17 research outputs found

    Orthogonal NMF through Subspace Exploration

    Get PDF
    Abstract Orthogonal Nonnegative Matrix Factorization (ONMF) aims to approximate a nonnegative matrix as the product of two k-dimensional nonnegative factors, one of which has orthonormal columns. It yields potentially useful data representations as superposition of disjoint parts, while it has been shown to work well for clustering tasks where traditional methods underperform. Existing algorithms rely mostly on heuristics, which despite their good empirical performance, lack provable performance guarantees. We present a new ONMF algorithm with provable approximation guarantees. For any constant dimension k, we obtain an additive EPTAS without any assumptions on the input. Our algorithm relies on a novel approximation to the related Nonnegative Principal Component Analysis (NNPCA) problem; given an arbitrary data matrix, NNPCA seeks k nonnegative components that jointly capture most of the variance. Our NNPCA algorithm is of independent interest and generalizes previous work that could only obtain guarantees for a single component. We evaluate our algorithms on several real and synthetic datasets and show that their performance matches or outperforms the state of the art

    Optimal policies for Bayesian olfactory search in turbulent flows

    Full text link
    In many practical scenarios, a flying insect must search for the source of an emitted cue which is advected by the atmospheric wind. On the macroscopic scales of interest, turbulence tends to mix the cue into patches of relatively high concentration over a background of very low concentration, so that the insect will only detect the cue intermittently and cannot rely on chemotactic strategies which simply climb the concentration gradient. In this work, we cast this search problem in the language of a partially observable Markov decision process (POMDP) and use the Perseus algorithm to compute strategies that are near-optimal with respect to the arrival time. We test the computed strategies on a large two-dimensional grid, present the resulting trajectories and arrival time statistics, and compare these to the corresponding results for several heuristic strategies, including (space-aware) infotaxis, Thompson sampling, and QMDP. We find that the near-optimal policy found by our implementation of Perseus outperforms all heuristics we test by several measures. We use the near-optimal policy to study how the search difficulty depends on the starting location. We discuss additionally the choice of initial belief and the robustness of the policies to changes in the environment. Finally, we present a detailed and pedagogical discussion about the implementation of the Perseus algorithm, including the benefits -- and pitfalls -- of employing a reward shaping function.Comment: 35 pages, 19 figure

    Learning dialogue POMDP model components from expert dialogues

    Get PDF
    Un système de dialogue conversationnel doit aider les utilisateurs humains à atteindre leurs objectifs à travers des dialogues naturels et efficients. C'est une tache toutefois difficile car les langages naturels sont ambiguës et incertains, de plus le système de reconnaissance vocale (ASR) est bruité. À cela s'ajoute le fait que l'utilisateur humain peut changer son intention lors de l'interaction avec la machine. Dans ce contexte, l'application des processus décisionnels de Markov partiellement observables (POMDPs) au système de dialogue conversationnel nous a permis d'avoir un cadre formel pour représenter explicitement les incertitudes, et automatiser la politique d'optimisation. L'estimation des composantes du modelé d'un POMDP-dialogue constitue donc un défi important, car une telle estimation a un impact direct sur la politique d'optimisation du POMDP-dialogue. Cette thèse propose des méthodes d'apprentissage des composantes d'un POMDPdialogue basées sur des dialogues bruités et sans annotation. Pour cela, nous présentons des méthodes pour apprendre les intentions possibles des utilisateurs à partir des dialogues, en vue de les utiliser comme états du POMDP-dialogue, et l'apprendre un modèle du maximum de vraisemblance à partir des données, pour transition du POMDP. Car c'est crucial de réduire la taille d'état d'observation, nous proposons également deux modèles d'observation: le modelé mot-clé et le modelé intention. Dans les deux modèles, le nombre d'observations est réduit significativement tandis que le rendement reste élevé, particulièrement dans le modele d'observation intention. En plus de ces composantes du modèle, les POMDPs exigent également une fonction de récompense. Donc, nous proposons de nouveaux algorithmes pour l'apprentissage du modele de récompenses, un apprentissage qui est basé sur le renforcement inverse (IRL). En particulier, nous proposons POMDP-IRL-BT qui fonctionne sur les états de croyance disponibles dans les dialogues du corpus. L'algorithme apprend le modele de récompense par l'estimation du modele de transition de croyance, semblable aux modèles de transition des états dans un MDP (processus décisionnel de Markov). Finalement, nous appliquons les méthodes proposées à un domaine de la santé en vue d'apprendre un POMDP-dialogue et ce essentiellement à partir de dialogues réels, bruités, et sans annotations.Spoken dialogue systems should realize the user intentions and maintain a natural and efficient dialogue with users. This is however a difficult task as spoken language is naturally ambiguous and uncertain, and further the automatic speech recognition (ASR) output is noisy. In addition, the human user may change his intention during the interaction with the machine. To tackle this difficult task, the partially observable Markov decision process (POMDP) framework has been applied in dialogue systems as a formal framework to represent uncertainty explicitly while supporting automated policy solving. In this context, estimating the dialogue POMDP model components is a signifficant challenge as they have a direct impact on the optimized dialogue POMDP policy. This thesis proposes methods for learning dialogue POMDP model components using noisy and unannotated dialogues. Speciffically, we introduce techniques to learn the set of possible user intentions from dialogues, use them as the dialogue POMDP states, and learn a maximum likelihood POMDP transition model from data. Since it is crucial to reduce the observation state size, we then propose two observation models: the keyword model and the intention model. Using these two models, the number of observations is reduced signifficantly while the POMDP performance remains high particularly in the intention POMDP. In addition to these model components, POMDPs also require a reward function. So, we propose new algorithms for learning the POMDP reward model from dialogues based on inverse reinforcement learning (IRL). In particular, we propose the POMDP-IRL-BT algorithm (BT for belief transition) that works on the belief states available in the dialogues. This algorithm learns the reward model by estimating a belief transition model, similar to MDP (Markov decision process) transition models. Ultimately, we apply the proposed methods on a healthcare domain and learn a dialogue POMDP essentially from real unannotated and noisy dialogues

    Target Search Planning in Uncertain Environments

    Get PDF
    The autonomous robots are useful for lot of things, such as rescue in dangerous environments. In this thesis, we consider how autonomous robots, the Unmanned Aerial Vehicles (UAVs), make a plan to travel in an indoor uncertain environment. At the same time, the robots will observe and update the environment representations with their on-board sensors and plan the path for each robot in the robot group. They will avoid collisions and cooperate with others in the Complete Mission Process (CMP), which includes all operations of robots before the mission is completed (all targets are visited). The environment cannot be represented exactly because of the inaccurate representation model and the sensor noises. In order to complete the mission efficiently, single robot requires a method to plan a path for efficient travelling from a start point to a target point, plan an assignment for visiting all its targets one by one. For multiple robots in a robot group, we need to plan an allocation for allocating multiple targets to multiple robots in order to make sure that all robots can cooperate together. All these planning operations have to be done based on an inexact representation of the environment. This thesis focuses on the path/assignment/allocation planning problem in environments which are not completely known, based on a reduced/simplified —Partially Observable Markov Decision Process (POMDP) — framework. The former researches only consider the initial plan but neglect the later replans. Our approach considers the plan and the re-plans from the start to the completion of the mission. Our novel Monte Carlo based planning approaches will plan a path for one robot to move efficiently from one point to one target, plan an assignment for one robot to visit multiple targets by travelling the shortest route and plan an allocation for multiple robots to cooperate and visit multiple targets as soon as possible (the planning time plus the travelling time is minimized). Our approach is based on a Monte Carlo sampling strategy. In order to decrease its computational cost, two strategies are proposed. We then extend our approach to multiple robots and multiple targets scenario. Finally, the approaches are extended to multiple robots and multiple targets scenario. They are characterised and evaluated experimentally through simulation. When we compare it with similar methods from the literatures, our approach can provide the better solution

    Efficient feature reduction and classification methods

    Get PDF
    Durch die steigende Anzahl verfügbarer Daten in unterschiedlichsten Anwendungsgebieten nimmt der Aufwand vieler Data-Mining Applikationen signifikant zu. Speziell hochdimensionierte Daten (Daten die über viele verschiedene Attribute beschrieben werden) können ein großes Problem für viele Data-Mining Anwendungen darstellen. Neben höheren Laufzeiten können dadurch sowohl für überwachte (supervised), als auch nicht überwachte (unsupervised) Klassifikationsalgorithmen weitere Komplikationen entstehen (z.B. ungenaue Klassifikationsgenauigkeit, schlechte Clustering-Eigenschaften, …). Dies führt zu einem Bedarf an effektiven und effizienten Methoden zur Dimensionsreduzierung. Feature Selection (die Auswahl eines Subsets von Originalattributen) und Dimensionality Reduction (Transformation von Originalattribute in (Linear)-Kombinationen der Originalattribute) sind zwei wichtige Methoden um die Dimension von Daten zu reduzieren. Obwohl sich in den letzten Jahren vielen Studien mit diesen Methoden beschäftigt haben, gibt es immer noch viele offene Fragestellungen in diesem Forschungsgebiet. Darüber hinaus ergeben sich in vielen Anwendungsbereichen durch die immer weiter steigende Anzahl an verfügbaren und verwendeten Attributen und Features laufend neue Probleme. Das Ziel dieser Dissertation ist es, verschiedene Fragenstellungen in diesem Bereich genau zu analysieren und Verbesserungsmöglichkeiten zu entwickeln. Grundsätzlich, werden folgende Ansprüche an Methoden zur Feature Selection und Dimensionality Reduction gestellt: Die Methoden sollten effizient (bezüglich ihres Rechenaufwandes) sein und die resultierenden Feature-Sets sollten die Originaldaten möglichst kompakt repräsentieren können. Darüber hinaus ist es in vielen Anwendungsgebieten wichtig, die Interpretierbarkeit der Originaldaten beizubehalten. Letztendlich sollte der Prozess der Dimensionsreduzierung keinen negativen Effekt auf die Klassifikationsgenauigkeit haben - sondern idealerweise, diese noch verbessern. Offene Problemstellungen in diesem Bereich betreffen unter anderem den Zusammenhang zwischen Methoden zur Dimensionsreduzierung und der resultierenden Klassifikationsgenauigkeit, wobei sowohl eine möglichst kompakte Repräsentation der Daten, als auch eine hohe Klassifikationsgenauigkeit erzielt werden sollen. Wie bereits erwähnt, ergibt sich durch die große Anzahl an Daten auch ein erhöhter Rechenaufwand, weshalb schnelle und effektive Methoden zur Dimensionsreduzierung entwickelt werden müssen, bzw. existierende Methoden verbessert werden müssen. Darüber hinaus sollte natürlich auch der Rechenaufwand der verwendeten Klassifikationsmethoden möglichst gering sein. Des Weiteren ist die Interpretierbarkeit von Feature Sets zwar möglich, wenn Feature Selection Methoden für die Dimensionsreduzierung verwendet werden, im Fall von Dimensionality Reduction sind die resultierenden Feature Sets jedoch meist Linearkombinationen der Originalfeatures. Daher ist es schwierig zu überprüfen, wie viel Information einzelne Originalfeatures beitragen. Im Rahmen dieser Dissertation konnten wichtige Beiträge zu den oben genannten Problemstellungen präsentiert werden: Es wurden neue, effiziente Initialisierungsvarianten für die Dimensionality Reduction Methode Nonnegative Matrix Factorization (NMF) entwickelt, welche im Vergleich zu randomisierter Initialisierung und im Vergleich zu State-of-the-Art Initialisierungsmethoden zu einer schnelleren Reduktion des Approximationsfehlers führen. Diese Initialisierungsvarianten können darüber hinaus mit neu entwickelten und sehr effektiven Klassifikationsalgorithmen basierend auf NMF kombiniert werden. Um die Laufzeit von NMF weiter zu steigern wurden unterschiedliche Varianten von NMF Algorithmen auf Multi-Prozessor Systemen vorgestellt, welche sowohl Task- als auch Datenparallelismus unterstützen und zu einer erheblichen Reduktion der Laufzeit für NMF führen. Außerdem wurde eine effektive Verbesserung der Matlab Implementierung des ALS Algorithmus vorgestellt. Darüber hinaus wurde eine Technik aus dem Bereich des Information Retrieval -- Latent Semantic Indexing -- erfolgreich als Klassifikationsalgorithmus für Email Daten angewendet. Schließlich wurde eine ausführliche empirische Studie über den Zusammenhang verschiedener Feature Reduction Methoden (Feature Selection und Dimensionality Reduction) und der resultierenden Klassifikationsgenauigkeit unterschiedlicher Lernalgorithmen präsentiert. Der starke Einfluss unterschiedlicher Methoden zur Dimensionsreduzierung auf die resultierende Klassifikationsgenauigkeit unterstreicht dass noch weitere Untersuchungen notwendig sind um das komplexe Zusammenspiel von Dimensionsreduzierung und Klassifikation genau analysieren zu können.The sheer volume of data today and its expected growth over the next years are some of the key challenges in data mining and knowledge discovery applications. Besides the huge number of data samples that are collected and processed, the high dimensional nature of data arising in many applications causes the need to develop effective and efficient techniques that are able to deal with this massive amount of data. In addition to the significant increase in the demand of computational resources, those large datasets might also influence the quality of several data mining applications (especially if the number of features is very high compared to the number of samples). As the dimensionality of data increases, many types of data analysis and classification problems become significantly harder. This can lead to problems for both supervised and unsupervised learning. Dimensionality reduction and feature (subset) selection methods are two types of techniques for reducing the attribute space. While in feature selection a subset of the original attributes is extracted, dimensionality reduction in general produces linear combinations of the original attribute set. In both approaches, the goal is to select a low dimensional subset of the attribute space that covers most of the information of the original data. During the last years, feature selection and dimensionality reduction techniques have become a real prerequisite for data mining applications. There are several open questions in this research field, and due to the often increasing number of candidate features for various application areas (e.\,g., email filtering or drug classification/molecular modeling) new questions arise. In this thesis, we focus on some open research questions in this context, such as the relationship between feature reduction techniques and the resulting classification accuracy and the relationship between the variability captured in the linear combinations of dimensionality reduction techniques (e.\,g., PCA, SVD) and the accuracy of machine learning algorithms operating on them. Another important goal is to better understand new techniques for dimensionality reduction, such as nonnegative matrix factorization (NMF), which can be applied for finding parts-based, linear representations of nonnegative data. This ``sum-of-parts'' representation is especially useful if the interpretability of the original data should be retained. Moreover, performance aspects of feature reduction algorithms are investigated. As data grow, implementations of feature selection and dimensionality reduction techniques for high-performance parallel and distributed computing environments become more and more important. In this thesis, we focus on two types of open research questions: methodological advances without any specific application context, and application-driven advances for a specific application context. Summarizing, new methodological contributions are the following: The utilization of nonnegative matrix factorization in the context of classification methods is investigated. In particular, it is of interest how the improved interpretability of NMF factors due to the non-negativity constraints (which is of central importance in various problem settings) can be exploited. Motivated by this problem context two new fast initialization techniques for NMF based on feature selection are introduced. It is shown how approximation accuracy can be increased and/or how computational effort can be reduced compared to standard randomized seeding of the NMF and to state-of-the-art initialization strategies suggested earlier. For example, for a given number of iterations and a required approximation error a speedup of 3.6 compared to standard initialization, and a speedup of 3.4 compared to state-of-the-art initialization strategies could be achieved. Beyond that, novel classification methods based on the NMF are proposed and investigated. We can show that they are not only competitive in terms of classification accuracy with state-of-the-art classifiers, but also provide important advantages in terms of computational effort (especially for low-rank approximations). Moreover, parallelization and distributed execution of NMF is investigated. Several algorithmic variants for efficiently computing NMF on multi-core systems are studied and compared to each other. In particular, several approaches for exploiting task and/or data-parallelism in NMF are studied. We show that for some scenarios new algorithmic variants clearly outperform existing implementations. Last, but not least, a computationally very efficient adaptation of the implementation of the ALS algorithm in Matlab 2009a is investigated. This variant reduces the runtime significantly (in some settings by a factor of 8) and also provides several possibilities to be executed concurrently. In addition to purely methodological questions, we also address questions arising in the adaptation of feature selection and classification methods to two specific application problems: email classification and in silico screening for drug discovery. Different research challenges arise in the contexts of these different application areas, such as the dynamic nature of data for email classification problems, or the imbalance in the number of available samples of different classes for drug discovery problems. Application-driven advances of this thesis comprise the adaptation and application of latent semantic indexing (LSI) to the task of email filtering. Experimental results show that LSI achieves significantly better classification results than the widespread de-facto standard method for this special application context. In the context of drug discovery problems, several groups of well discriminating descriptors could be identified by utilizing the ``sum-of-parts`` representation of NMF. The number of important descriptors could be further increased when applying sparseness constraints on the NMF factors

    Decision uncertainty minimization and autonomous information gathering

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 272-283).Over the past several decades, technologies for remote sensing and exploration have become increasingly powerful but continue to face limitations in the areas of information gathering and analysis. These limitations affect technologies that use autonomous agents, which are devices that can make routine decisions independent of operator instructions. Bandwidth and other communications limitation require that autonomous differentiate between relevant and irrelevant information in a computationally efficient manner. This thesis presents a novel approach to this problem by framing it as an adaptive sensing problem. Adaptive sensing allows agents to modify their information collection strategies in response to the information gathered in real time. We developed and tested optimization algorithms that apply information guides to Monte Carlo planners. Information guides provide a mechanism by which the algorithms may blend online (realtime) and offline (previously simulated) planning in order to incorporate uncertainty into the decisionmaking process. This greatly reduces computational operations as well as decisional and communications overhead. We begin by introducing a 3-level hierarchy that visualizes adaptive sensing at synoptic (global), mesocale (intermediate) and microscale (close-up) levels (a spatial hierarchy). We then introduce new algorithms for decision uncertainty minimization (DUM) and representational uncertainty minimization (RUM). Finally, we demonstrate the utility of this approach to real-world sensing problems, including bathymetric mapping and disaster relief. We also examine its potential in space exploration tasks by describing its use in a hypothetical aerial exploration of Mars. Our ultimate goal is to facilitate future large-scale missions to extraterrestrial objects for the purposes of scientific advancement and human exploration.by Lawrence A. M. Bush.Ph. D
    corecore