier on the training set, and thus we have only 2m e�ectively distinct

weak classifiers. Furthermore, if we use decision stumps as weak classifiers, for a particular

dataset with F features and m samples, the number of possible stumps with di�erent outcomes

is limited by the number of features F , times the number of possible e�ectively di�erent splits

m + 1, times two possible orientations of a split. That is, the limit on the number of di�erent

decision stumps is 2F ◊ (m + 1), which is typically much less than 2m.

With that in mind, it is often conceptually more convenient to work in the space R2

m than

in the space of functions h, where the 2m-dimensional vector „ represents the weight of each

of the possible weak classifiers in the ensemble. The process of building the ensemble starts

with „ = 0, that is with no weak classifier selected, and then moves one individual component
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„i1 away from zero when the first weak learner returns a particular weak classifier, by adding

the weight –
1

to entry „i1 of the vector „, where i
1

is the classifier that was selected by the

weak learning algorithm. In general, in round t of boosting, component „i
t

is incremented,

by adding the weak classifier weight –t. After t weak classifiers are added to the ensemble,

only up to t components of „ are nonzero. It may be less that t if a specific weak classifier

is selected more than once by the weak learning algorithm, although typically this is unlikely

to happen because the weights of the samples are constantly evolving.

From this perspective, boosting is a process of minimizing a risk function R : R2

m æ R

defined as

R(„) = 1
m

mÿ

i=1

L(≠yi

2

mÿ

j=1

„jhij), (6.23)

where hij = hj(xi), the label for sample xi predicted by the weak classifier hj corresponding

to the dimension „j , can be treated as a real constant. That constant is unknown to us

until the classifier hj is returned by the weak learning algorithm, but before that happens the

coe�cient „j remains 0, so the value of the constant is not needed.

The partial derivative of R with respect to „k evaluated at „ is then

ˆR
ˆ„k

(„) = 1
m

mÿ

i=1

≠yihikLÕ(≠yi

2

mÿ

j=1

„jhij), (6.24)

where the term LÕ(≠yi

2

mq
j=1

„jhij) can be seen as a weight of the sample i corresponding to

current ensemble „. As already noted, most of the terms „j in the sum are zero and need not

be considered, so evaluating the weights is e�cient. Then, finding the axis „k with the most

negative ˆR
ˆ„

k

corresponds to minimizing the weighted error of the weak classifier.

In summary, we can view one step in boosting as a coordinate-wise descent, that is

„t+1 = „t ≠ stÒ
max

R(„t), (6.25)

where st is the step size, and „t and „t+1 are non-negative vectors of weak classifier weights.

We have introduced Ò
max

R to represent the risk gradient vector ÒR modified to include only

the most negative ˆR
ˆ„

k

(„), with all other vector entries set to 0.
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Plugging in the exponential loss L(x) = ex with LÕ(x) = ex into eq. (6.25) leads to

classical AdaBoost. Other choices have also been explored, for example for logistic loss L(x) =

log(1 + ex) we obtain LÕ(x) = ex

1+ex

, which leads to di�erent formula for weights of samples in

boosting, and may result in a di�erent choice of weak classifiers.

6.1.3 Proximal Gradient Descent

We have seen that AdaBoost, as well boosting with other loss functions such at the logistic

loss, can be seen as a descent method for optimizing a convex risk function. Here, we review

techniques from non-smooth function optimization [3, 41] that will help us add graph-based

regularization into boosting. First, it is helpful to cast gradient descent as a special case of

majorization-minimization (MM) scheme [55].

If we cannot directly find the minimum of function f(„), the MM approach prescribes

an iterative method that goes through a series of solutions „1, „2, ..., „t, ... until convergence.

For convex functions, convergence to within a small error away from the global minimum is

guaranteed. The MM approach constructs the series „1, „2, ..., „t, ... through an introduction

of a family of majorizing functions µ„1(„), µ„2(„), ..., µ„t(„), ..., where the majorizer µ„t(„) is

defined based on the information about the function f we have at the time t when we are at

solution „t. These majorizers have the following properties:

’„ µ„t(„) Ø f(„), (6.26)

µ„t(„t) = f(„t). (6.27)

In iteration t we are at position „t, and the majorizing function µ„t is greater than or equal

to f at any „, and is equal to f at the current position, „t. The MM approach is helpful if we

can find a majorizing function that can easily be optimized. For example, if µ is a quadratic

function, we can find its minimum e�ciently. Then, we can easily obtain next point in the

series,

„t+1 = arg min
„

µ„t(„), (6.28)
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and proceed towards the minimum of f . That descent happens because

f(„t+1) Æ µ„t(„t+1) Æ µ„t(„t) = f(„t). (6.29)

As long as we are not already at the minimum of either f , and the shape of µ„t meets certain

weak conditions, the second weak inequality will turn to strong inequality. In defining the

function µ„t(„) at iteration t, we can use all the information about the function f we have

discovered up to that point. This may include values of f and gradients of f at all visited

solutions up to and including „t.

For a convex function f with Lipschitz continuous gradient with constant L, that is, for

f that meets the following criterion

’„, Â ||Òf(„) ≠ Òf(Â)|| Æ L||„ ≠ Â||, (6.30)

it is well know that the following descent lemma is true for any „, „t

f(„) Æ f(„t)+ < Òf(„t), „ ≠ „t > +L

2 ||„ ≠ „t||2

= f(„t) + L

2 ||„ ≠ [„t ≠ Òf(„t)/L]||2 ≠ 1
2L

||Òf(„t)||2. (6.31)

Thus, we can construct the following quadratic majorizing function

µ„t(„) = f(„t) + L

2 ||„ ≠ [„t ≠ Òf(„t)/L]||2 ≠ 1
2L

||Òf(„t)||2. (6.32)

From the descent lemma we will get that f(„) Æ µ„t(„), and it can be easily seen that

f(„t) = µ„t(„t), so µ„t(„) is a majorizer of f at „t. Only the second term depends on „, so

we can treat the other terms as a constant C„t depending on „t but not „, and thus playing

no role in the minimization of µ„t(„)

µ„t(„) = C„t + L

2 ||„ ≠ [„t ≠ Òf(„t)/L]||2. (6.33)

We can see that µ„t(„) is a quadratic function of „ with minimal value when
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„ = „t ≠ Òf(„t)/L. That is, the MM approach leads to a step „t+1 = „t ≠ Òf(„t)/L, a

single step of classical gradient descent.

The benefit of viewing gradient descent as an example of the MM approach becomes clear

once we move to minimizing a composite function f(„) + �(„), where both f and � are

convex, but � is not di�erentiable, so we cannot take its gradient to perform regular gradient

descent.

If µ„t(„) majorizes f , then µ„t(„) + �(„) majorizes f(„) + �(„), and we have

µ�

„t

(„) = µ„t(„) + �(„) = C„t + L

2 ||„ ≠ [„t ≠ Òf(„t)/L]||2 + �(„). (6.34)

The step from „t to „t+1 in the MM process becomes then

„t+1 = arg min
„

µ�

„t

(„) = arg min
„

3
L

2 ||„ ≠ [„t ≠ Òf(„t)/L]||2 + �(„)
4

, (6.35)

and by virtue of the properties of the MM scheme, we obtain convergence to the global

minimum of f(„) + �(„), as long as both f and � are convex.

It is convenient to define the proximal operator that takes a vector Â as input, returns a

vector „ from the same vector space, and is parameterized by a real-valued parameter L and

a parameter function � defined over the same vector space

proxL,�(Â) = arg min
„

3
L

2 ||„ ≠ Â||2 + �(Â)
4

. (6.36)

This definition leads to the following concise formulation of the iterative minimization through

proximal gradient descent

Ât+1 = „t ≠ 1
L

Òf(„t), (6.37)

„t+1 = proxL,�(Ât+1). (6.38)

The step from „t to „t+1 involves a gradient step followed by a proximal step. Most impor-

tantly, as long as the proximal operator can be solved e�ciently, the minimization process

does not involve the gradient of �, which means � does not need to be di�erentiable.
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In practice, the constant L may be hard to estimate, and more importantly may be large,

since it has to account for the shape of the function f in its whole domain. Instead of using
1

L as the gradient step, we can use an adjustable real-valued step size st

Ât+1 = „t ≠ stÒf(„t), (6.39)

„t+1 = prox 1
2s

t

,�(Ât+1). (6.40)

Step size st can be determined using line search and will correspond better to the curvature

of the objective function in the vicinity of the current solution „t than the generic step size

of 1

L , and thus will result in faster convergence.

6.2 Proposed Method for Submodular Graph Regularization

in Boosting

Classical boosting is an iterative method for minimizing the convex empirical risk R(„) with-

out any constraint or regularization. To incorporate biological knowledge in a form of a graph

linking features, we may want to add additional terms in the objective function optimized

during model training. Such terms will be derived from the network of feature relations and

will be added to boosting risk function and optimized together with sample error. Thus, we

change the problem into minimizing R(„) + �(„) where � represents a penalty for the struc-

ture of the model, and may be based on graph G. One option would be to use a submodular

set function over the support of „. However, that would make the problem not convex and

not tractable.

To circumvent that problem, we could follow the approach we presented for linear SVMs -

using the convex, piece-wise linear Lovasz extension of a submodular set function, for example

a graph cut function. In addition, we could add a LASSO penalty, since originally boosting

does not have any terms that would keep the number of selected features from growing as the

size of the ensemble grows. The resulting objective function to be minimized would be

R(„) + �L
G(„) + �L

L(„), (6.41)
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where �L
G represents the Lovasz extension of the graph cut submodular function as defined

in eq. (5.12), and �L
L is the LASSO penalty, that is, the Lovasz extension of the modular

cardinality function (see eq. 5.11) . Both of those regularizing functions are convex, but

non-di�erentiable. On the other hand R is convex and di�erentiable. Thus, it seems natural

to apply the techniques of proximal optimization described above in Section 6.1.3 to find the

global minimum of the regularized objective function.

There are several issues that need to by solved before we can move forward with that

approach. First, the regularization terms should be defined in terms of the F -dimensional

vector of feature importance scores —, not in terms of a much larger space of possible weak

classifier weights „. The graph G has F vertices corresponding to F features, not to all weak

classifiers. Also, with the LASSO penalty, we want to limit the number of used features, not

the number of weak classifiers, which is already limited by the number of boosting rounds.

This problem can be dealt with by observing that each weak classifier is sparse, and uses

a limited number of features, in the case of decision stumps just one feature. We can define a

mapping matrix � with each column corresponding to a possible weak classifier, and each row

corresponding to one feature. For decision stumps, each column would have only a single 1, in

the row corresponding to the feature being used by the stump. The rest of the column would

be 0. Then, we can obtain feature importances at time t from the weights of weak classifiers

at time t by a simple linear transformation —t = �„t. The transformation will group together

weak classifiers that use a particular feature, add their weights together, and use that as the

importance score for the feature.

The matrix � is fully specified by the choice of weak learner and the size of the training set,

but individual columns become known only after the corresponding weak classifier is trained.

That is, column i becomes known when classifier weight „i becomes non-zero. Fortunately,

only at that time the content of the column a�ects the vector —, and needs to be known.

With this approach, the minimization problem becomes

R(„) + �L
G(�„) + �L

L(�„). (6.42)

Since the transformation we introduced is linear, the objective function is still convex. In
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practice, we can treat the new problem as a convex problem with linear constraints

minimize R(„) + �L
G(—) + �L

L(—) (6.43)

subject to — = �„. (6.44)

Second problem with applying the proximal technique is that the exponential loss func-

tion used in AdaBoost does not have Lipschitz continuous gradient. Exponential function is

arbitrarily steep if we get far away from zero. However, we can switch to the logistic loss

L(x) = log(1 + ex) which has Lipschitz continuous gradient. Logistic loss has previously been

used in boosting with good results.

Third problem with applying techniques from proximal optimization to regularized boost-

ing is related to the fact that boosting is a coordinate-wise descent, not gradient descent. That

is, instead of the direction of ≠ÒR, the step is in the direction of ≠Ò
max

R. That is, boosting

moves along only one axis, the one with the steepest decline in the value of the objective

function. Even if a function f has Lipschitz continuous gradient Òf with some constant L

(see eq. 6.30), we may have a situation when

’K ÷„, Â : ||Ò
max

f(„) ≠ Ò
max

f(Â)|| > K||„ ≠ Â||. (6.45)

One example is a two-dimensional function f(x
1

, x
2

) = x2

1

+x2

2

, which has Lipschitz continuous

gradient with L = 2. For „ = (K, K ≠ 1) and Â = (K ≠ 1, K) we have ||„ ≠ Â|| =
Ô

2,

||Òf(„) ≠ Òf(Â)|| = 2
Ô

2, but ||Ò
max

f(„) ≠ Ò
max

f(Â)|| = 2K
Ô

2. That is, a small change

to the input „, from (K, K ≠ 1) to (K ≠ 1, K), can result in arbitrarily large change to

Ò
max

f(„). In consequence, the descent lemma (eq. 6.31) does not hold, and the function

µ�

„t

(„) constructed in the way described above in Section 6.1.3 may not be a proper majorizer

of the objective function, which means convergence to the minimum is not guaranteed.

There are two reasons why Ò
max

R is used in boosting instead of ÒR. First, boosting

was envisioned as an iterative ensemble where the classifiers are added one by one, and the

weights of the previously added classifiers stay untouched. There is no fundamental reason

preventing us from changing the weights of these weak classifiers by evaluating the partial
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derivatives corresponding to them. To this end, we can define Òt+1

as a vector

Òt+1

R =
5

ˆR
ˆ„

1

,
ˆR
ˆ„

2

, ..,
ˆR
ˆ„t

,
ˆR

ˆ„t+1

, 0, 0, ...

6
, (6.46)

and use it instead of Ò
max

in each boosting iteration. In this way, in step t, we will add one

new weak classifier, corresponding to dimension „t+1

, and we will also adjust weights for the

previously selected weak classifiers. Note that for simplicity, in defining Òt+1

we assumed,

without loss of generality, that the ordering of classifiers in the space of all weak classifiers

is such that classifier number t + 1 is the one that is being returned by the weak learner and

added to the ensemble when we move from solution „t to solution „t+1. The full ordering is

unknown to us and is dependent on the algorithm and training set we use, and is revealed to

us one weak classifier per one round of boosting.

The other reason for not using ÒR in boosting is more fundamental. Going back to

the definition of ˆR
ˆ„

j

(see eq. 6.24), we see that to calculate it, we need to evaluate the

term LÕ(≠yi

2

mq
j=1

„jhij), which depends on knowing the training set predictions hij of the weak

classifier corresponding to axis „j . We know these only for the weak classifiers that are already

in the ensemble. In a sense, only those classifiers are real, they are a result of running the

weak learning algorith, for example a decision stump. All other weak classifiers from our

chosen weak classifier space H are potentially available, but we don’t know what they are yet.

Thus, while it is possible to calculate Òt+1

R instead of Ò
max

R, calculating ÒR is impractical,

since we would have to train and evaluate all possible weak classifiers that can result from

our choice of the weak learner, for example all possible decision stumps.

One thing that is realistic to assume, though, is that we can obtain hij for an additional

small set of weak classifiers in each round of boosting. Thus, in place of Òt+1

R we can define

ÒT R, where T is a set of weak classifiers for which we either already know the predictions hij

from previous boosting rounds, or we are willing to spend some computational time to obtain

the predictions. In the simplest case of regular boosting, in each round we train just one new

weak classifier, and then T contains only the first t + 1 weak classifiers, and ÒT R reduces to

Òt+1

R. But we have the possibility to go as much beyond that as computationally feasible. All

that remains to be shown is that we will be able to come up with a majorization-minimization
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scheme that does not require evaluating full gradient ÒR to guarantee convergence to global

minimum.

Here, we show that by replacing the majorizing function µ�

„t

(„) (eq. 6.34) with a di�erent

majorizer, proximal gradient descent using ÒT R is equivalent to proximal gradient descent

using ÒR. Thus, since the minimization scheme is valid for ÒR, it will be valid for ÒT R.

Specifically, let us define a new majorizer

·�

„t

(„) = µ�+ŒT
„t

(„) = µ�

„t

(„) + ŒT („), (6.47)

where

ŒT („) =

Y
__]

__[

Œ, if ÷j /œ T : „j > 0

0, otherwise.

(6.48)

As long as non-zero entries in „ correspond to classifiers that we already trained, that is,

those from the set T , the value of ŒT („) is null. If we have a non-zero entry anywhere else,

ŒT („t) is infinite. We can see that µ�

„t

(„) Æ ·�

„t

(„), with equality for „ = „t. Thus, since

µ�

„t

(„) is a majorizer of R(„) + �(„), so is ·�

„t

(„) (see definition of a majorizing function in

eq. 6.26). We thus obtain a proper majorization-minimization scheme that will first make a

gradient step, and then will next make a proximal step with the updated parameter function,

� + ŒT instead of just �.

The benefit of introducing a new majorizer is that the minimum of ·�

„t

is limited to vectors

with zeros everywhere except possibly the entries listed in the set T . For every other vector,

·�

„t

= Œ, so they cannot be the minimum. As a consequence, even if we perform the gradient

step using full gradient ÒR, any movement in the direction outside of the subspace spanned

by the axes from T will be canceled by the proximal step. Thus, performing the gradient

step using ÒT R instead of ÒR will not impact the outcome of the majorization-minimization

procedure involving the ·�

„t

majorizer.



6.2 Proposed Method for Submodular Graph Regularization in Boosting 81

The final procedure for iterative minimization of R(„) + �(„) is then

Ât+1 = „t ≠ stÒT R(„t), (6.49)

„t+1 = prox 1
2s

t

,�+ŒT
(Ât+1), (6.50)

where st is obtained using line search. The proximal step in round t corresponds to the

following constrained quadratic problem

minimize 1
2st

||„ ≠ [„t ≠ stÒT R(„t)]||2 + �(—) (6.51)

subject to — = �„, (6.52)

„j = 0 ’j /œ T . (6.53)

In practice, we can drop the last constraint involving „j and perform optimization over a

shortened vector „ that only has the entries from T , since all other entries are constrained

to stay at 0. In order to do that, we will have to add additional constraints on —, to keep at

0 all variables —j that correspond to features which were not selected by any weak classifier

from T .

The final optimization solution for iteration t of graph-regularized boosting procedure

ProxGraphLogisticBoost is:

Step t.1: identify which direction in the optimization space is the t+1-th direction, by using

the weak learner to train a weak classifier, which corresponds to selecting the weak classifier

k with most negative value of

ˆR
ˆ„k

(„t) = 1
m

mÿ

i=1

≠yihikLÕ(≠yi

ÿ

jœT
„t

jhij), (6.54)

and treating that weak classifier as t + 1-th classifier in the order of all weak classifiers. Add

the classifier to set T . Also, expand the set T to any additional classifiers if desired, and

train them. In our experiments in this dissertation, we did not explore adding any additional

classifiers, so we train only one weak classifier in Step t.1.

Step t.2: perform gradient step limited to all previously trained weak classifiers, including
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those just trained in Step t.1 by the weak learning algorithm

Ât+1 = „t ≠ stÒT R(„t), (6.55)

where

ÒT R =
C

ˆR
ˆ„j

D

, j œ T (6.56)

ˆR
ˆ„k

(„) = 1
m

mÿ

i=1

≠yihikLÕ(≠yi

ÿ

jœT
„jhij), (6.57)

LÕ(x) = ex

1 + ex
, (6.58)

Step t.3: perform a quadratic optimization step to obtain new vector „t+1 representing the

new classifier ensemble

„t+1 = arg min
„

1
2st

||„ ≠ Ât+1||2 + c
1

Fÿ

j=1

|—j | + c
2

Fÿ

j=1

Fÿ

k=1

Gjk |—j ≠ —k| (6.59)

subject to — = �„, (6.60)

—j = 0, if —j not used by any classifier from T , (6.61)

where T is a set of all weak classifiers trained in previous boosting rounds and in Step t.1 of

the current round t. c
1

and c
2

are user-defined constants that indicate the desired strength

of regularization.

Within a single iteration t, Steps t.2 and t.3 may be repeated during the line search that

selects the value of step size st that leads to lower value of the objective function.

6.3 Results and Discussion

We compared our graph regularized boosting method ProxGraphLogisticBoost results with

classical AdaBoost as well as LogisticBoost. LogisticBoost is a boosting method that uses

the same logistic loss function and line search as our proposed method, but does not involve

the graph cut nor LASSO regularization achieved through proximal step. Because our Prox-

GraphLogisticBoost is based on logistic loss function of logistic boost, LogisticBoost can serve
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Table 6.1: Boosting results for Phospho200 Dataset

Method AUROC Feature count
ProxGraphLogisticBoost 0.824 40

LogisticBoost 0.766 33
AdaBoost 0.547 56

Table 6.2: Boosting results for PhosphoFull Dataset

Method AUROC Feature count
ProxGraphLogisticBoost 0.676 2

AdaBoost 0.632 69
LogisticBoost 0.535 2

as a baseline method to test the e�ect of graph and lasso regularization in Proximal Graph

LogisticBoost.

For the Phospho200, we listed the area under ROC curve and the number of feature

selected for each method in the table 6.1. Graph regularized LogisticBoost method has much

higher AUROC value than LogisticBoost and AdaBoost. It also selects less features than

AdaBoost.

PhosphFull dataset results are listed in table 6.2. Graph regularized LogisticBoost obtains

much better AUROC value than AdaBoost and LogisticBoost. Also, both graph regularized

LogisticBoost and LogisticBoost drastically reduce the feature size of AdaBoost method.

Phosph200 mutation dataset results are listed in table 6.3. Graph regularized Logistic-

Boost obtains higher AUROC value than LogisticBoost, but not as high as AdaBoost. More-

over, both Graph regularized LogisticBoost and LogisticBoost reduced AdaBoost’s feature

size to half.

Graph regularized ProxGraphLogisticBoost in general generates better results than Logis-

ticBoost and AdaBoost. We also observe that Logistic loss function based Boosting methods

tends to choose fewer number of features than classical AdaBoost, even though all three

Table 6.3: Boosting results for Phospho200 Mutation Dataset

Method AUROC Feature count
AdaBoost 0.646 65

ProxGraphLogisticBoost 0.577 32
LogisticBoost 0.516 31
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methods were executed for the same number of rounds of boosting, 100, selecting one weak

classifier in each round.



Chapter 7

Conclusions

The goal of our research is to invent algorithms to 1) integrate feature relations into machine

learning methods; 2) build more e�cient classifiers to separate samples of di�erent classes;

3) generate sparse models that include fewer number of features; 4) discover the underlying

di�erences between di�erent classes.

To realize these goals, in this dissertation we proposed three conceptually distinct graph-

based regularization machine learning methods: Graph Connectivity Constrained AdaBoost,

Graph-Regularized Linear SVM and Graph-Regularized LogisticBoost. The first method is

based on classical AdaBoost, and adds a hard constraint to it - the classifier has to represent

a connected set of features. The other two methods represent a di�erent approach. Instead of

a hard constraint, they introduce a penalty that e�ectively promotes classifiers to be based on

connected sets of features, but they do not strictly enforce that condition. One of the method

is based on SVMs and the other on boosting, the two most prominent examples of state-of-the-

art convex classification methods. Both of these penalty-based graph regularization methods

involve convex extensions of submodular set functions. We derived them using one example

of such a function, the graph cut, but they can work equally well with other submodular

graph functions. By defining the third of our methods, the graph-regularized boosting, we

have also provided a more general result. We have demonstrated how to extend boosting

from coordinate-wise descent to more general proximal descent that can include non-smooth

penalties.

We compared our methods with state-of-the-art methods on three simulated biological
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datasets: Phospho200, PhosphoFull, and Phospho200 Mutation. These dataset were con-

structed to cover scenarios with small and large number of features, and a simple and complex

pattern of di�erences between classes. The new proposed methods almost always perform

better than corresponding baseline methods that do not include graph-based regularization,

obtaining higher predicting accuracy. These results show that the inclusion of graph-based

regularization has met the goals we set out at the onset of the dissertation research.
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