8,314 research outputs found

    Comparative and Evaluation of Explicit Rate Flow Control in ATM Networks

    Get PDF
    Current and feature application make use of different technologies as voice, data and video. Consequently network technologies needed to support them. This paper gives the technical overflow of different networking technologies such as the internet. ATM and different approaches to run input on top of an ATM network and access their potential to be used as an integrated services network. Novel high throughput reservation based switch architecture for ATM/WDM network [4] is presented. This scheme is connection free a highly flexible yielding a powerful solution for high speed broadband packet switching networks. Keywords: Fault Tolerance, Admission Control, ATM switches

    MKAS : A modular knockout ATM switch

    Get PDF
    Simple Knockout Switch [11 exhibits excellent traffic performance (cell loss, cell delay and maximum throughput etc.) under uniform as well as non-uniform traffic patterns (2-6). But being a single stage, its hardware complexity is directly proportional to the switch size N. This problem may bind its implementation for largescale requirements because of the technological and physical constraints of packaging (e. g. chip or board size). Here, we are proposing a two-stage Modular Knockout ATM Switch architecture, which is extendable to large-scale switch sizes without sacrificing any significant decrease in switch performance. The concept of Generalised Knockout Principle in conjunction with Simple Knockout Principle has been utilised to filter, route and resolve the output contention problems in distributed fashion. Using distributed address filtration and shared concentration techniques simplifies the switch functions and reduces the switch complexity to large extent in terms of filters, switching elements and input output interconnection wires

    A three-stage ATM switch with cell-level path allocation

    Get PDF
    A method is described for performing routing in three-stage asynchronous transfer mode (ATM) switches which feature multiple channels between the switch modules in adjacent stages. The method is suited to hardware implementation using parallelism to achieve a very short execution time. This allows cell-level routing to be performed, whereby routes are updated in each time slot. The algorithm allows a contention-free routing to be performed, so that buffering is not required in the intermediate stage. An algorithm with this property, which preserves the cell sequence, is referred to as a path allocation algorithm. A detailed description of the necessary hardware is presented. This hardware uses a novel circuit to count the number of cells requesting each output module, it allocates a path through the intermediate stage of the switch to each cell, and it generates a routing tag for each cell, indicating the path assigned to it. The method of routing tag assignment described employs a nonblocking copy network. The use of highly parallel hardware reduces the clock rate required of the circuitry, for a given-switch size. The performance of ATM switches using this path allocation algorithm has been evaluated by simulation, and is described

    A multidisciplinary approach to the development of low-cost high-performance lightwave networks

    Get PDF
    Our research focuses on high-speed distributed systems. We anticipate that our results will allow the fabrication of low-cost networks employing multi-gigabit-per-second data links for space and military applications. The recent development of high-speed low-cost photonic components and new generations of microprocessors creates an opportunity to develop advanced large-scale distributed information systems. These systems currently involve hundreds of thousands of nodes and are made up of components and communications links that may fail during operation. In order to realize these systems, research is needed into technologies that foster adaptability and scaleability. Self-organizing mechanisms are needed to integrate a working fabric of large-scale distributed systems. The challenge is to fuse theory, technology, and development methodologies to construct a cost-effective, efficient, large-scale system

    Redundancy Strategies for a High Splitting Optically Amplified Passive Optical Network

    Get PDF
    Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.High splitting, optically amplified, passive optical networks (SuperPONs) are investigated in terms of redundancy provision and protection mechanisms. Options for redundancy, including the important special case of dual homing, are detailed, and it is determined as to which of these options (duplication of the feeder and first distribution section, and N+1 protection of the optical amplifiers in the amplified splitter) would be required to be provided to all attached users to facilitate appropriate availability of the basic telephony service. The distributed amplified splitter dual homing solution is found to outperform the single amplified splitter solution in terms of its survivability. The protection mechanisms necessary to automatically switch to the redundant provision are discussed and it is seen that with the aid of suitable regular precautionary procedures protection switching can generally be provided rapidly (<50 ms). Finally, an availability, and cost versus availability, study confirms the aforementioned redundancy assessment for fiber-to-the-home (FTTH) implementations, but shows fiber-to-the-curb (FTTC) as needing additional redundancyPeer reviewe

    Multi-service management in a multi-provider environment

    No full text
    As the spread of digital networks makes access to data communications globally available, the interest of communication service providers is switching away from the provision of these bearer networks and towards the provision of the value added services that will operate over them. At the same time the liberalisation of telecommunication markets is precipitating a dramatic change in the profile of communication service providers. In this complex telecommunications markets the open management, not only of the networks, but of the services themselves will become increasingly important. The large number and diversity of roles of the market players makes the management of inter-organisational relationships fundamentally important to the management of services. The ITU's series of recommendations on the telecommunication management network (TMN) provides a basis for inter-domain management, however, this and other standards have so far concentrated on the management of individual network components and of networks operated by single organisations. This paper provides an initial example of how the management of multiple services in a complex multi-player market can be modelled using TMN techniques for implementation on existing management platforms. The paper begins by briefly outlining current work in this field before describing aspects of this multi-player multi-service management problem and how they can be modelled and implemented in a real system

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Real-life performance of protocol combinations for wireless sensor networks

    Get PDF
    Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases

    Supporting protocol-independent adaptive QoS in wireless sensor networks

    Get PDF
    Next-generation wireless sensor networks will be used for many diverse applications in time-varying network/environment conditions and on heterogeneous sensor nodes. Although Quality of Service (QoS) has been ignored for a long time in the research on wireless sensor networks, it becomes inevitably important when we want to deliver an adequate service with minimal efforts under challenging network conditions. Until now, there exist no general-purpose QoS architectures for wireless sensor networks and the main QoS efforts were done in terms of individual protocol optimizations. In this paper we present a novel layerless QoS architecture that supports protocol-independent QoS and that can adapt itself to time-varying application, network and node conditions. We have implemented this QoS architecture in TinyOS on TmoteSky sensor nodes and we have shown that the system is able to support protocol-independent QoS in a real life office environment
    corecore