12,171 research outputs found

    Trust Management Model for Cloud Computing Environment

    Get PDF
    Software as a service or (SaaS) is a new software development and deployment paradigm over the cloud and offers Information Technology services dynamically as "on-demand" basis over the internet. Trust is one of the fundamental security concepts on storing and delivering such services. In general, trust factors are integrated into such existent security frameworks in order to add a security level to entities collaborations through the trust relationship. However, deploying trust factor in the secured cloud environment are more complex engineering task due to the existence of heterogeneous types of service providers and consumers. In this paper, a formal trust management model has been introduced to manage the trust and its properties for SaaS in cloud computing environment. The model is capable to represent the direct trust, recommended trust, reputation etc. formally. For the analysis of the trust properties in the cloud environment, the proposed approach estimates the trust value and uncertainty of each peer by computing decay function, number of positive interactions, reputation factor and satisfaction level for the collected information.Comment: 5 Pages, 2 Figures, Conferenc

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    Authentication and authorisation in entrusted unions

    Get PDF
    This paper reports on the status of a project whose aim is to implement and demonstrate in a real-life environment an integrated eAuthentication and eAuthorisation framework to enable trusted collaborations and delivery of services across different organisational/governmental jurisdictions. This aim will be achieved by designing a framework with assurance of claims, trust indicators, policy enforcement mechanisms and processing under encryption to address the security and confidentiality requirements of large distributed infrastructures. The framework supports collaborative secure distributed storage, secure data processing and management in both the cloud and offline scenarios and is intended to be deployed and tested in two pilot studies in two different domains, viz, Bio-security incident management and Ambient Assisted Living (eHealth). Interim results in terms of security requirements, privacy preserving authentication, and authorisation are reported

    Comparative Analysis of Privacy Preservation Mechanism: Assessing Trustworthy Cloud Services with a Hybrid Framework and Swarm Intelligence

    Get PDF
    Cloud computing has emerged as a prominent field in modern computational technology, offering diverse services and resources. However, it has also raised pressing concerns regarding data privacy and the trustworthiness of cloud service providers. Previous works have grappled with these challenges, but many have fallen short in providing comprehensive solutions. In this context, this research proposes a novel framework designed to address the issues of maintaining data privacy and fostering trust in cloud computing services. The primary objective of this work is to develop a robust and integrated solution that safeguards sensitive data and enhances trust in cloud service providers. The proposed architecture encompasses a series of key components, including data collection and preprocessing with k-anonymity, trust generation using the Firefly Algorithm, Ant Colony Optimization for task scheduling and resource allocation, hybrid framework integration, and privacy-preserving computation. The scientific contribution of this work lies in the integration of multiple optimization techniques, such as the Firefly Algorithm and Ant Colony Optimization, to select reliable cloud service providers while considering trust factors and task/resource allocation. Furthermore, the proposed framework ensures data privacy through k-anonymity compliance, dynamic resource allocation, and privacy-preserving computation techniques such as differential privacy and homomorphic encryption. The outcomes of this research provide a comprehensive solution to the complex challenges of data privacy and trust in cloud computing services. By combining these techniques into a hybrid framework, this work contributes to the advancement of secure and effective cloud-based operations, offering a substantial step forward in addressing the critical issues faced by organizations and individuals in an increasingly interconnected digital landscape

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    Every Cloud Has a Push Data Lining: Incorporating Cloud Services in a Context-Aware Application

    Get PDF
    We investigated context-awareness by utilising multiple sources of context in a mobile device setting. In our experiment we developed a system consisting of a mobile client, running on the Android platform, integrated with a cloud-based service. These components were integrated using pushmessaging technology.One of the key featureswas the automatic adaptation of smartphones in accordance with implicit user needs. The novelty of our approach consists in the use of multiple sources of context input to the system, which included the use of calendar data and web based user configuration tool, as well as that of an external, cloud-based, configuration file storing user interface preferences which, pushed at log-on time irrespective of access device, frees the user from having to manually configure its interface.The systemwas evaluated via two rounds of user evaluations (n = 50 users), the feedback of which was generally positive and demonstrated the viability of using cloud-based services to provide an enhanced context-aware user experience

    Cyber security investigation for Raspberry Pi devices

    Get PDF
    Big Data on Cloud application is growing rapidly. When the cloud is attacked, the investigation relies on digital forensics evidence. This paper proposed the data collection via Raspberry Pi devices, in a healthcare situation. The significance of this work is that could be expanded into a digital device array that takes big data security issues into account. There are many potential impacts in health area. The field of Digital Forensics Science has been tagged as a reactive science by some who believe research and study in the field often arise as a result of the need to respond to event which brought about the needs for investigation; this work was carried as a proactive research that will add knowledge to the field of Digital Forensic Science. The Raspberry Pi is a cost-effective, pocket sized computer that has gained global recognition since its development in 2008; with the wide spread usage of the device for different computing purposes. Raspberry Pi can potentially be a cyber security device, which can relate with forensics investigation in the near future. This work has used a systematic approach to study the structure and operation of the device and has established security issues that the widespread usage of the device can pose, such as health or smart city. Furthermore, its evidential information applied in security will be useful in the event that the device becomes a subject of digital forensic investigation in the foreseeable future. In healthcare system, PII (personal identifiable information) is a very important issue. When Raspberry Pi plays a processor role, its security is vital; consequently, digital forensics investigation on the Raspberry Pies becomes necessary
    corecore