1,452 research outputs found

    Contributions to topology discovery, self-healing and VNF placement in software-defined and virtualized networks

    Get PDF
    The evolution of information and communication technologies (e.g. cloud computing, the Internet of Things (IoT) and 5G, among others) has enabled a large market of applications and network services for a massive number of users connected to the Internet. Achieving high programmability while decreasing complexity and costs has become an essential aim of networking research due to the ever-increasing pressure generated by these applications and services. However, meeting these goals is an almost impossible task using traditional IP networks. Software-Defined Networking (SDN) is an emerging network architecture that could address the needs of service providers and network operators. This new technology consists in decoupling the control plane from the data plane, enabling the centralization of control functions on a concentrated or distributed platform. It also creates an abstraction between the network infrastructure and network applications, which allows for designing more flexible and programmable networks. Recent trends of increased user demands, the explosion of Internet traffic and diverse service requirements have further driven the interest in the potential capabilities of SDN to enable the introduction of new protocols and traffic management models. This doctoral research is focused on improving high-level policies and control strategies, which are becoming increasingly important given the limitations of current solutions for large-scale SDN environments. Specifically, the three largest challenges addressed in the development of this thesis are related to the processes of topology discovery, fault recovery and Virtual Network Function (VNF) placement in software-defined and virtualized networks. These challenges led to the design of a set of effective techniques, ranging from network protocols to optimal and heuristic algorithms, intended to solve existing problems and contribute to the deployment and adoption of such programmable networks.For the first challenge, this work presents a novel protocol that, unlike existing approaches, enables a distributed layer 2 discovery without the need for previous IP configurations or controller knowledge of the network. By using this mechanism, the SDN controller can discover the network view without incurring scalability issues, while taking advantage of the shortest control paths toward each switch. Moreover, this novel approach achieves noticeable improvement with respect to state-of-the-art techniques. To address the resilience concern of SDN, we propose a self-healing mechanism that recovers the control plane connectivity in SDN-managed environments without overburdening the controller performance. The main idea underlying this proposal is to enable real-time recovery of control paths in the face of failures without the intervention of a controller. Obtained results show that the proposed approach recovers the control topology efficiently in terms of time and message load over a wide range of generated networks. The third contribution made in this thesis combines topology knowledge with bin packing techniques in order to efficiently place the required VNF. An online heuristic algorithm with low-complexity was developed as a suitable solution for dynamic infrastructures. Extensive simulations, using network topologies representative of different scales, validate the good performance of the proposed approaches regarding the number of required instances and the delay among deployed functions. Additionally, the proposed heuristic algorithm improves the execution times by a fifth order of magnitude compared to the optimal formulation of this problem.Postprint (published version

    QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks

    Get PDF
    Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources. This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks. First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause buffering or stalling events during video streaming, thus, reducing the video quality. A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the- art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks

    Resilient scalable internet routing and embedding algorithms

    Get PDF

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections
    • …
    corecore