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ABSTRACT

ABSTRACTIONS IN REASONING FOR LONG-TERM AUTONOMY

MAY 2019

KYLE HOLLINS WRAY

B.S., THE PENNSYLVANIA STATE UNIVERSITY

B.S., THE PENNSYLVANIA STATE UNIVERSITY

M.S., THE PENNSYLVANIA STATE UNIVERSITY

M.A., THE PENNSYLVANIA STATE UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

The path to build adaptive, robust, intelligent agents has led researchers to develop a suite of

powerful models and algorithms for agents with a single objective. However, in recent years, attempts

to use this monolithic approach for an ever-expanding set of real-world problems have illuminated

its inability to scale, resulting in a fragmented collection of hierarchical and multi-objective models.

This trend continues into the algorithms as well, as each approximates an optimal solution in a

different manner for scalability. These models and algorithms represent an attempt to solve pieces

of an overarching problem: how can an agent explicitly model and integrate the necessary aspects

of reasoning required for long-term autonomy?

This thesis presents a general hierarchical and multi-objective model called a policy network that

unifies prior fragmented solutions into a single graphical decision-making structure. Additionally,

the underlying notion of a policy, which is used by all algorithms to describe internal agent state

and action, is generalized and unified in this thesis under controller family policies.

Policy networks are broadly useful to solve numerous real-world problems including: (1) an au-

tonomous vehicle’s (AV) intersection decision-making, semi-autonomous route planning with prov-

able notations of safety, and capability to balance multiple objectives; and (2) a home healthcare

vi



robot’s reasoning about multiple delivery and monitoring tasks. This thesis presents solutions to

both of these distinct problems, with policy networks serving as their shared framework, each acting

as part of the overall solution for rich, real-world, scalable decision-making in long-term autonomy.

Reasoning about multiple objectives is common in many real-world domains due to necessary

trade-offs among objectives such as solution cost, quality, and time. This thesis considers a general

model of topologically ordered objectives in decision-making with a preference ordering over objectives

induced by a directed acyclic graph and a slack term—allowable deviation from optimal—for each

objective. It is applied to AV route planning, which minimizes travel time with slack to improve time

autonomous. Topologically ordered objectives in decision-making serve as a demonstration of policy

constraints—multiple models, with identical state-action spaces, in a graph of constraints—within

a policy network.

To achieve long-term autonomy deployed in the real world, periods of semi-autonomy will be

necessary for safety and to expand the agent’s capabilities beyond what it can do autonomously.

Thus, control will need to be safely transferred to a human for approval or even direct control. This

thesis considers a formal framework for semi-autonomous systems that explicitly models varying

levels of human or agent assistance and safely transfers control among them. It is applied to semi-

autonomous vehicles for street-level route planning with proactive transfer of control, given only some

of the roads are capable of autonomy, with provable notions of safety. Semi-autonomous systems

serve as a demonstration of policy abstractions—multiple models, with differing state-action spaces,

that transfer control among themselves—within a policy network.

Finally, a central challenge in long-term autonomy is the ability to manage multiple decision-

making problems, perhaps simultaneously, that are unspecified a priori, each with differing state

spaces and objectives. This thesis considers a solution for solving multiple online decision-components

with interacting actions (MODIA) with integrated learning to customize each decision-making sce-

nario over time for ever-improving performance. It is applied to an AV interacting with other vehicles

and pedestrians at intersections and demonstrated on a fully operational AV prototype acting on

real public roads. MODIA serves as a demonstration of an indefinite number of models—multiple

models, with differing state spaces but identical action spaces, the quantity of which is finite but

unknown a priori—within a policy network.
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CHAPTER 1

INTRODUCTION

Autonomous systems have been successfully deployed in a wide variety of applications ranging

from space exploration [147], water reservoir control [23], smart wheelchairs [116], energy conserva-

tion [75], home healthcare robots [139], and autonomous vehicles [134]. Long-term autonomy (LTA)

has arguably always been the goal of many of these autonomous robotic agents. Generally, LTA

refers to an agent that is able to be “deployed for extended periods in real-world environments” [71]

and “adapt to changes in the environment in order to remain autonomous” [11]. LTA solutions must

provide a “tight integration of a number of autonomous components, including a symbiotic human-

robot relationship” [11], such that “integrating state-of-the-art artificial intelligence and robotics

research” will “increase their robustness” [54]. Consequently, “LTA systems inherently present an

integration challenge, particularly when different AI abilities need to work together” [71]. This

includes reasoning about “localisation and navigation; object and/or person perception; plus task

planning and/or scheduling” [71]. Due to the sheer complexity of such systems, it is only recently

becoming a reality to deploy these kinds of agents at a large scale so as to directly interact with the

day-to-day lives of individuals.

One of the most prominent recent applications of long-term autonomy is autonomous vehicles

(AVs). They serve as the motivating domain for much of the work contained in this thesis. AVs must

be able to drive autonomously the majority of the time in both highways and urban environments.

They must reliably perform the complex merges, lane changes, yields to oncoming traffic, cautious

edges forward for visibility, and negotiations with vehicles, bikes, and pedestrians at a diverse array

of intersections. In this thesis, we call these kinds of tasks mid-level decision-making to differentiate

it from so called high-level route planning (e.g., GPS navigation) and low-level path planning (e.g.,

millimeter precision control of the wheels). In other words, mid-level reasoning considers the “task

planning and/or scheduling” and incorporates partial observability models for “object and/or person

perception.” The low- and high-level reasoning considers the “localisation and navigation” of the

steering wheel and for the overall route, respectively. Reasoning at these levels should be tightly

integrated in order to increase the AV’s robustness. All three levels arguably can also entail more
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than one objective, as AV passenger safety, external vehicle and pedestrian safety, time to reach a

destination, and even social acceptability, must all be prioritized and reasoned about for each decision

made. Moreover, a human that can monitor the AV is typically required by law, namely the driver,

such that a “symbiotic human-robot relationship” must be part of the integrated solution, with a

safe transfer of control between the two. AV research overall has advanced rapidly since the DARPA

Grand Challenge [127], which acted as a catalyst for subsequent work on low-level sensing [120, 111]

and control [74, 35], as well as our recent work on mid-level decision-making [134] and high-level semi-

autonomous route planning [132], both discussed within the thesis. These growing lines of research

have highlighted the inability for a monolithic model—that is, a massive model with one large

state-action space and one objective—to alone tractably capture all necessary aspects of reasoning.

1.1 Models of Reasoning

This thesis focuses specifically on the principled formulation and integration of these reasoning

aspects—for example, the low-, mid-, and high-level AV reasoning—towards the goal of long-term

autonomy, using the Markov decision process (MDP) [8, 55] as a foundation. An MDP consists of four

components to describe the necessary pieces to make decisions sequentially over time. First, states

describe what information is important, such as locations of the AV and other vehicles. Second,

actions describe what the agent can do, such as stop or go forward. Third, transitions describe how

the world’s state changes after an action is performed, such as how going forward advances the AV’s

location. Fourth, rewards describe which states and actions are good or bad for the agent, such

as how it is good to arrive at the AV’s destination. At each state, the agent chooses an action to

perform. We call this decision-making assignment of state to action a policy. These components, or

equivalent representations, form the mathematical foundation on top of which the vast majority of

planning and learning techniques are built within artificial intelligence research.

As discussed above, for real-world applications such as AVs, a large monolithic MDP simply

cannot tractably capture the diverse array of tasks that a long-term autonomous agent inevitably

encounters in the environment. Fortunately, many techniques that extend the MDP can address some

of the key challenges found in designing the reasoning components for long-term autonomous agents.

Hierarchical methods such as the options framework [122], hierarchical abstract machines [87], or

macro-actions [53] allow for different compositions of hierarchical policies the agent follows. While

this enables tractable solutions to be implemented, each approach has benefits and drawbacks with-

out a unified view about how these hierarchical solutions operate. Multi-objective methods allow for
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a single task to consider many objectives simultaneously (e.g., quality, cost, and time), and includes

scalarization approaches [103], constrained MDPs [2], and lexicographic MDPs [135]. While this

enables more than one objective to be considered, each approach again has benefits and drawbacks,

without a unified view regarding their relation. Moreover, these multi-objective methods only allow

for reasoning about the same state and action spaces—the scope of the problem space is identi-

cal, with only the description of objective differing. Applications such as AVs require reasoning

simultaneously about multiple distinct tasks or problems, perhaps with different concepts of state

and action, such as when there are any number of vehicle and pedestrian interactions present [134].

Lastly, such applications of long-term autonomy can greatly benefit from human feedback and col-

laboration to further empower the agent to complete its objectives [132]. With all of these pieces

available to solve the reasoning problems in an agent with long-term autonomy, no technique exists

to easily integrate them. The need for a unified model to simultaneously handle all of these necessary

aspects of reasoning for long-term autonomy motivates the approaches contained in this thesis.

1.2 Models of Reasoning in Long-Term Autonomy

Inspired by the need for mathematically principled solutions to scalable reasoning models in

long-term autonomy, and building off of the established hierarchical and multi-objective work, this

thesis presents a policy network. The overall idea is simple and intuitive: (1) break the big problem

into small pieces, and (2) represent how the small pieces relate to one another.

For example, consider driving between home and work repeatedly everyday. Each day is different

and each individual trip can take a long time even by itself. It is impossible to reason at the same

time about all interactions with all vehicles we might encounter at all traffic light, stop sign, and

yield intersections; every millimeter of control for the wheels at all places; all pedestrians that may

cross our path; and all possible roads we could traverse. Instead, we reason and learn about solutions

to each small piece separately, with a holistic understanding how each piece relates to others. The

combination of these pieces enables us to solve the larger problem and drive between home and work

repeatedly everyday.

In a policy network, we define each of these small pieces with its by its own policy space for

a reward, describing concerns only related to that task. We then relate these small pieces to one

another. For example, one task can constrain what another can do by limiting its policy space, or

one task can leverage another as a subtask by temporarily transferring control to it.
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Each chapter presents a focused exploration of a novel aspect of a policy network. Moreover,

they describe how it can be used as one of these pieces of the holistic solution to AVs. Chapter 4

explores a generalized notion of policy within a policy network. Chapter 5 explores a graph-based

preference structure among different objectives in a policy network. Chapter 6 explores the transfer of

control among different models in a policy network. Chapter 7 explores the simultaneous interaction

of multiple different models in a policy network. These aspects, when combined, aim to provide

a holistic representation of many key reasoning aspects towards the goal of long-term autonomy,

specifically focused on the motivating autonomous vehicle domain.

1.3 Contributions

This thesis unifies the numerous models and their policy representations for constructing intelli-

gent agents with long-term autonomy. Additionally, it presents solutions to three critical components

within such agents: incorporating multiple objectives, leveraging human assistance for safety, and

fusing multiple models online for scalable long-term autonomy. We present solutions to autonomous

vehicle reasoning and demonstrate success on a true autonomous vehicle prototype.

Policy Networks This thesis presents a single formal unified model that encapsulates hierarchical

and multi-objective decision-making: policy networks. We provide complete novel formal proofs for

various prior models (e.g., options and constrained MDPs) as well as the three new models presented

within this thesis. A novel general algorithm to solve policy networks is described and analyzed.

Numerous examples and illustrations are provided to properly illuminate the nuances of policy

networks as a new solution to long-term autonomous systems. A home healthcare robot domain

is fully explained, implemented, and evaluated on a real robot to demonstrate the effectiveness of

policy networks to solve real-world problems.

Controller Family Policies In addition to the unified view of models, this thesis unifies the

policy and value formulations used by state-of-the-art algorithms: controller family policies. We

provide complete novel formal proofs that the POMDP policies used by these algorithms are actually

instances of the controller family representation. We present a novel controller family policy for

POMDPs as well: belief-infused finite state controllers. This approach is demonstrated and analyzed

in both simulation on standard benchmark domains and on a real robot acting in the world.

Multi-Objective Decision-Making A novel form of multi-objective model called a topological

MDP (TMDP) is described, as well as algorithms that scalably solve TMDPs. A theoretical analysis
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of its properties is provided, with proofs showing that it generalizes lexicographic and constrained

MDPs. These models are analyzed on a semi-autonomous vehicle route planning domain using

real-world road data.

Semi-Autonomous Systems The novel formal definition of a semi-autonomous system (SAS),

including important properties such as strong and transfer of control, is provided. It describes a

form of provably safe shared control of a robot between any number of agents and humans. A novel

semi-autonomous vehicle domain is presented that implements the SAS model and its transfer of

control process. A theoretical analysis shows that it preserves this form of provably safe shared

control. Experiments are provided, which use real public road data, illustrating the benefits of the

SAS formulation.

Scalable Online Decision-Making A novel formulation called MODIA is presented that al-

lows for multiple decision-making components to simultaneously be active and control the system

together. This enables scalability and the ability to handle an unknown a priori number of simul-

taneous problems encountered. Formal definitions, theoretical analysis, and integration of learning

are described in detail. This novel theoretical formulation is analyzed within the context of inter-

section, pedestrian, lane change, merge, and pass obstacle scenarios for long-term deployments of

autonomous vehicles in urban and highway settings. This is implemented on a fully operational

autonomous vehicle acting on real public roads.

Autonomous Vehicle Decision-Making Throughout this thesis, we use autonomous vehicles

for our motivation and experimentation, as it is the first major example of long-term autonomy within

society. As a result, the combination of the solutions presented in each chapter offers a strong overall

solution for autonomous vehicle decision-making. The actual design and full implementation on

autonomous vehicles clearly demonstrates that our approaches are successful at solving the important

decision-making problems for one of the first long-term autonomous systems acting in society.

1.4 Outline

Chapter 2 introduces the core concepts used throughout the thesis. Specifically, it introduces the

notion of an MDP and a POMDP, as well as numerous variants. The various forms of policy—that

is, how the agent plans to behave in its environment—are covered, in addition to the core algorithms

used for each model and policy form. It concludes with a discussion of the relevant hierarchical and

multi-objective models as well as other solutions to address scalability in autonomy.
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Chapter 3 formally defines policy networks with detailed explanations and formal proofs that

prior related work are instances of policy networks. It also presents an algorithm and analyzes its

characteristics. It is evaluated on a home healthcare robot domain and demonstrated on a real

robot. The following three subsequent chapters include a formal mapping of the chapter’s model to

a policy network.

Chapter 4 describes controller family policies as a unifying framework for the policy and value

representations used by algorithms to solve POMDPs and its variants. Formal proofs that prior

policy forms, such as belief point-based, finite state controller (FSC), and compression methods, are

all members of the controller family. A new policy form is presented for POMDPs, with experiments

that show it can improve the performance of a POMDP solver and an evaluation on a real robot.

Chapter 5 describes the process handling multiple objectives as a directed acyclic graph with

slack constraints including a detailed theoretical analysis and approximate algorithms. Detailed

solutions which use them are presented for autonomous vehicles.

Chapter 6 formalizes the notion of semi-autonomous systems (SAS), including the definition of

a strong SAS—a notion of safety—as well as a formal description of learning to improve autonomy

over time. Detailed solutions which use them are presented for semi-autonomous vehicles.

Chapter 7 presents a formal model that allows multiple decision-making models to be simulta-

neously active, each essentially recommending an action with an executor model making the final

decision. This enables a single agent to handle an unknown a priori number of simultaneously en-

countered scenarios and/or entities in the world. We define properties of this model and a special

class of solution that works well in practice. We demonstrate successful implementation in simulation

and on Nissan’s fully operational AV prototype acting in real intersections on public roads.

Chapter 8 takes a step back and examines all of the techniques presented in the thesis: policy

networks, controller family policies, TMDPs, SAS, and MODIA. Conclusions are drawn about what

has been accomplished, how this fits into the broader research community, and where this line of

work is heading. It concludes with final thoughts on the wide array of novel solutions presented

within the thesis toward the goal of agents with long-term autonomy.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce the foundational definitions of sequential decision-making models

and the core algorithms that solve them in practice. We begin with the Markov decision process

(MDP) and discuss related fully observable models. Next, we cover the partially observable MDP

(POMDP) and the numerous algorithms used to solve them approximately. The MDP and POMDP

serve as the primary models used throughout the thesis. Lastly, we cover relevant hierarchical and

multi-objective techniques as well as other general approaches that address scalability in decision-

making.

2.1 Markov Decision Process (MDP)

The MDP was created in the 1950’s with its notions of optimality given by Bellman [8] and

additional refinements by Howard [55]. The model defines a set of relevant states and actions to a

decision-maker. At each time step, an action is performed causing the state to update to a successor

state following a stochastic process. This stochastic process is said to have the Markov property—the

next state only depends on the current state and action performed, not any other state visited in the

past. Immediate rewards are given to this decision-maker at each time step. While a few notions of

objective exist, they each seek to maximize a notion of expected reward experienced over time.

This thesis primarily focuses on a class of MDP: discrete time, finite state, and finite action

over an infinite horizon with discounting starting from an initial state. This is a modern artificial

intelligence perspective on MDPs. Thus, the notation and definitions for the MDP model is first

presented with this in mind to unify the overall discussion throughout the thesis. The nuances of the

other MDP definitions are discussed once this modern artificial intelligence definition is presented.

2.1.1 Formal Definition

A Markov decision process (MDP) [8] is a sequential decision-making model defined by the

tuple 〈S,A,T,R〉:

• S is a finite set of states,
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• A is a finite set of actions,

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s, and

• R :S×A→R is a reward function such that R(s,a) is immediate reward for performing action

a in state s.

An MDP operates as a stochastic control process over discrete time steps up to a horizon h∈

N∪{∞}. At each time step, the system is in a state s and an action a is performed. Immediately,

a reward signal is generated following R(s,a). Then, a successor state s′ is stochastically generated

following T (s,a,s′). This process continues until horizon h is reached. An MDP policy describes

which actions are performed in which states over time. This policy is then used in an objective

function to describe the notion of expected reward. We consider two objective functions: expected

reward over finite and infinite horizon.

An infinite horizon MDP has a horizon h=∞ and a discount factor γ∈ [0,1). The policy

π :S→A maps each state to an action. Let Π denote the set of all policies. The objective is to find

a policy π that maximizes the expected reward over all states:

E
[ ∞∑
t=0

γtR(st,π(st))
∣∣∣π] (2.1)

with st denoting a random variable for the state at time t generated following T . Therefore, for a

policy π, the value V π :S→R is the expected reward at state s following the Bellman equation:

V π(s)=R(s,π(s))+γ
∑
s′∈S

T (s,π(s),s′)V π(s′). (2.2)

It is also convenient to define the Q-value function Qπ :S×A→R for state s and action a:

Qπ(s,a)=R(s,a)+γ
∑
s′∈S

T (s,a,s′)V π(s′). (2.3)

The optimal policy π∗∈Π is the policy that obtains the maximal value V ∗. The optimal value can

be computed by the Bellman optimality equation:

V ∗(s)=max
a∈A

(
R(s,a)+γ

∑
s′∈S

T (s,a,s′)V ∗(s′)
)
, (2.4)
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or equivalently denoted V ∗(s)=maxaQ
∗(s,a). The optimal policy can be extracted by π∗(s)=

argmaxaQ
∗(s,a). Equation 2.4 is a contraction operator on the Banach space of value functions

with the max norm metric and Lipschitz constant γ. It computes the unique fixed point following

Banach’s fixed point theorem. This is an important property with infinite horizon objectives, as

there is exactly one unique fixed point in value. Additionally, to obtain these optimal values over

time, a policy need not also be dependent on the time step. For a given objective, if its policies have

this property then they are called stationary. There exist optimal stationary policies for infinite

horizon MDPs [12]. If this were not the case, then it might require infinite memory to store the

policy over time.

A finite horizon MDP has horizon h∈N and time steps denoted T ={1, . . . ,h}. In the finite

horizon case, optimal policies are often non-stationary. Thus, the policy π :S×T →A maps states

and the current time to an action. Similarly, the objective is to find a policy π that maximizes the

expected reward over all states and time:

E
[ h∑
t=0

γtR(st,π(st, t))
∣∣∣π]. (2.5)

The value function V π :S×T →R at time t for state st is:

V π(st, t)=R(st,π(st, t))+
∑

st−1∈S

T (st,π(st, t),st−1)V π(st−1, t−1) (2.6)

with V π(s,0)=0. The Bellman optimality equation to compute V ∗ follows in the natural way:

V ∗(st, t)=max
a∈A

(
R(st,a)+

∑
st−1∈S

T (st,a,st−1)V ∗(st−1, t−1)
)
. (2.7)

2.1.1.1 Important Related Terminology

The objective function in Equation 2.1 requires that all states maximize expected utility over

time given a single policy. In many problems, we know the starting state of the system and do not

need to plan for all possible states. This can be exploited to great effect in terms of performance and

memory usage. It is also necessary for tractability in continuous or otherwise infinite state spaces.

We call this an initial state s0∈S. Hereafter, we will assume initial state is provided.

Also, there is the important notion of an absorbing state. A state s is called absorbing if

T (s,a,s)=1 for all actions a. This is also called a terminal state in some cases. These will be

particularly useful in the next few sections.
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For any initial state s0, we can define a history h̄=〈s0,a0,s1,a1, . . . ,ah−1,sh〉 over some horizon

h as the sequence of states encountered and actions performed over time. Let H̄ denote the set

of all histories, and H̄h denote the set of all histories of horizons 0, 1, 2, ..., h−1, and h. This is

also called a trial in some planning contexts or an episode in some reinforcement learning contexts,

though there are subtle differences. If the absorbing state is known, trials often terminate once one

has been reached.

Most problem domains describe the state space S in terms of state factors S1, . . . ,Sk such

that S=S1×·· ·×Sk. This is opposed to a so-called flat state space representation. The action

space A can also be factored in terms of action factors A1, . . . ,Ak such that A=A1×·· ·×Ak.

Factored representations provide no additional benefits aside from convenience. Instead, additional

assumptions are required, such as independence assumptions in state transitions or reward, to allow

this explicit structure to be exploited.

Finally, the application of the Bellman optimality equation, also called an update equation, allows

us to compute a residual error. Given V and a V ′ resulting after an update, the residual for a state

s is |V (s)−V ′(s)|. The residual over all states is given by a max norm ‖V −V ′‖∞=maxs |V (s)−

V ′(s)|. This may be used to check convergence in algorithms.

2.1.1.2 Additional Refinements

The modern use of MDPs within the artificial intelligence community has refined the definitions

surrounding MDPs. For example, it is unfortunately common practice to abuse notion and put

the discount factor γ in the model definition. This confuses the three distinct components: model,

policy, and objective. Additionally, the distinction of finite versus infinite state or action spaces is

not always mentioned, as finite is essentially assumed by default. Similarly, it is assumed discrete

time by default as well. There are, however, some common refinements that arise in practice.

First, the reward function can simply depend on the state R′ :S→R or depend on the state,

action, and successor R′′ :S×A×S→R. The former is a weaker definition of reward due to the max

inside the Bellman optimality equation. That is to say, given any R′, we can write the equation

with R :S×A→R instead using R(s,a)=R′(s); however, it is not always possible for R′ to be

defined for an arbitrary R, without adding extra states, etc. Interestingly, R′′ and R are equivalent

representations due to the summation inside the Bellman optimality equation. Namely, we can

rewrite one as the other following:

R(s,a)=
∑
s′∈S

T (s,a,s′)R′′(s,a,s′).
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We choose the cleaner reward R throughout this thesis, though it might affect approximate algo-

rithms that manipulate the Bellman optimality equation.

A different form of policies also exists that admits stochastic actions with π :S×A→ [0,1] such

that π(s,a)=Pr(a|s). Importantly, it is proven that for all MDP models we consider, there exists a

deterministic policy π :S→A that obtains optimal values with V ∗=V π. Stochastic policies are not

required in general. Stochastic policies are primarily useful for approximation and online learning

algorithms. However, one notable exception are constrained MDPs, as detailed in Section 2.4.2.2,

which require stochastic policies to obtain their maximal possible V ∗.

Briefly, there are two other adjustments used in practice. First, reward can be described in terms

of cost. In many cases, this refers to the negated reward. Second, without loss of generality, distinct

action sets can be defined for each state s by overloading notation with A(s)⊆A.

This thesis focuses on infinite horizon MDPs since the finite horizon case can, in essence, be

captured by the infinite horizon case. Concretely, let γ=1, a state factor T for time that decrements

each step, and an absorbing state when the state factor for T is 0 with a reward of 0. Technically,

classical definitions of finite horizon MDPs allowed for T and R to depend on the time remaining as

well, which is handled by this mapping. Note that this form still has the Markov property, as the

state itself only depends on the previous state, even if time is a factor.

Finally, a third less commonly used, though equally valid, objective function exists as well: the

average reward MDP. We leave this and other rare objectives to future analysis outside this thesis.

2.1.2 Stochastic Shortest Path (SSP) Problems

While MDPs are quite expressive in their own right, there is a more general formulation that

is widely used. Consider an MDP in which there is no discounting and the horizon is finite but

unknown a priori. We call this an indefinite horizon. Given an initial and goal state, this describes

a stochastic shortest path problem.

Formally, a stochastic shortest path (SSP) problem [10] is a sequential decision-making

model defined by the tuple 〈S,A,T,C,s0,sg〉:

• S is a finite set of states,

• A is a finite set of actions,

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s,
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• C :S×A→R+ is a non-negative cost function such that C(s,a) is immediate cost for perform-

ing action a in state s,

• s0∈S is an initial state, and

• sg∈S is a goal state with T (sg, ·,sg)=1 and C(sg, ·)=0 (i.e., absorbing zero-cost).

Like MDPs, an SSP policy is defined by π :S→A, provided it is stationary. Moreover, a stationary

policy is said to be proper if the probability of reaching the goal sg is 1 as t→∞. Any state in

which this probability is less than 1 is called a dead end [68]. Importantly, SSP problems assume:

(1) there exists a proper stationary policy, and (2) all improper stationary policies have infinite cost.

Similar to an MDP, the objective is to find the policy π that minimizes the expected cost to

reach the goal starting from the initial state:

E
[ ∞∑
t=0

C(st,π(st))
∣∣∣π,s0

]
(2.8)

with st denoting a random variable for the state at time t generated following T . For a policy π,

the value V π :S→R is the expected cost at state s following:

V π(s)=C(s,π(s))+
∑
s′∈S

T (s,π(s),s′)V π(s′). (2.9)

Similarly, the Bellman optimality equation is given by:

V ∗(s)=min
a∈A

(
C(s,a)+

∑
s′∈S

T (s,a,s′)V ∗(s′)
)
. (2.10)

The optimal policy is likewise extracted by π∗(s)=argminaQ
∗(s,a). Lastly, it is an operator similar

to MDPs, however, it has a weighted max norm metric.

Technically, the original SSP definition allows for negative costs and a non-finite set of actions.

However, the proper policy assumption must be modified, and a second assumption is needed with

respect to the compactness of actions and continuity with respect to V . Also, a single initial and goal

state in the SSP model automatically generalize to multiple initial and goal states. This mapping

uses a zero-cost transition without discounting to trivially model any number of initial or goal states

using just one of each.

In any case, this form of SSP is more general than the MDP models and objectives previously

defined—that is, any finite or infinite horizon MDP with discrete time, finite state, and finite action
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can be mapped to an SSP. For any MDP, simply add an initial and goal state. Assign zero cost

uniform transition over all MDP states from the initial, multiply the MDP state transitions by γ

for remaining in the MDP’s original state space, and assign a probability of (1−γ) for transitioning

from these states to the goal. The converse mapping does not always exist, as indefinite horizon

without discounting cannot be properly mapped to the aforementioned formulation of MDPs.

2.1.3 Path Planning with Harmonic Functions

Most robots have a more focused planning problem: quickly and smoothly navigate from one

location to another while avoiding obstacle collisions. This domain of problems and solutions are

called path and motion planning. For path planning used within this thesis, we consider a special kind

of potential field method that employs a solution to Laplace’s equation called harmonic functions [29,

133], fully formalized for robotics by Connolly and Grupen [30]. Among the many benefits of

harmonic function solutions is their unique relation to SSPs. Due to this important relationship, we

will use the SSP notation for overall consistency.

Intuitively, harmonic functions flow from a source to a sink following physics equations that can

model basic fluid dynamics. These paths or streamlines are smooth natural paths that optimally

minimize the probability of hitting an obstacle while travelling to the goal. Formally, Laplace’s

equation is a form of Poisson’s equation with an equality of zero. We have twice continuously

differentiable function φ :X→R defined on n-dimensional region X⊂Rn with boundary ∂X:

52φ=

n∑
i=1

∂2φ

∂x2
i

=0.

The solutions to Laplace’s equation are called harmonic functions. This is solved using a bounded

discrete regular sampled grid (of states) on X denoted S=S1×·· ·×Sn with each Si={1, . . . ,mi}

for some mi∈N. On each grid state, we apply a Taylor series approximation, use Dirichlet boundary

conditions with 1 for obstacles and 0 for goals, and apply finite (central) difference. Let G⊂S denote

the set of absorbing goal states, and O⊂S denote the set of absorbing obstacle states. It is assumed

all boundary states are either goals or obstacles. Lastly, let N(s)={s′∈S|s′i=si±1∀i} be the set

of all 2n neighboring grid states of s /∈G∪O.

As in SSPs, there is a resulting system of equations acting as a value update equation. Let

V :S→R be the value of each grid state s /∈G∪O following:

V (s)=
∑

s′∈N(s)

1

|N(s)|
V (s′). (2.11)
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For a goal s∈G, V (s)=0, and for an obstacle s∈O, V (s)=1. As written, this is a special case of

successive over relaxation (SOR) called Gauss-Seidel. Interestingly, the optimal values correspond

directly to the probability of hitting an obstacle while moving to a goal state [28].

These values determine the path the robot will take called streamlines. Streamlines are essen-

tially the policy of the harmonic function with respect to the original state space X. It follows

gradient descent by interpolating over the grid values and terminates early once it reaches a goal or

obstacle. Formally, given an initial x0, a streamline of length τ is defined recursively by the locations

〈x0,x1, . . . ,xτ 〉 induced by:

xt+1 =xt−h5 φ̂(xt) (2.12)

with step size h and φ̂ :X→R denoting the interpolated approximate of φ using V ∗, assuming it is

normalized to a unit vector.

Other techniques exist for robotic path and motion planning. Probabilistic roadmaps (PRMs) [64]

begin by randomly selecting points to create a collision-free graph. Then, it enters a query phase

that connects the start and goal locations. Eventually it finds the fastest route within the final

graph. Rapidly-exploring random trees (RRT) [69] randomly construct trees following any general

state transition, including any non-holonomic constraints. While fast, this random exploration does

not always produce the desired smooth optimal trajectories, and does not explicitly incorporate

measures of obstacle avoidance. We leave these other forms of path planning to analysis in future

work outside this thesis.

2.1.4 Algorithms

Solving MDPs in general is P-complete in the size of the problem in states and actions [86].

However, it is common practice to have an exponential state space defined by all permutations of

state factors [77]. In any case, there are two very important optimal algorithms for MDPs that

informed the decades of subsequent algorithms which followed.

Value iteration (VI) [8] applies Equation 2.4 to all states until a convergence criterion is met. A

very important corollary is that these updates can be applied to any state in any order, provided

no state is starved of updates (i.e., all states are sampled infinitely often as t→∞). This is called

asynchronous VI, and it forms the foundation of the majority of approximate algorithms due to its

ease to prove convergence in the limit. Policy iteration (PI) [55] instead iterates over two steps:

policy evaluation and policy improvement. Policy evaluation consists of solving the system of linear

equations formed by a fixed policy in Equation 2.2. Policy improvement chooses the best action for

each state given the policy evaluation. This process terminates once the policy remains unchanged.
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SSP algorithms are also applicable to MDPs but can benefit from a heuristic to guide the search

process. Two equally important optimal algorithms exist. Labeled real-time dynamic programming

(LRTDP) [14] generalizes RTDP which samples trials (i.e., histories) and applies the Bellman update

equation in post order traversal along the trial. LRTDP includes a labelling procedure that intelli-

gently skips unnecessary exploration and application of the update equation on collections of states

with low residual error. LAO* generalizes AO* to handle the loops found in SSP problems [52]. It

similarly explores reachable states following a policy and essentially checks if all states within this

best partial solution graph are solved with low residual. Both LRTDP and LAO* converge to the

optimal policy in SSPs and MDPs, often much faster than value or policy iteration.

2.2 Partially Observable MDP (POMDP)

After MDPs were developed by Bellman, it took a few decades of attempts to generalize the MDP

to capture partial observability. A form of partial observability in Markov processes was developed

by Drake [36] in his 1962 thesis. Three years later, Åström [101] defined an early version of the

modern POMDP through the idea of controlling a partially observable Markov process, leveraging

what we might now call a belief MDP. The modern formulation of POMDPs was solidified in the

1970s by Sondik and Smallwood [112] for a finite horizon. Years later, a tractable solution to the

infinite horizon objective was developed by Smallwood [117]. The model itself is an MDP in which

the state is not necessarily observable. Instead, the agent obtains hints at the true state through

noisy observations. This state uncertainty is represented in the agent as maintained belief over the

true state. Its action decisions are made according to this belief.

2.2.1 Formal Definition

A partially observable Markov decision process (POMDP) [112] is a sequential decision-

making model defined by the tuple 〈S,A,Ω,T,O,R〉:

• S is a finite set of states,

• A is a finite set of actions,

• Ω is a finite set of observations,

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s,
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• O :A×S×Ω→ [0,1] is an observation function such that O(a,s′,ω)=Pr(ω|a,s′) is the proba-

bility of observing ω given action a was performed resulting in successor s′, and

• R :S×A→R is a reward function such that R(s,a) is immediate reward for performing action

a in state s.

The agent does not observe the true state of the system. Instead, it maintains a belief b∈4n

over the true state, with 4n denoting the standard (n−1)-simplex. For belief b, performing a and

observing ω yields successor belief b′ at s′:

b′(s′)=Pr(ω|b,a)–1O(a,s′,ω)
∑
s∈S

T (s,a,s′)b(s), (2.13)

with normalizing constant Pr(ω|b,a)–1. Let b′aω denote the resulting belief after applying Equa-

tion 2.13 to all s′. It is convenient to refer to sets of beliefs B⊆4n, such as the set of reachable

beliefs from an initial belief b0 following belief updates (Equation 2.13) denoted R(b0). Impor-

tantly, the belief state is a sufficient statistic for the entire history and initial belief—that is, no

prior additional historic information could be used to improve the current belief. Thus, the belief

update process also follows the Markov property.

A POMDP operates as a stochastic control process over discrete time steps up to a horizon

h∈N∪{∞}. At each time step the system is in a true state s, but the agent has belief state b

that informs which action a is performed. Immediately, a belief-based reward signal is generated

weighting each state by the belief: R(b,a)=
∑
s b(s)R(s,a). The successor state s′ is generated

stochastically following T (s,a,s′); however the resulting s′ is not known to the agent. Instead, an

observation ω is generated from s′ stochastically following O(a,s′,ω) which is observed by the agent.

The agent then updates its belief accordingly. This process continues until horizon h is reached. A

POMDP policy describes which actions to perform based on the belief of the agent. We consider

two objective functions: expected reward over finite and infinite horizon.

An infinite horizon POMDP has horizon h=∞ and a discount factor γ∈ [0,1). The policy

π :4|S|→A maps each belief to an action. It is stationary. Let Π denote the set of all policies. The

objective is to find a policy π that maximizes the expected reward:

E
[ ∞∑
t=0

γtR(bt,π(bt))
∣∣∣π,b0] (2.14)

with bt denoting a random variable for the belief state at time t generated following T and O. This

assumes an initial belief b0 is provided. A POMDP formulation exists which need not require an
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initial belief; however, it requires the application of a Bellman optimality equation on all uncountably

infinite belief states an infinite number of times. This is highly intractable and thus the overwhelming

majority of research assume an initial belief.

For policy π, the value V π :4|S|→R is the expected reward at belief b with Bellman equation:

V π(b)=R(b,π(b))+γ
∑
ω∈Ω

Pr(ω|b,π(b))V π(b′π(b)ω) (2.15)

and R(b,a)=
∑
s b(s)R(s,a) and b′π(b)ω following the belief update equation. As with MDPs, it is

convenient to define a Q-value function Qπ :4|S|×A→R for belief b and action a as:

Qπ(b,a)=R(b,a)+γ
∑
ω∈Ω

Pr(ω|b,a)V π(b′aω). (2.16)

A policy π∗∈Π is optimal if it obtains the maximal value denoted as V ∗. This optimal value can

be computed by the Bellman optimality equation over each belief b:

V ∗(b)=max
a∈A

(
R(b,a)+γ

∑
ω∈Ω

Pr(ω|b,a)V π(b′aω)
)
, (2.17)

or equivalently V ∗(b)=maxaQ
∗(b,a). The optimal policy can be found by π∗(b)=argmaxaQ

∗(b,a).

Unfortunately, infinite horizon POMDPs, with or without an initial belief, are undecidable for

most problems because there are often countably infinite reachable beliefs. Luckily, Sondik [117]

also proved that the solution to a discounted finite horizon POMDP can be used to approximate

the infinite horizon POMDP. As such, the finite horizon POMDP will be defined with discounting.

Additionally, we will assume a stationary policy; however, since individual beliefs are typically

only visited once, it implicitly captures a kind of non-stationary policy instead of an explicit non-

stationary policy with a time factor.

A finite horizon POMDP has horizon h∈N and a discount factor γ∈ [0,1]. The stationary

policy π :4|S|→A maps beliefs to actions. The objective is similar to the infinite horizon:

E
[ h∑
t=0

γtR(bt,π(bt))
∣∣∣π,b0]. (2.18)

Smallwood and Sondik [112] proved that a finite horizon POMDP has a piecewise-linear convex

(PWLC) value function. It is defined by a set of α-vectors Γ={α1, . . . ,αr} with each α-vector

αi=[αi(s1), . . . ,αi(sn)]T assigning values of each state. Thus, a policy π can be equivalently defined
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by a properly defined Γ, with each α∈Γ associated with an action aα∈A. For policy π≡Γ, the

value function V π :4|S|→A for belief b is:

V π(b)=max
α∈Γ

∑
s∈S

b(s)α(s). (2.19)

As written, Equations 2.15 and 2.17 both hold in this finite horizon case as well. Therefore, we can

apply Equation 2.19, as well as the belief update from Equation 2.13, to Equation 2.17 in order to

obtain a tractable operator. Thus, the Bellman optimality equation can be written for a belief b as:

V ∗(b)=max
a∈A

(
R(b,a)+γ

∑
ω∈Ω

max
α′∈Γ

∑
s∈S

b(s)
∑
s′∈S

T (s,a,s′)O(a,s′,ω)α′(s′)
)
. (2.20)

If the initial values are set to α(s)=Rmin/(1−γ), then we V ∗ weakly monotonically increases to

the infinite horizon objective’s values as t→∞, acting as a lower bound [79, 90].

2.2.1.1 Belief MDP

Any POMDP can be mapped to a special continuous MDP known as a belief MDP [63]. This

is an important realization regarding the POMDP model because it allows us to prove properties

about a finite or infinite state MDPs and have it hold for finite state POMDPs as well.

Formally, for any POMDP 〈S,A,Ω,T,O,R〉, the equivalent belief MDP is defined by the MDP

tuple 〈B,A,τ,ρ〉:

• B⊆4|S| is the set of relevant belief states,

• A is the same set of actions,

• τ :B×A×B→ [0,1] is the belief state transition such that τ(b,a,b′)=Pr(b′|b,a) is τ(b,a,b′)=∑
ωPr(ω|b,a)[b′aω=b′], with Iversen bracket [·], and

• ρ :B×A→R is the reward function such that ρ(b,a)=
∑
s b(s)R(s,a).

The objective, policy, and value equations follow the same structure as in continuous state MDPs.

Thus, the Bellman optimality equation for a belief MDP is simply:

V ∗(b)=max
a∈A

(
ρ(b,a)+γ

∫
4|S|

τ(b,a,b′)V ∗(b′)db′
)
. (2.21)

By applying the definition of τ , we obtain the equivalent Bellman optimality equation:

V ∗(b)=max
a∈A

(
ρ(b,a)+γ

∑
ω∈Ω

Pr(ω|b,a)V ∗(b′aω)
)
. (2.22)

18



2.2.2 Algorithms

As previously stated, solving infinite horizon POMDPs in general is undecidable [117]. Solving

finite horizon POMDPs in general is PSPACE-complete in the size of the problem in beliefs resulting

from the states, actions, and observations [86]. Since P ⊆ PSPACE and NP ⊆ PSPACE, POMDPs

are very challenging to solve. This fact has limited their use in practical applications as well. Thank-

fully, a rich variety of approximate policy and value formulations exist, with numerous approximate

algorithms for each. As described above, they take advantage of Sondik’s representation of finite

horizon POMDPs as an approximation to infinite horizon POMDPs.

The optimal algorithm is given by Equation 2.17. For any initial belief b0, explore the set

R(b0), then apply Equation 2.17 in post order traversal. Of course, this tree of reachable beliefs is

countably infinite, hence the undecidability of infinite horizon POMDPs. Sondik’s approximation

instead computes the reachable beliefs up to a horizon h and applies Equation 2.20 up the tree. From

this foundation, three classes of approximate algorithms have been developed. Each represents the

agent’s policy in a different manner, as formally described in Chapter 4.

2.2.2.1 Approximate Algorithms

Point-based approaches are generally based on PBVI [90] and select a subset of the reach-

able beliefs B⊆R(b0) on which to apply a slightly modified Bellman optimality update equation.

Perseus [118] improves PBVI by intelligently selecting beliefs, thus applying this update less fre-

quently. HSVI2 [113] and SARSOP [72] tightly couple belief point selection with the update equa-

tion by selecting a new belief each time corresponding to upper and lower bounds on the value

function. Various techniques can be used to augment these algorithms even further, such as the

σ-approximation which constrains the size of the belief points [138].

Finite state controller (FSC) algorithms assume a policy formulation as a stochastic FSC. The

original formulation performed policy iteration with operations to add, merge, and prune nodes [51].

While an improvement exists BPI [95] that intelligently adds a single node, it tends to get stuck

in local optima. Recently, vast improvements have been made use a nonlinear programming (NLP)

method on a fixed number of controller nodes for both stochastic FSCs [3] and deterministic

FSCs [70]. We will show in Chapter 4 how a more general controller family [140] can be described

that generalizes many approximate policy and value forms.

Lastly, compression algorithms compress the POMDP into a smaller form. The intuition is that

the true problem is actually a much smaller one over a small subset of the full POMDP space.

A policy is defined within this compressed POMDP. It selects actions following the compressed
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POMDP, while the action is actually affects the original POMDP. VDC uses Krylov iteration to

perform a linear compression [94]. In contrast, E-PCA uses exponential-family principle components

analysis to compute a non-linear compression [107].

2.3 Semi-Markov Decision Process (SMDP)

The MDP model can be generalized in another manner beyond SSP problems. Consider an

MDP in which the control of the system is sojourn—actions are durative, selected between decision

epochs, with rewards that are generated between these stochastic periods of time. This describes a

semi-Markov decision process (SMDP). The modern use of the SMDP model has been to describe

hierarchical MDP methods [122, 88, 34], though it is explored in its own right in both planning [56]

and learning [18] contexts.

The semi-Markov decision process (SMDP) [98] is a sequential decision-making model

defined by the tuple 〈S,A,T,F,R,ρ〉:

• S is a finite set of states,

• A is a finite set of actions,

• T :S×A×R+×S→ [0,1] is a state transition function such that T (s,a,τ,s′)=Pr(s′|s,a,τ) is

the probability of being in state s′, given action a was performed in state s, and the next

decision epoch has not occurred prior to τ ,

• F :S×A×R+→ [0,1] is a cumulative distribution function for sojourn time random variable

J such that F (s,a,τ)=Pr(J≤τ |s,a) at sojourn time τ after performing action a in state s,

• R :S×A→R is a reward function such that R(s,a) is immediate reward for performing action

a in state s, and

• ρ :S×A×R+→R is a expected reward function such that ρ(s,a,τ) is reward rate at sojourn

time τ after performing action a in state s, but before the next action is performed.

SMDP policies and objectives are the same as those found in MDP. However, the value equations

must now account for the time spent accruing reward while the action is being executed. There

are three notions of time. First, the actual system’s natural process time is denoted by non-

negative τ ∈R+. Second, a decision epoch is denoted by time step index t∈N, referring to the

interval of time [τ1 + · · ·+τ t, τ1 + · · ·+τ t+1) within the natural process time. Third, the sojourn

time of decision epoch t is denoted by τ t∈R+ is essentially the duration of the decision epoch. This
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notation is overloaded, as it refers to both this duration and the random variable that determines

this duration (F detailed below). Also, this notation means natural process time τ is the sum of

sojourn times: τ=τ1 + · · ·τ t+ε after any t decision epochs, plus the amount remaining time ε≥0

it has been since the last decision epoch t. On occasion, we will omit extraneous notation when

it is clear which time is considered. The underlying stochastic process now follows Pr(τ,s′|s,a) as

its actual state transition, equating to the probability the next decision epoch occurs at or before

sojourn time τ and the successor state at that time is s′. Similarly, we denote Pr(dτ,s′|s,a) as its

time-differential.

Interestingly, we can construct both continuous and discrete time MDP formulations from the

SMDP with an appropriate assignment of F . The continuous time MDP has:

F (s,a,τ)=1−e−ατ and F (s,a,dτ)=αe−ατdτ, (2.23)

describing an exponentially distributed sojourn times τ at rate α. The discrete time MDP has:

F (s,a,τ)=

 0, if τ≤4τ

1, if τ >4τ
and F (s,a,dτ)=

 1 dτ, if τ=4τ

0 dτ, otherwise
(2.24)

with 4τ >0 denoting the fixed discrete time step duration.

An infinite horizon SMDP has horizon h=∞ and continuous time discount rate α>0. A policy

π :S→A maps each state to an action. There exist optimal stationary policies for infinite horizon

SMDPs [98]. The objective is to find a policy π that maximizes the expected reward over all states:

E
[ ∞∑
t=0

e−ατ
t
(
R(st,π(st))+

∫ τt+1

τt
eατ

t

ρ(st,π(st), τ−τ t)dτ
)∣∣∣π] (2.25)

with st denoting a random variable for the state at decision epoch t, τ t denoting the random variable

for decision epoch start times within the natural process, and the combined term τ−τ t denoting a

random variable for each decision epoch t’s sojourn time.

For a policy π, the value V π :S→R is the expected reward at state s following:

V π(s)=R(s,π(s))+
∑
s′∈S

∫ ∞
0

e−ατPr(dτ,s′|s,π(s))V π(s′), (2.26)

with expected reward R :S×A→R. Similarly, the Bellman optimality equation is given by:

V ∗(s)=max
a∈A

(
R(s,a)+

∑
s′∈S

∫ ∞
0

e−ατPr(dτ,s′|s,a)V ∗(s′)
)
. (2.27)
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Again, the optimal policy is extracted by the same π∗(s)=argmaxaQ
∗(s,a). SMDPs have two

assumptions: (1) there exists an ε>0 and δ>0 such that F (s,a,δ)≤1−ε for all s and a, and (2)

R(s,a) is bounded.

Intuitively, the expected reward R is defined as the immediate reward plus the expected sojourn

time reward. This reward considers the distribution sojourn time—duration of the decision epoch—

and the rewards accrued over this time, which change depending on the state in the alternate ρ′:

R(s,a)=R(s,a)+

∫ ∞
0

∫ τ ′

0

ρ(s,a,τ)dτF (s,a,dτ ′). (2.28)

Now, there are variants to the SMDP definition: (1) an equivalent SMDP using a ρ′, and (2) a

simplifying formulation called an embedded MDP.

First, as written, ρ denotes the expected reward rate following a sojourn time τ [87]. Equivalently,

the SMDP can be formulated using a different ρ′ :S×A×S→R. Thus, we have an equivalence of

both representations following [98]:

ρ(s,a,τ)=e−ατ
∑
s′∈S

ρ′(s,a,s′)T (s,a,τ,s′). (2.29)

Consequently, we may write an alternate form of the expected reward R(s,a):

R(s,a)=R(s,a)+

∫ ∞
0

∫ τ ′

0

e−ατ
∑
s′∈S

ρ′(s,a,s′)T (s,a,τ,s′)dτF (s,a,dτ ′). (2.30)

Thus, we can use ρ or ρ′ without loss of generality.

Lastly, it is common to consider a special case in which the state transition only occurs at the

start of a decision epoch. We call this the embedded MDP. Observe that we could consider a

state transition function T ′ :S×A×S→ [0,1] is given such that Pr(∞,s′|s,a)=T ′(s,a,s′) [98]. It

defines the probability of regaining control in a successor state s′, observing that the probability of

regaining control on or before τ tends to 1 as τ→∞. Intuitively this captures the embedded MDP’s

concern only about the decision points. Now for the state transition we can use:

Pr(τ,s′|s,a)=F (s,a,τ)T ′(s,a,s′). (2.31)

Formally, applying Equation 2.31 to Equation 2.27 results in the embedded MDP’s Bellman opti-

mality equation:

V ∗(s)=max
a∈A

(
R(s,a)+γ(s,a)

∑
s′∈S

T ′(s,a,s′)V (s′)
)
, (2.32)
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for some state-action dependent discount factor defined as:

γ(s,a)=

∫ ∞
0

e−ατF (s,a,dτ). (2.33)

By the first assumption of SMDPs we have γ(s,a)∈ [0,1), allowing for a valid contraction operator

in the Banach space of value functions with Lipschitz constant γmax=maxsmaxa γ(s,a). Therefore,

the embedded MDP can be solved using most MDP or SSP algorithms.

2.3.1 Discrete Time SMDP

This thesis primarily considers a special form of discrete time SMDP used as the mathematical

foundation for all widely-used hierarchical planning and learning algorithms.

Formally, the discrete time SMDP is a sequential decision-making model defined by the tuple

〈S,A,T,F,R,ρ〉:

• S is a finite set of states,

• A is a finite set of actions,

• T :S×A×N×S→ [0,1] is a state transition function such that T (s,a,τ,s′)=Pr(s′|s,a,τ) is

the probability of being in state s′, given action a was performed in state s, and the next

decision epoch has not occurred prior to τ ,

• F :S×A×N→ [0,1] is a cumulative distribution function for sojourn time random variable J

such that F (s,a,τ)=Pr(J≤τ |s,a) at sojourn time τ after performing action a in state s,

• R :S×A→R is a reward function such that R(s,a) is immediate reward for performing action

a in state s, and

• ρ :S×A×N→R is a expected reward function such that ρ(s,a,τ) is reward rate at sojourn

time τ after performing action a in state s, but before the next action is performed.

All the same concepts apply from the general SMDP formulation. We assign the general SMDP’s F

to be a step function with a step size4τ=1, as referenced in Equation 2.24. As a result, the integrals

can be replaced by summations because the time-derivative of the state transition Pr(dτ,s′|s,a) and

sojourn time CDF F (s,a,dτ) has 0 probability weight when not in N. Also, we assign the general

SMDP discount rate as α=− log(γ) to obtain the desired discrete time discount factor γ∈ [0,1).
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Thus, for a deterministic policy π, the value V π :S→R is the expected reward at state s follows

from Equation 2.26 with:

V π(s)=R(s,π(s))+
∑
s′∈S

∞∑
τ=1

γτPr(dτ,s′|s,π(s))V π(s′), (2.34)

with state transition Pr(τ,s′|s,a) and expected reward R :S×A→R following from Equation 2.28:

R(s,a)=R(s,a)+

∞∑
τ ′=1

F (s,a,dτ ′)

τ ′−1∑
τ=1

ρ(s,a,τ). (2.35)

We may also define ρ in terms of ρ′ :S×A×S→ [0,1], as in Equation 2.29, with:

ρ(s,a,τ)=γτ
∑
s′∈S

ρ′(s,a,s′)T (s,a,τ,s′). (2.36)

The Bellman optimality equation also follows, using Equation 2.27, with:

V ∗(s)=max
a∈A

(
R(s,a)+

∑
s′∈S

∞∑
τ=1

γτPr(dτ,s′|s,a)V ∗(s′)
)
. (2.37)

Lastly, we also assume for simplicity that F (s,a,0)=0, even though technically the general SMDP

allows for a non-one probability of immediately regaining control. None of the models discussed use

a non-zero F at τ=0. Again, this SMDP assumption is to prevent an infinite amount of reward

from being generated in a finite amount of time.

2.4 Hierarchies and Multiple Objectives

As researchers began to implement MDP-related models in practice, they began to realize a

single monolithic solution scales very poorly. Thankfully, these large problems tend to have natural

structures amenable to decomposition into subproblems. Additionally, even within a single subprob-

lem, otherwise complex reward functions in many cases may be decomposed into multiple simpler

reward functions. As a result, a variety of hierarchical and multi-objective techniques exist, both in

theoretical and engineering frameworks. This section covers the widely-used approaches.

2.4.1 Hierarchical Models

Designing agents that are deployed for a long duration inevitably engage in perhaps several

decision-making tasks. Each of these subproblems may be complex, stochastic, and nuanced in their
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own right, even considering completely locally-focused objectives that contribute to an overall global

objective. Hierarchical representations attempt to naturally describe this decomposition solution

and enable an overall scalable solution to large problem domains, such as those faced by long-term

autonomous agents.

2.4.1.1 The Options Framework

Options are special actions available to an agent that execute a complete policy, performing

the actions of the agent until it stochastically returns control [122]. Each one can execute other

options within this framework, allowing for a hierarchical policy defined by the interesting stochastic

combination of many options. Options expand the space of policies by adding rich actions—the

options themselves—in contrast with other methods that seek to reduce the space of policies (e.g.,

the next subsection) [7]. There are two primary types of options: Markov and semi-Markov.

For MDP 〈S,A,T,R〉, let O={O1, . . . ,Ok} denote the set of k options. Formally, a specific

Markov option Oi∈O is defined by the tuple 〈Ii,πi,βi〉:

• Ii⊆S is a set of admissible initiation states of the option,

• πi :S→A is a policy for the option, and

• βi :S→ [0,1] is the probability of terminating the option at each state.

Let O(s)={Oi∈O|s∈Ii} denote the set of options available at state s. In the options framework,

a distinction is made between the set of primitive actions A(s) and the set of options O(s), but

both are viewed as the actions available to the agent A(s)∪O(s) when it is in control. In fact,

options generalize primitive actions, since for any action a, a one-step option can be created with

Ii={s∈S|a∈A(s)}, πi(s)=a for all s, and βi(s)=1 for all s.

The options framework operates as a special class of discrete time SMDP. The agent selects

actions, either primitive or option, the option is a fixed policy that produces rewards, at discrete

time steps, following R(s,a) if a∈A is performed when the agent is in control and R(s,πi(s)) if

option Oi is in control. When the option is in control, it is following the SMDP’s natural process.

For discrete steps τ ∈ [τ t, τ t+1) during the option Oi’s control, ρ(s,Oi, τ) denotes the expected reward

rate at τ , given it started from state s∈Ii. F (s,Oi, τ) denotes the probability of terminating at

discrete step τ following T , πi, and βi.

Similarly, the options framework allows for consideration of a semi-Markov option defined by

the tuple 〈Ii,πi,βi〉:
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• Ii⊆S is a set of admissible initiation states of the option,

• πi :H̄→A is a policy for the option conditioned over any histories, and

• βi :H̄→ [0,1] is the probability of terminating the option for any such history.

The only difference is that these options can model termination based on how long the option has

been executed. The underlying model is still SMDP, except ρ and F use a natural process that

changes based on the now semi-Markov history since the option was executed.

Without loss of generality, we consider deterministic policies; however, the policy may also be

stochastic π :S×A→ [0,1], if desired. We can also consider policies over options with a policy form

of π :S×O→ [0,1] because any primitive action can be viewed as a one-step option. This enables

reasoning about the more powerful hierarchical execution of options. This hierarchical execution

induces a semi-Markov process that preserves any history of options which executed each other

before they would have otherwise terminated. In most cases, this includes even the combination of

Markov options.

Typically, the standard MDP 〈S,A,T,R〉 is augmented by adding (or subsuming) the action set

with O. The objective when using options is to maximize the expected reward as in (S)MDPs. As

this is canonically a reinforcement learning agent, the formulation tends to focus on the expected

reward at a state s∈S for an option Oi∈O:

R(s,Oi)=E
[
R(sτ ,πi(s

τ ))+R(sτ+1,πi(s
τ+1))+ · · ·+R(sτ+τt ,πi(s

τ+τt))
∣∣∣E(Oi,s,τ)

]
(2.38)

with sτ , sτ+1, . . ., sτ+τt denoting random variables for the state at each time, τ t denoting the

sojourn time for this decision epoch t, and E(Oi,s, t) denoting the event that option Oi is initiated

in state s at time τ . Thus the expected reward can be written recursively as:

R(s,Oi)=R(s,πi(s))+γ
∑
s′∈S

T (s,πi(s),s
′)(1−βi(s′))R(s′,Oi) (2.39)

with a deterministic policy for consistency; as described above, stochastic policies follow a trivial

change. The SMDP state transition Pr(dτ,s′|s,a) is not defined explicitly, since the focus has

been on various reinforcement learning algorithms. Instead a surrogate state-prediction function

pOi :S×S→R for a state s, is referred to:

pOi(s,s′)=

∞∑
k=1

Pr(dτ,s′|s,Oi)γk (2.40)
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which captures the probability of resuming control in state s after k steps with a measure of the

discount included. The Bellman equation for a deterministic policy π :S→A∪O over actions and

options is:

V π(s)=

 R(s,Oi)+
∑
s′∈S p

Oi(s,s′)V π(s′), if π(s)=Oi∈O

R(s,π(s))+γ
∑
s′∈S T (s,π(s),s′)V π(s′), otherwise

. (2.41)

Again, options can generalize primitive actions by immediately returning control, but conceptually

preserving their separation is important for consistency in this thesis.

2.4.1.2 Hierarchical Abstract Machine (HAM)

Hierarchical abstract machines (HAMs) represent a policy by a collection of specialized state

machines which select actions and can call one another, with the agent’s active decisions only at

particular choice machine states [87, 88]. HAMs reduce the space of policies, in contrast with options

which expand it by adding complex option actions [7].

For MDP 〈S,A,T,R〉, let H={H1, . . . ,Hk} denote the set of k HAMs. Formally, a specific

hierarchical abstract machine (HAM) Hi∈H is defined by the tuple 〈Xi,ηi,η
0
i 〉:

• Xi is a finite set of machine states, each as one of four types:

– action: perform an action following partial function πi :Xi×S→A, such that πi(xi,s)

induces an immediate reward and a state transition in the MDP at state s and action

machine state xi,

– call : suspends Hi and executes another following partial function πi :Xi×S→H, such

that πi(xi,s)=Hj calls machine Hj in Hi’s call machine state xi,

– choice: choose a successor machine state instead of following η by defining partial function

πi :Xi×S→Xi, such that the agent chooses πi(xi,s) at state s and choice machine state

xi, often from a subset Xi(xi,s)⊆Xi of valid successors (similar to A(s)), and

– stop: terminate Hi and resume the previous HAM;

• ηi :Xi×S×Xi→ [0,1] is a stochastic machine state transition such that η(xi,s,x
′
i)=Pr(x′i|xi,s)

is the probability of a transition to x′i from machine state xi in state s; and

• η0
i :Xi→ [0,1] is the initial state probability such that η0

i (xi)=Pr(xi) is the probability that

the initial state is xi, also stochastically determined whenever a machine is called.
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This definition’s notation differs slightly from previous work in an attempt to cleanly unify notation

throughout the thesis. As such, πi is overloaded for the machine state types. For simplicity, they

assume the so-called call graph is a tree to prevent issues regarding loops, with actions being executed

with probability 1 as t→∞. Similarly, they also assume the initial machine does not have a stop

machine state.

The HAM method also operates as a special class of discrete time SMDP. The SMDP defines

an augmented state space S′=R(H)×S, with R(H) denoting all reachable machine states across

all machines from the initial machine’s possible initial states. S′ records which HAM is currently

being executed including its current machine state. The decision epochs are defined by the choice

machine states, with available actions A′(s′)=Xi(xi,s) for s′=〈xi,s〉 being the successor machine

state, and induce a simple state transition changing the H state factor. Rewards ρ(s′,πi(xi,s), τ)

are generated at each discrete natural process time τ ∈ [τ1 + · · ·+τt, τ1 + · · ·+τt+1) given the starting

choice machine state was at s′ and the choice’s action followed some πi. F (s′,πi(xi,s), τ) similarly

follows from the transitions T and various ηi, as well as the choice and call machine states.

2.4.1.3 Other Hierarchical Models

Options and HAMs will be the primary focus of analysis in this thesis because they represent two

of the most popular approaches, they are both related to a grounded theoretical model (SMDPs),

and they represent two different methodologies: options expand policies and HAMs restrict policies.

Other hierarchical approaches are lightly discussed below.

Hierarchical Task Networks (HTNs) Among the first successful hierarchy-based structures

were called hierarchical task networks (HTNs) [38]. The idea is deceptively simple: decompose a

problem into parts called tasks. Tasks can call another and essentially terminate once it is complete.

The HTN representation places an emphasis on the efficient decomposition and use of tasks within

the network. In many ways, HAMs share this methodology. Traditionally, state-based planning—

that is, a representation of state and sequence of actions to reach a goal state—via languages such

as STRIPS [41] was a more “mathematically precise” model, but did not scale well beyond toy

problems, in part because of their need for complete problem specification, limiting its real-world

use. Conversely, HTNs were a more pragmatic “engineering” solution that worked for practical

application, but in many cases lacked a strong theoretical foundation. However, a few attempts such

as ABSTRIPS [108]—which generalized STRIPS to include abstractions—were successful in melding

hierarchies into a mathematically-grounded planning model. In the late 1990’s, Erol [37] finally
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proposed a unified formal view of the state-of-the-art HTNs such as NOAH [109] and NONLIN [125].

Similarly, this thesis proposes a unified formal model of state-of-the-art hierarchical approaches.

Other Approaches HAMs are related to a number of other models. For example, early work

assumed a landmark network which consists of a set of landmark states, the set of neighbors for each

landmark, and the knowledge of the nearest landmark for any given state [62]. The agent learns the

quickest paths—in terms of number of steps—among them to reach a goal in a two-level hierarchy.

HAMs can be thought of as an informal generalization of this approach, since the landmark states

essentially describe choice machine states.

2.4.2 Multi-Objective Models

Hierarchical models address one challenge of designing agents for long-term autonomy in the

real-world: scalability via decomposition into distinct smaller problems. Another common challenge

inevitably arises in these systems: they typically are concerned about more than one objective in

the same problem. For example, we consider semi-autonomous vehicles that must trade-off total

travel time and how much of this time is spent autonomous. However, numerous real-world domains

must weight similar trade-offs, such as in manufacturing that considers time, cost, and quality of

the products.

The multi-objective MDP (MOMDP) [103] is a sequential decision-making model defined

by the tuple 〈S,A,T,R〉:

• S is a finite set of states,

• A is a finite set of actions,

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s, and

• R=[R1, . . . ,Rk]T is a vector of reward functions Ri :S×A→R, each denoting an immediate

reward Ri(s,a) for performing action a in state s.

The stochastic process operates exactly like an MDP, except that multiple immediate rewards are

experienced at each time step. Notion requires k-dimensional vectors following in the natural way

from rewards denoted R(s,a)=[R1(s,a), . . . ,Rk(s,a)]T . The definitions of policy are the same, with

stationary policies defined as π :S→A, and even stochastic policies defined as π :S×A→ [0,1].
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For infinite horizon MOMDP, the ideal objective is to find a policy π that maximizes all of

the expected rewards over all states:

E
[ ∞∑
t=0

γtR(st,π(st))
∣∣∣π] (2.42)

with st denoting a random variable for the state at time t generated following T , and discount factor

γ∈ [0,1) assumed to be identical for all objectives for simplicity. For a policy π, the value function

is now a vector of values Vπ :S→Rk with Bellman equation for state s:

Vπ(s)=R(s,π(s))+γ
∑
s′∈S

T (s,π(s),s′)Vπ(s′). (2.43)

It is rare that a single policy exists which obtains the maximal value for all objectives. Instead, we

consider different objectives which explicitly trade-off the individual expected rewards. However,

the evaluation of a policy over all objectives in Equation 2.43 is useful to all approaches. To resolve

the trade-offs, there are two main forms of resolution: scalarization and constraint. Scalarization

methods attempt to merge the k objectives into a single objective problem, which can be readily

solved using the standard techniques. Constraint methods attempt to solve the k objectives as

constraints, either in a sequence or simultaneously.

2.4.2.1 Scalarization and Pareto Optimality

Scalarization defines a function that maps the vector of values or rewards in Equation 2.43

to a single value or reward. Formally, a scalarization function fw :Rk→R is parameterized by

some weight vector w such that V πw(s)=fw(Vπ(s)) defines a single value function through this

scalarization. An important special case is linear scalarization fw(Vπ(s))=wTVπ(s). Within this

representation, there are essentially two classes of algorithm, either the parameters w are given or

they are unknown [129]. If parameters are given, then a single a optimal policy can be computed [84].

If parameters must be computed, then a set of policies must be computed that represent a notion

of the landscape of trade-offs among optimal policies [104].

Pareto optimality is widely used to solve multi-objective problems [24]. Formally, a policy π

Pareto dominates another policy π′ if for all i, V πi (s)≥V π′i (s) and there exists some j such that

V πj (s)>V π
′

j (s). For MOMDPs, it turns out to refer to a particular class of scalarization functions
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that strictly monotonically increase [103]. When parameters w are unknown, we return the set of

policies that are not Pareto dominated by any other policy called the Pareto frontier:

ΠPF ={π∈Π|∀π′ 6=π,∀i,V πi (s)≥V π
′

i (s)∧∃j s.t. V πj (s)>V π
′

j (s)}. (2.44)

Interestingly, instead of computing all Pareto optimal deterministic policies, it is sufficient to in-

stead return the convex coverage set (CCS) [103]. This realization has led to a growing number of

algorithms which compute or approximate the CCS [104].

In summary, the result of scalarization methods is either a single objective function, which uses

standard techniques to determine any optimal policies, or a set of policies, for example defined by

a CCS representing the Pareto frontier. We will discuss scalarization within the thesis’ presented

models, but leave any detailed analysis of this particular multi-objective approach to future work

outside this thesis.

2.4.2.2 Constraints and Lexicographic Orderings

A constrained MDP (CMDP) instead defines a single objective to maximize with a set of con-

straints the agent must keep under a constant value [39, 2]. Formally, for all objectives 1≤ i≤k−1,

let rewards be written as costs Ci(s,a)=−Ri(s,a), with a minimization objective, and assume a

constant scalar ci is given for each. The objective in a constrained MDP [2] is to find a policy π:

maximize V πk (s0)

subject to V πi (s0)≤ci, ∀i∈{1, . . . ,k−1}.
(2.45)

This can be equivalently written in terms of sets of policies:

Πi={π∈Π|V πi (s0)≤ci},∀i∈{1, . . . ,k−1} and Πk={π∈Π1∩·· ·∩Πk−1|V ∗k (s0)=V πk (s0)}

such that π∗∈Πk⊆(Π1∩·· ·∩Πk−1), (2.46)

with optimal policy π∗. The CMDP was discussed for upwards of a decade [39] before it was

completely described by Altman [2]. To address scalability, modern methods can employ state

clustering to solve a smaller CMDP with less variables, with successful implementation on a real

robot [40]. Early references to a constrained POMDP (CPOMDP) are found in work surrounding

uncountably infinite state space constrained MDPs [93]. Eventually, the idea was formalized with
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CPOMDP solution dynamic programming algorithms [57] and linear programming with finite state

controller policies [96].

Instead of the breadth of constraints in CMDPs, they can instead be ordered. A lexicographic

(ordinal) MDP (LMDP) defines an ordering over the objectives and iteratively constrains the policies.

In essence, the set of policies is iteratively constrained using successor objectives as tie-breakers.

Formally, the objective of a lexicographic (ordinal) MDP (LMDP) [43] is to find a policy π

following the recursive objective for any i>1:

maximize V πi (s0)

subject to V πj (s0)=V ∗j (s0), ∀j∈{1, . . . , i−1},
(2.47)

Importantly, the V ∗j above refers to the optimal value constrained to the policies available Πj . V
∗
1

is unconstrained and selects optimal values obtainable from Π1 =Π. Again, this can be equivalently

written in terms of sets of policies:

Π1 =Π and Πi={π∈Πi−1|V ∗i (s0)=V πi (s0)},∀i∈{2, . . . ,k},

such that π∗∈Πk⊆Πk−1⊆·· ·⊆Π1 =Π, (2.48)

with optimal policy π∗. Obviously, ties are actually quite rare in the policy space, and leaves very

little room for successor objectives to optimize their own objectives. The original work on ordinal

dynamic programming for MDPs dates back to the 1970’s within the field of operations research and

management science. It was proven that value iteration converges to a stationary policy in finite

horizon [81] and infinite horizon [114]. Within the context of reinforcement learning, the original

early work by Gabor et al. [43] assumed a maximum threshold value vmaxi was provided. They

modified the Bellman (optimality) equation to be V ′i (s)=min{V πi (s),vmaxi } in the hope of including

more policies for successor objectives in the ordering. However, it is unknown if vmaxi is obtainable

for Vi, and it is unclear how this affects the theoretical underpinnings of the MDP itself.

2.5 Conclusion

We have presented the core MDP model and a multitude of models based on it. While each

model does expresses a solution to an important class of distinct problem, it also highlights the need

for a unified perspective due to the quantity of these disparate approaches. In the next chapter we

present policy networks as a unified model that encompasses these prior models as well as the other

three novel models presented in this thesis.
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CHAPTER 3

POLICY NETWORKS

This chapter defines the mathematical model that unifies all chapters in this thesis: policy

networks. The model is presented with select examples, including a complete solution to a mobile

home healthcare robot. A discussion about the relation to probabilistic graphical models is provided,

as well as similarly convenient graphical representations of policy networks. The following chapter

will discuss how policies can be generally represented within a policy network. The subsequent

three chapters then present three seemingly distinct important models, each one providing a formal

mapping that they are generalized by policy networks.

3.1 Introduction

Over the past decade, sequential decision-making models have been increasingly deployed in large-

scale domains with high societal impact, ranging from aircraft collision avoidance [67] to autonomous

vehicles [134]. While these systems have enjoyed rapid growth, they relied on a fragmented collection

of specialized approaches that combine either multiple objectives [2, 66] or multiple models by

hierarchical abstraction [122, 91] or by integrating their actions online [5, 134].

Each one of these solutions introduces an important reasoning capability, but to support long-

term autonomy in the real world, we increasingly need to integrate multiple capabilities within one

system. As Marvin Minsky observed, “the power of intelligence stems from our vast diversity, not

from any single, perfect principle” [80]. It is unlikely that any single MDP model will suffice. For the

sake of scalability and computational efficiency, we need new formal ways to facilitate the integration

of multiple models within a single agent. To this end, we propose a novel framework called policy

networks that unifies prior approaches, offers new insights, and provides a solid foundation on which

to build the next generation of large-scale decision models.

We consider a home healthcare robot domain for household and eldercare scenarios [91]. The

robot must perform a wide array of helpful tasks (e.g., medicine delivery and cleaning), plan safe

paths around the house, and detect falls to call for help as needed [21] while operating over a

long duration. This domain has many subproblems, each complex and nuanced, and they are all
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interrelated as part of the whole solution. Systems of this scale require an integration of multiple

methods, as the range of subtasks quickly becomes too large to solve with a single monolithic MDP.

Additionally, as the number of subtasks increases, the reward function becomes conflated. This

complicates the design and maintenance of a weighted reward that must balance all the subtasks

under one function, losing any semantic meanings of the reward in the process. These two primary

concerns, scalability and conflation of reward, are alleviated by the use of a policy network.

Prior work on integrations of multiple models arose from disparate ideas, each of which extends

the MDP model in a particular way. In hierarchical planning, a large problem is decomposed

into essentially subtasks [122, 124]. In planning with multiple objectives, which we show to be

related, solutions typically scalarize the objectives into one or maximize a primary objective subject

to constraints [104, 66]. Online techniques that employ multiple models allow different models to

update their states simultaneously and recommend actions for each entity in the domain [67, 5].

While these approaches have been used in modest applications, it is not clear how they relate

or how to combine them to solve large-scale problems. This knowledge gap manifests itself by

the lack of a unified view across all model forms, which leaves many questions unanswered. For

example, how are constrained MDPs (CMDPs) related to options and can the two approaches be

combined? What does it mean to perform an action if it can induce updates in multiple models?

How can multiple models transfer control to one another if their state and/or action spaces are

different? More generally, how can we create a principled mathematical framework that enables

the integration of multiple models into a single, coherent decision-making process with well-defined

properties?

We propose the notion of a policy network [139, 141] that helps us begin to answer these questions.

It is a graph in which the vertices denote a set of policies and the edges denote their dependencies.

A set of policies associated with a vertex refers to a state and action space that can be shared or

distinct from any other vertices. A policy constraint edge enforces a restriction on a vertex’s set of

policies from another vertex. A policy transition edge defines a state transition in a vertex’s state

space or a transfer of control to another vertex. The objective is to maximize expected reward in the

induced hierarchy of constrained semi-Markov decision processes following the graph’s dependency

structure.

Our primary contributions are: (1) a formal definition of policy networks and their properties;

(2) a theoretical analysis that proves their generality, encapsulating prior models such as CMDPs

and options; and (3) an implementation on a home healthcare robot acting in a real household

environment.
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3.2 Policy Networks

In general, policy networks are graphs in which vertices denote sets of policies for a reward

function and edges denote policy dependences among them. The objective is to capture the relations

among distinct decision-making components to solve large multi-objective hierarchical problems.

Thus, a policy network is a sequential decision-making model defined by a directed graph 〈V,E〉:

• V is a set of vertices such that v∈V refers to policy set Πv and reward Rv :Sv×Av→R, and

• E is a set of edges such that 〈v,w〉∈E forms a dependence of w on v, with optional properties:

– policy constraint Πvw enforces that πw∈Πvw, for the policy πw∈Πw chosen for w; and/or

– policy transition Tvw :Sv×Av×Sw→ [0,1] is a partial function for Pr(w,s′w|v,sv,av).

The execution of a policy network operates over discrete time steps t∈N as a form of Markov

multi-reward process. Each vertex v has a state space Sv and action space Av for its policy and

reward. Its state space Sv has an initial state s0
v∈Sv. Each edge e=〈v,w〉 makes w inherently

depend on v such that when v performs an action or transitions its state it can affect w. Additional

dependency properties can also be added to an edge, such as policy constraint or transition. This

process is formalized in the paragraphs below.

As in (PO)MDPs, to perform an action is simply the act of conditioning on the action so

as to induce an update in the underlying vertex v’s stochastic process following the distribution

Pr(w,s′w|v,sv,av); this is called a state transition. This probability distribution describes the

state transition within the state space of v (i.e., w=v and s′w=s′v∈Sv) as well as across other state

spaces used by other vertices (i.e., w 6=v and s′w∈Sw). Policy networks require full specification of

Pr(w,s′w|v,sv,av) via the collection of functions Tvw. In its simplest form, if v only transitions to

itself by Tvv, then Te is equivalent to a typical (PO)MDP state transition. Performing an action

also induces a reward from Rv.

At each time step, a controller vertex v performs the action πv(sv)∈Av at its current state

sv∈Sv from a policy πv∈Πv∩(
⋂
wΠwv) chosen for v. Each policy network has an initial controller

v0∈V . The actions performed by v may result in a state transition to a different vertex w’s state

space. We call this a transfer of control, with the controller changing from v to w who now

performs actions following its policy. Obviously, only a controller vertex can transfer control. If

a non-controller vertex performs a state update, transfer of control attempts instead result in a

self-loop state transition.
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For any edge 〈v,w〉∈E, there is an inherent dependence that w has on v. First, if v is the

controller and the state spaces are shared Sw=Sv, then w also follows the state transition result of

v (i.e., st+1
w =st+1

v ). Second, if v is the controller and the action spaces are shared Aw=Av, then

w also performs the action that v performs (i.e., atw=atv); performing an action in this way also

emits a reward Rw for w. Thus, if Sw=Sv and Aw=Av then w performs action atw=atv and the

successor state is st+1
w =st+1

v . However, if Sw 6=Sv and Aw=Av then w still performs action atw=atv

and induces a state transition as normal, with a caveat that any transfer of control attempt self-

loops instead. Any additional dependences can be optionally added to an edge as well. This thesis

primarily considers two: policy constraint and policy transition.

Policy networks may appear either deceptively simple and/or nuanced, so we will first consider

a few step-by-step examples of the policy network’s stochastic reward process. Not all of the details

are provided at this point in the chapter, specifically the general meaning of value, optimality,

stationarity, and specifics of the graphical representation referenced. Importantly, the purpose is

mainly to provide examples of the stochastic process and interaction of models. The specifics of value,

optimality, stationarity, and the graphical representation will be precisely defined in the subsequent

sections. We invite the reader to re-read these examples again after each of these concepts are

defined.

Example (MDP Represented as a Policy Network) Consider a policy network with V ={v}

and E={evv=〈v,v〉}, as in Figure 3.1 (a), such that evv self-loops with a transition Tvv. Let Tvv

be Pr(v,s′v|v,sv,av)=Pr(s′v|sv,av) define a classical MDP state transition.

The stochastic process operates with vertex v in control at each time t. In the classic case of MDP

optimal control or planning, we compute an optimal stationary policy from the space of available

policies π∗v ∈Πv. During execution, this stationary policy performs action π∗v(stv) at time t’s state stv.

By definition, performing an action conditions on Av at time t, inducing a state update following

Tvv. The stochastic process generates successor st+1
v from Tvv and emits reward Rv(s

t
v,π
∗
v(stv)). This

process repeats ad infinitum, recreating the MDP inside a policy network.

Example (Edge Dependences; Performing Action; Simple CMDP) Consider a policy

network with V ={v,w} and E={evv,eww,evw, ewv}, as in Figure 3.1 (c), with v and w having the

same state-action spaces (i.e., Sv=Sw and Av=Aw). Let evv and eww be as in the first example for

both v and w. Let the initial controller be w.

Also, let us define two dependences: evw and ewv. By definition of an edge, since v and w share

state-action spaces here, any performed action or state transition in one also occurs in the other.
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Figure 3.1: Basic examples of the graphical notation described in Section 3.4.1 that is used to repre-
sent policy networks, with each v∈V following some model v∼MDP(Sv,Av,Tv,Rv): (a) stationary
vertex; (b) non-stationary vertex; (c) constraint edge; (d) transfer of control edges; (e) plate notation
for a set of N constraints; and (f) mixture of the concepts.

Additionally, to add a CMDP constraint, let evw include a policy constraint defined by the set

Πvw={π∈Πv|−V πv (s0)≤cv} to ensure the only policies w can choose are within some constraint

value cv for Vv, as in a CMDP constraint. See the Theoretical Analysis section for details.

The stochastic process operates with vertex w in control at each time step t. It uses policy

π∗w∈Πw∩Πvw—constrained by v’s cv—and performs action π∗w(stw). Importantly, there is an edge

from w to v. Since action spaces are shared, when w performs an action so too does v, with

atv=atw=π∗w(stw). By definition of performing an action, both v and w emit rewards Rv(s
t
v,a

t
v) and

Rw(stw,a
t
w), respectively. Since state spaces are shared, when w has a state transition so does v, with

st+1
v =st+1

w . This process repeats ad infinitum, recreating a simple CMDP inside a policy network.

Example (Transferring Control; Simple Option) Consider a policy network with V ={v,w}

and E={evv,eww,evw,ewv}, as in Figure 3.1 (d), with v and w having the same state and action

spaces. Again let evv and eww be as in the first example for both v and w, respectively. Also, this

forms a dependence as in the second example.

Additionally, to add transfer of control, let evw include a policy transition Tvw such that we have

Pr(w,s′|v,s,a+)>0 only for a particular transfer of control action a+ that transfers control to w

with probability 1 and performs w’s recommended action π∗w(s) as a transition. Finally, let ewv be

a similarly defined transfer of control.

To create a simple Markov option, let us define w’s available policy space to be a single policy

Πw={πw}, the option’s fixed policy πw itself. See the Theoretical Analysis section for details.

The stochastic process operates with vertex v initially in control at each time step t. It uses

policy π∗v ∈Πv and performs action π∗v(st). Normally, if the performed action is not the transfer of
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control action (i.e., π∗v(st) 6=a+), then the controller remains v as in a normal MDP. Importantly, if

the performed action is transfer of control action (i.e., π∗v(st)=a+), then the new controller becomes

w following Tvw. In this case, at the next time step t+1, the state is now st+1 and w uses its policy

πw∈Πw to performs action πw(st+1). Of course, at any time w can also choose a+ to transfer control

back to v following Twv. This process repeats ad infinitum, recreating a simple option inside the

policy network.

3.2.1 Stationarity

To this point, policies π and policy sets Π have been considered without a dependence on time.

Generally speaking, our goal will be to construct policy networks that have all policies fixed in place

over all time. However, this need not be the case. Here we define three kinds of so-called stationarity,

discuss them, and provide examples of non-stationarity to contrast with the examples above.

In the tradition of MDPs and planning, policies are commonly stationary—that is, they do not

change over time. Although, even solutions computed offline can have time-varying non-stationary

policies. In any case, policy networks share this policy property. Formally, if a vertex’s policy πtv=πv

for all time t, then we call it a stationary policy. Otherwise, we call it a non-stationary policy.

The holistic perspective of policy networks affords a broader view of stationarity that also includes

the behavior of online algorithms, which vary their policy over time in online planning [144] and

reinforcement learning [121]. We leave the analysis of online scenarios for future work.

Since policy networks relate sets of policies to one another, the set of policies Πt
v, as well as

any Πt
wv, at a time t can also remain constant or vary over time. Formally, if a vertex’s policy set

Πt
v=Πv and Πt

wv=Πwv for all constraint edges 〈w,v〉 and for all time t, then we call it a stationary

policy set. Otherwise, we call it a non-stationary policy set. In a simple MDP or POMDP

within a policy network, the policy set trivially remains constant. However, in a growing number of

online models—such as MODIA used in autonomous vehicles [134] as discussed in Chapter 7—the

set of policies is constantly adjusted online. While this is easily described in a policy network, their

formal analysis is nuanced and specific to the assumptions for each online scenario. For this reason,

we leave any analysis of these online scenarios to future work.

If a vertex’s policy and policy set are both stationary, then we call it a stationary vertex.

Otherwise, we call it a non-stationary vertex.

Interestingly, a non-stationary policy set can still retain a stationary policy ; that is, in some

cases they can be mutually exclusive stationary properties. However, as is in the case of MODIA,

non-stationary policy sets can force the policy to be non-stationary, causing the vertex to be non-
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stationary. This is described with MODIA in Chapter 7. In any case, we now show brief examples

of non-stationary policies and policy sets.

Example (Non-Stationary Policy) The first example in this section considered an MDP fol-

lowing an optimal stationary policy. Consider again the same policy network as above with V ={v}

and E={eww=〈w,w〉}, as in Figure 3.1 (b), such that eww self-loops with a transition Tww. Let

Tww be Pr(w,s′w|w,sw,aw)=Pr(s′w|sw,aw) define a classical MDP state transition.

The stochastic process operates with vertex w in control at each time t. In the classic case of MDP

online planning or reinforcement learning, the policy is learned over time and thus is not stationary,

but is still chosen at each time t from the space of available policies πtw∈Πw. During execution, this

non-stationary policy performs action πtw(stw) at time t’s state stw. As above, performing an action

conditions on Aw at time t, inducing a state update following Tww. The stochastic process generates

a successor st+1
w from Tww and emits reward Rv(s

t
v,π

t
v(s

t
w)). This process repeats ad infinitum,

demonstrating a non-stationary policy and recreating an online planning or reinforcement learning

algorithm’s execution inside a policy network.

Example (Non-Stationary Policy Set) Consider a policy network with V ={wi}∪{v} and

E={ewiwi ,evv,ewiv, evwi}, as in Figure 3.1 (e), with wi and v having the different state spaces but

the same action spaces (i.e., Swi 6=Sv and Awi =Av). Specifically, let Sv={sv} be a single state.

Let ewiwi be a standard MDP state transition Twiwi as in the example above. Let evv have a trivial

self-loop state transition Tvv because there is only one state. Let the initial controller be v.

Also, let us define two dependences: evwi and ewiv. By definition of an edge, since v and wi

share action spaces, any action performed by v induces a state transition and emits a reward in all.

Lastly, add a CMDP-like time-dependent policy constraint edge ewiv∈E defined by the set

Πt
wiv={π∈Πv|V ∗wi(s

t
wi)−Q

∗
wi(s

t
wi ,π(sv))≤Q,∀sv∈Sv}. This ensures that the only policies (ac-

tions) v can choose are within some slack constraint value Q for Vwi current state stwi . In other

words, it restricts actions to be within a one-step slack—that is, allowable deviation from an opti-

mal action. This is how MODIA works, as described in Chapter 7. The nuances of slack itself are

explored in Chapter 5. In any case, this particular policy constraint edge is defined in Equation 3.18.

The stochastic process operates with vertex w in control at each time step t. It uses policy

πtv∈Πt
v∩(

⋂
wi

Πt
wiv)—constrained by v’s Q—and performs action πtv(s

t
v). Note that stv=sv for all

t because Sv={sv}; what changes are the available actions for v to select. Importantly, there is

an edge from v to each wi. Since action spaces are shared, when v performs an action so too

do all wi, with atv=atwi =πtv(sv). By definition of performing an action, both v and all wi emit
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rewards Rv(sv,a
t
v) and Rwi(s

t
wi ,a

t
wi), respectively. Since state spaces are different, each wi has an

individual state transition to some st+1
wi following Twiwi . By construction of the policy constraint

edge ewiv, each Πt+1
wiv uses its new state st+1

wi to update the actions available to v via its new policy

set Πt+1
v ∩(

⋂
wi

Πt+1
wiv). This process repeats ad infinitum, demonstrating a non-stationary policy set

and recreating MODIA’s (as described in Chapter 7) execution inside a policy network.

3.2.2 Underlying Markov Multi-Reward Process

One of the primary benefits of policy networks is that the underlying complex mathematics can

be abstracted by simpler graphical notation. This is the same utility provided by the conventional

use probability theory and Bayesian networks; we do not need to describe simple probabilities in

terms of topological spaces, Boreal sets, measure theory, and σ-algebras. Just as probability theory

has this deeper mathematical foundation, so too do policy networks have one for their state in the

form of an underlying Markov multi-reward process.

Now that we have described the policy network model with a multitude of examples, we more

concretely formalize this underlying Markov multi-reward process. The formalized stochastic pro-

cess’ state transition will be useful when defining optimality in the next section. Consequently,

we provide a generalized definition of this formalized state transition that allows us to consider the

Markov multi-reward process of any subset of vertices X⊆V . In this subset X of vertices, any trans-

fer of control outside X, that is to vertices in V −X, is treated as a self-loop instead. This enables a

clean statement of optimality in Section 3.3, which iteratively grows the set X towards V following a

dependency graph, solving a constrained semi-MDP at each step. Thus the full underlying Markov

multi-reward process is obtained when X=V .

First, it is useful to define a transition function µ to represent the collection of Pr(w,s′w|v,sv,av)

with the added ability to capture self-loops for transitions outside a given set of vertices X⊆V .

Formally, let (partial) function µ :2V ×V ×(
⋃
v Sv)×(

⋃
vAv)×V ×(

⋃
v Sv) follow:

µ(X,v,sv,av,w,s
′
w)=



Pr(w,s′w|v,sv,av), if v∈X∧w∈X∧¬(w=v∧s′w=sv)

Pr(w,s′w|v,sv,av)

+
∑
u/∈X

∑
s′u∈Su

Pr(u,s′u|v,sv,av), if v∈X∧w∈X∧(w=v∧s′w=sv)

[w=v∧s′w=sv], if v /∈X

.

(3.1)

While this may look notationally complex, it performs a simple operation: (1) transition as nor-

mal for vertices in X, (2) add the extra probability weight to self-loop for transitions to vertices
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outside X, and (3) any vertex outside X self-loops. Observe that if X=V then it reduces to

µ(V,v,sv,av,w,s
′
w)=Pr(w,s′w|v,sv,av).

Finally we can define the policy network’s underlying stochastic process. As mentioned above,

the full Markov multi-reward process includes transitions among all vertices X=V ; however, we

define it here conditioned on X for use in the Section 3.3. Also, we analyze the process given some

collection of policies π=〈πx1
, . . . ,πx|X|〉. We will first write the process with stationary policies

and discuss non-stationarity afterward. It has the state space S=X×Sx1
×·· ·×Sx|X| denoting the

current controller and the state of all vertices. The stochastic process has the Markov chain S1, S2,

S3, . . . over time t∈N, with St denoting the random variable for the state. At each time step, the

Markov chain’s state transition only depends on the current state s=〈i,sx1
, . . . ,sx|X|〉, transitioning

to a successor state s′=〈i′,s′x1
, . . . ,s′x|X|〉 following the |S|-by-|S| stochastic matrix MXπ:

MXπ(s,s′)=
∏
v∈X

Mv
Xπ(s,s′), (3.2)

multiplying each vertex v’s individual state transition probability Mv
Xπ from state sv to vertex w’s

state s′w, given that i is currently in control and i′ is in control next:

Mv
Xπ(s,s′)=



µ(X,i,si,πi(si),v,s
′
v), if i′=v

[s′v=s′i′ ], if i′ 6=v∧∃〈i′,v〉∈E∧Sv=Si′

µ({v},v,sv,πi(si),v,s′v), if i′ 6=v∧¬(∃〈i′,v〉∈E∧Sv=Si′)∧∃〈i,v〉∈E∧Av=Ai

[s′v=sv], otherwise

.

(3.3)

Again, this notational complexity belies the simpler meaning of Equation 3.3: (1) transition as

normal if the vertex is in control (as in MDPs), (2) copy the transition of the connected vertex

when it is the controller and updates its state (as in options, CMDPs, LMDPs, and TMDPs), (3)

self-transition within the vertex’s own state space when a connected vertex is the controller and

performs a shared action (as in MODIA), and (4) self-loop when not in control (“paused”) and not

connected to a controller vertex that shares actions (as in SAS). These concepts were described in

the definition of policy networks. This is merely the formal statement of this behavior.

At each time step, a reward is emitted for the controller vertex i after performing the action

πi(si). Additionally, a reward is emitted for any connected vertex to i that shares the same action

space. Formally, from controller i, the set XR
i ⊆X, denoting all vertices v∈XR

i that emit rewards

Rv(sv,πi(si)), is:

XR
i =

{
v∈X|v= i∨(∃〈i,v〉∈E∧Av=Ai)

}
. (3.4)
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3.2.3 Relative Markov Reward Process

To analyze a single vertex v’s reward, we need not consider the Markov multi-reward process in

its entirety. Instead, we consider just the local region directly connected to the vertex that shares

the same action space. Only this subset of vertices can induce a reward Rv to be emitted for the

vertex.

In an effort to simplify notation, any variable or function defined here that has an overline or

underline is relative to a vertex v, the set of vertices X, and the policies π. We assume these three

are given to define the relative Markov reward process below. For example, X and X are subsets of

X relative to v. Similarly, M and M are matrices, and λ is a function, with states defined using X

and their probabilities defined relative to v and π.

The relative Markov reward process for v∈V operates under the vertices X⊆X:

X=
{
w∈X|w=v∨(∃〈w,v〉∈E∧Aw=Av)

}
(3.5)

with the other vertices defined as X=X−X, forming a partition {X,X} over X. We partition

MXπ into two distinct Markov chains with |S|-by-|S| stochastic matrices M and M . The latter M

describes transitions within the other vertices in X and how control is returned to X. The former

M describes transitions within the local vertices in X surrounding and including v.

The two stochastic matrices are linked by a summarization function λ :S×S→ [0,1] at the

stochastic transition boundary between X and X. As the focus is on rewards generated in X, λ is

defined using M to define M . This summarization function λ equals the probability of returning

to the particular states in X vertices from any starting state in X after stochastically traversing

through states in X. Trivially, if the starting state is already in X then λ is simply probability 1 at

the starting state.

Formally, let |S|-by-|S| stochastic matrix M be defined for starting state s=〈i,sx1 , . . . ,sx|X|〉∈S

and resulting state s′=〈i′,s′x1
, . . . ,s′x|X|〉∈S as:

M(s,s′)=

 MXπ(s,s′), if i∈X

[s′=s], if i∈X
. (3.6)

Intuitively, M is defined to: (1) transition normally while inside X, and (2) absorbing via a self-loop

when arriving (or starting) in a state in X.
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Next, let the summarization function λ :S×S→ [0,1] be defined by:

λ(s,s′)= lim
z→∞

M (z)(s,s′), (3.7)

with M (z) denoting the z-th power of stochastic matrix M . Intuitively, λw is defined to capture the

probability of starting in a state in X and returning control to a state in X, namely after traversing

the non-reward generating states in X.

Lastly, let |S|-by-|S| stochastic matrix M be defined as:

M(s,s′)=


MXπ(s,s′)+

∑
ŝ∈S [̂i∈X]MXπ(s, ŝ)λ(ŝ,s′), if i∈X∧ i′∈X

0, if i∈X∧ i′∈X

[s′=s], if i∈X

. (3.8)

with ŝ= 〈̂i, ŝx1
, . . . , ŝx|X|〉∈X. Intuitively, M is defined to: (1) transition normally while inside X,

while summarizing the transitions through X by which other outside successors ŝ are possible (from

s to ŝ) and only considering which resulting state s′ (from ŝ to s′) is possible to end up in after

travelling through X back to X; (2) transitions to other outside vertices X are summarized, instead

integrated into (1), and thus not considered; and (3) ignore the effects of starting in other outside

vertices’ states by self-looping.

As stated, we assume that the policy network is well-defined, and that control is returned to

v with probability 1 as time tends to infinity. Formally, for each relative Markov reward process,

control is always returned to X with probability 1 as time tends to infinity, computed by summing

over the combination of states for λ, with successor controller being in X:

∑
ŝ∈S

[̂i∈X]λ(s, ŝ)=1,

for any initial state s∈S. Technically, this assumption need only be true for the directed acyclic

graph described in the next section, as some stationary policies may avoid transferring control to

some vertices entirely. While it is possible to analyze induced Markov chains that do not have

this property, we will leave this analysis to future work, as it complicates defining the constrained

semi-MDPs in the next section (e.g., R can be unbounded).

Additionally, there are other equivalent representations to compute these Markov chains and

the state transition probabilities. The approach presented here merely attempts to break down
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each relevant consideration in a step-by-step manner. The decomposition approach here of the full

Markov multi-reward process and an individual vertex v’s relative Markov reward process will, again,

prove useful in describing the constrained semi-MDP in the next section (e.g., F , T , and ρ).

3.3 Optimality Criterion

Now that the policy network’s stochastic process is defined, we want to define a notion of opti-

mality. We leverage the well-established formalism of CMDPs and SMDPs to the define values and

objective for policy networks.

Specifically, we state that a policy network induces a hierarchy of constrained semi-Markov deci-

sion processes (CSMDP). Each CSMDP is dependent on its ancestors following a dependency graph.

Thus, we will see that policy networks can be solved by a simple algorithm: start at the furthest

vertices from the initial controller, iteratively solve each vertex’s CSMDP down the dependency

graph, and terminate once the initial controller vertex is reached.

To get to this point, however, we must first define the dependency graph, the CSMDP components

(time, state, action, transition, reward, and constraints), and the infinite horizon objective function.

3.3.1 Dependency Graph

In order to crisply define an objective function, for any given vertex, we must define which other

vertices affect it via performing action, transfer of control, and constraints. To this end, we introduce

a dependency graph and ancestors of vertices.

From an initial controller, we derive a graph describing the direct constraint or transfer depen-

dencies among two vertices. Formally, the dependency graph 〈Vd,Ed〉 is a directed acyclic graph

(DAG), with Vd⊆V and Ed⊆E that admits the most paths from each reachable vertex leading to

the initial controller v0. Following the dependency graph, we let vertex v’s ancestors be Av⊂Vd

and its parents be Pv⊆Av.

In general, for any given policy network there can be multiple valid dependency graphs. A useful

special case is when the policy network follows a tree structure, which simply produces a single

unique dependency graph. Formally, if we convert edges to undirected edges (collapsing duplicates

and self-loops) and produce an undirected tree, then this is the special case. The policy networks

discussed in this chapter happen to be this special case, but in general it need not be the case.

Finally, the dependency graph can be either unspecified or specified a priori. For the former, any

of the valid dependency graphs can be computed from the general directed graph 〈V,E〉. A simple

technique to do this is presented in Algorithm 1. For the latter, we are given a dependency graph
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〈Vd,Ed〉. This not only allows us to skip the step of computing one, but also allows for a simpler

alternate graphical representation when designing policy networks.

3.3.2 Relative Constrained Semi-MDP

We construct the constrained semi-MDP (CSMDP) relative to a vertex v, building off of Sec-

tions 3.2.2 and 3.2.3. Instead of considering the entire Markov multi-reward process, we only con-

sider the vertices relevant to v via X={v}∪Av, resulting in X and X from Equation 3.5. From

this smaller relative Markov reward process M , we assume ancestor policies are stationary, with

π=〈πv,πx1 , . . . ,πx|Av|〉 only varying in the choice of πv. The objective is to solve for an optimal

policy π∗v ∈Πv that maximizes the expected reward for Rv. To this end, we now formalize each

element of the induced CSMDP: time, state, action, transition, reward, and constraints.

As in the previous section, for notational simplicity in the definitions that follow, we use an

overline to refer to the relative vertex v’s CSMDP, given vertex v, the set of vertices X, and the

policies π. For example, S, T , F , ρ, and R are all defined for a given v, X, and π.

Relative Times In discrete time SMDPs [98], as detailed Chapter 2, there are three notions

of time which policy networks share for the relative vertex v: (1) natural process time τ ∈N, (2)

decision epoch t∈N, and (3) sojourn time τ t∈N. A vertex v’s relative decision epochs are when it

is a controller, and its relative sojourn times are the duration between being in control.

Relative State Given X={v}∪Av, Equation 3.5 defines the relevant vertices X which, in turn,

defines the relative state space. We must consider v’s own state space Sv and any relevant parent w

state space Sw, should it ever gain control. This is formally defined as S=X×Sx1
×·· ·×Sx|X| with

an individual relative state s=〈i,sx1 , . . . ,sx|X|〉∈S.

Relative Action We are focused on v’s control for the CSMDP. Thus the action set is simply Av.

Relative State Transitions Considering vertices X={v}∪Av yields a full specification of v’s

relative state transition with M . From M any desired probabilistic information can be extracted. We

provide the three common extracted SMDP probabilities: (1) Pr(τ ,s′|s,πv(sv)), (2) F (s,πv(sv), τ),

and (3) T (s,πv(sv), τ ,s
′).
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First, Pr(τ ,s′|s,πv(sv)) defines the probability that v is in control on or before time τ and when

control was returned at this time it ended in state s′, after performing action πv(sv) in state s. To

compute this, let us define a helpful |S|-by-|S| matrix U as:

U(s,s′)=

 M(s,s′), if i 6=v

[s′=s], if i=v

which captures: (1) the probability of transitioning when v is not in control, and (2) self-looping at

whatever state it regains control. U is used to define the full state transition, as it preserves the

state it was in for all future τ after control was returned to v. Formally, for s with i=v, we have:

Pr(τ ,s′|s,πv(sv))=

 (MU
(τ−1)

)(s,s′), if τ >0∧ i′=v

0, otherwise
(3.9)

with s assigned to i= i, su=su for all u∈X, and sw=s0
w for all w∈X; let s′ be assigned similarly.

Also note that U
(τ−1)

is the (τ−1)-th power of U , with U
0

=I. Intuitively, this begins with the

CSMDP Markov reward process M , which may or may not preserve v’s control, continuing to follow

M until control is returned to v, after which the resulting state is essentially stored via U ’s self-loop.

Second, F (s,πv(sv), τ) defines the probability that v is in control on or before time τ after

performing action πv(sv) in state s. It can be computed using Pr(τ ,s′|s,πv(sv)):

F (s,πv(sv), τ)=
∑
s′∈S

Pr(τ ,s′|s,πv(sv)). (3.10)

Third, T (s,πv(sv), τ ,s
′) defines the probability that the successor state is s′ given control had

not yet been returned to v prior to τ , after v had performed action πv(sv) in state s. To compute

this, let us define a helpful |S|-by-|S| matrix W as:

W (s,s′)=


M(s,s′)/η(s), if η(s)>0∧ i′ 6=v

0, if η(s)>0∧ i′=v

[s′=s], otherwise

with normalization term η(s)=
∑

s′′ [i
′′ 6=v]M(s,s′′). This captures: (1) the probability of transition-

ing only within X−{v}, since we are given that v is not in control up to τ steps, (2) transitions to
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v in control must be zero, and (3) any other case is considered a self-loop. W is used to define the

state transition behavior when v is not in control. Formally, for s with s with i=v, we have:

T (s,πv(sv), τ ,s
′)=W

(τ)
(s,s′) (3.11)

with s assigned to i= i, su=su for all u∈X, and sw=s0
w for all w∈X; let s′ be assigned similarly.

Again note that W
(τ)

is the τ -th power of U , with W
0

=I.

Relative Rewards The discrete time CSMDP for v has two rewards: (1) immediate reward Rv,

and (2) expected reward gained at rate ρ :S×Av×N→R. Specifically, as used in SMDP Equa-

tions 2.28 and 2.35, ρ(s,πv(sv), τ) is defined as the reward rate at sojourn time τ after action

πv(sv) was performed in state s, but before the next action is performed. However, as shown

in SMDP Equations 2.29 and 2.36, we can use an alternate ρ′ :S×Av×S→R to define ρ. Let

ρ′(s,πv(sv),s
′))=Rv(s

′
v,πi′(si′)). By discrete time SMDP reward rate Equation 2.36:

ρ(s,πv(sv), τ)=γτv
∑
s′∈S

Rv(s
′
v,πi′(s

′
i
′))T (s,πv(sv), τ ,s

′), (3.12)

with the discount factor γv∈ [0,1). By discrete time SMDP expected reward Equation 2.35:

R(s,πv(sv))=Rv(sv,πv(sv))+

∞∑
τ ′=1

F (s,πv(sv),dτ
′)

τ ′−1∑
τ=1

ρ(s,πv(sv), τ). (3.13)

Relative Constraints The constraints for vertex v’s CSMDP follow directly from the parents,

restricting the space of available policies. Formally, this is defined by the set Cv⊆{v}∪Pv:

Cv=
{
w∈{v}∪Pv

∣∣∣∃〈w,v〉∈E∧∃Πwv

}
. (3.14)

This set of v’s direct parent vertices, possibly including a self-constraint, defines the constraints for

the relative CSMDP. Formally, the vertex v’s chosen policy πv∈Πv to use must satisfy:

πv∈Πv∩
( ⋂
w∈Cv

Πwv

)
. (3.15)

In some cases, the intersection of the policy constraint edge sets can produce an empty set of

policies. This is equivalent to an overly-constrained CMDP [2]. As in the CMDP case, policy
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networks will return infeasible for such a scenario, as no such solution exists. Formally, we call a

policy network’s CSMDP infeasible if:

Πv∩
( ⋂
w∈Cv

Πwv

)
=∅. (3.16)

Additionally, an important consequence of the dependency graph’s topological ordering is that some

constraints may not be considered, such as if two vertices constrain each other directly. In these

cases, the dependency graph will breaks this tie and solves them in a topologically valid manner.

As such, we also consider the scenario in which a constraint is not satisfiable to be infeasible.

We consider two main forms of policy constraint edges Πwv in this thesis. Both forms are in

terms of a bound on regret from expected value—as defined in the next section—up to an allotted

slack—allowable regret, the deviation from this optimal expected value.

First, if the state and action spaces are shared, then v can choose among all policies that were

within slack of optimal for w’s objective. Formally, for edge 〈w,v〉∈E, given Sv=Sw, Av=Aw, and

slack δwv≥0, the policy constraint Πwv is:

Πwv=
{
π∈Πw∩

( ⋂
u∈Cw

Πuw

)∣∣∣V ∗w(s0
w)−V πw(s0

w)≤δwv
}
, (3.17)

with vertex w’s CSMDP value function and initial state denoted by V w and s0
w, respectively. This

type of constraint is used in TMDPs. Chapter 5 covers this and other related forms in detail.

Second, if only the action spaces are shared, then v can choose among all policies that have

approved actions—actions that were within a local one-step slack of optimal for w’s objective at a

particular state. Formally, for edge 〈w,v〉∈E, given Av=Aw, local one-step slack ηwv≥0, and state

sw∈Sw, the policy constraint Πwv is:

Πwv=
{
π∈Πv

∣∣∣V ∗w(sw)−Q∗w(sw,π(sv))≤ηwv,∀sv∈Sv
}
. (3.18)

with vertex w’s CSMDP value and Q-value functions denoted by V w and Qw, respectively. This

type of constraint is used in MODIA. Chapter 7 covers the online use of this in detail.
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3.3.3 Objective Function

The infinite horizon objective of a policy network is defined recursively over each successive

relative CSMDP. Formally, vertex v’s objective to find a policy πv∈Πv that maximizes the expected

reward starting from initial state s0 subject to its ancestral constraints:

maximize E
[ ∞∑
t=0

γτ
t

v

(
Rv(s

t
v,πv(s

t
v))+

τt+1∑
τ=τt

γ−τ
t

ρ(stv,π(stv), τ−τ t)
)∣∣∣πv,s0

]
(3.19)

subject to πv∈Πv∩
( ⋂
w∈Cv

Πwv

)

with stv denoting the random variable for the state of v at its decision epoch t, τ t denoting the random

variable for decision epoch start times, the combined term τ−τ t denoting the random variable for

each decision epoch t’s sojourn time, and the stationary ancestor policies πw and policy sets Πw

used in ρ and Πwv.

For a policy πv∈Πv, the value V
π

:S→R is the expected reward at state s follows the SMDP

Bellman equation (as defined Equations 2.26 and 2.34):

V
π
(s)=R(s,πv(sv))+

∑
s′∈S

∞∑
τ=1

γτPr(dτ,s′|s,πv(sv))V
π
(s′). (3.20)

A policy π∗v ∈Πv is optimal if it obtains the maximal value V
∗
(s0). This optimal value can be

computed, subject to the constraints, by the Bellman optimality equation over each state s:

V
∗
(s)= max

av∈Av

(
R(s,av)+

∑
s′∈S

∞∑
τ=1

γτPr(dτ,s′|s,av)V
π
(s′)
)
. (3.21)

3.3.4 Algorithm

Algorithm 1 follows directly from the definitions (i.e., dependency graph) and equations (e.g.,

Equaion 3.21) above. As stated above, we consider stationary policies here, leaving algorithms

for non-stationary policies to future work. To solve a policy network means to compute optimal

stationary policies for each CSMDP following the dependency graph. Optionally, we have included

computing a dependency graph; it can instead be given. As it is a DAG, it defines a topological

ordering x. ComputeReversePostOrderDFS(V , E, v0) returns vertex ordering x by a simple

reverse post-order traversal depth-first search (DFS). Path(Vd, Ed, w, v) returns the set of paths

between w and v on 〈Vd,Ed〉. SolveRelativeCSMDP(v, Av, Π∗) solves the relative CSMDP.
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Algorithm 1 An algorithm to compute the collection of optimal CSMDP policies for the vertices
of a policy network.

Require: 〈V,E〉: The policy network.
Require: v0: The initial controller.
1: procedure ComputeDependencyGraph(V , E, x)
2: Vd ← {v∈V |∃xi=v}
3: Ed ← {〈v,w〉∈E|∃xi=v∧∃xj=w∧j>i}
4: return 〈Vd,Ed〉
5: procedure SolvePolicyNetwork(Vd, Ed, x, v0)
6: Π∗ ← {}
7: for v←x1, . . . ,xk do
8: Av ← {w∈V ′|∃p∈ Path(Vd, Ed, w, v) }
9: π∗v ← SolveRelativeCSMDP(v, Av, Π∗)

10: Π∗ ← Π∗∪{π∗v}
11: return Π∗

12: x ← ComputeReversePostOrderDFS(V , E, v0)
13: 〈Vd,Ed〉 ← ComputeDependencyGraph(x)
14: return SolvePolicyNetwork(Vd, Ed, x, v0)

3.3.5 Conditioning

To this point, the relative Markov reward process to v, and its corresponding relative CSMDP,

assume all ancestor vertices are stationary—that is, both the policy and policy set are given. We can

generalize this concept by allowing any set of vertices to be given for computing vertex v’s relative

CSMDP. This added flexibility will be useful in the next section. Thus we formalize a notion of

conditioning in policy networks.

A vertex v∈V is conditioned on by a vertex w∈V , denoted v|w, if w is a stationary vertex. We

can condition on any number of vertices, such as v|a,b,c. To this point, we have considered a vertex

v to be conditioned on its ancestors v|Av. Conditioning is necessary in most cases to compute the

relative CSMDP value V
πv
v (s0).

3.3.6 Independence

The relative CSMDP for vertex v depends on the ancestors Av, namely their stationary policies

for transfer of control transition edges and policy sets for constraint edges. Hence, if a policy

network does not initially have any stationary vertices, then solving it (e.g., with Algorithm 1)

requires computing all ancestors’ relative CSMDPs to obtain their optimal policies. Consider the

case in which a vertex v’s parents w∈Pv were stationary vertices—we have their policy πw and

policy set Πw∩(
⋂
uΠuw). By Equation 3.19, we can compute its value V

∗
v(s

0) if we also know: (1)

the summarization λv(s,s
′) for states s=〈w,. . .〉 as defined by the policy transition edges which give

control from w to other ancestors, and (2) the policy set available to v as defined by the policy
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constraint edges Πv∩(
⋂
wΠwv). In this case, we have all necessary information to solve for π∗v

without needing any other information about other ancestors. This means we can avoid computing

v’s relative CSMDP’s optimal value and optimal policy for potentially many distant ancestors of v.

This is the motivation for defining a more general notion of independence in policy networks.

To accomplish this goal, we must make an assumption regarding stationary vertices to discuss

independence. For example, observe that the constraint edges 〈w,v〉 require knowledge of the value

V
∗
w(s0) in order to compute the policy constraint Πwv. Also, observe that the effects of any transfer

of control to w must be known in λv when starting in states with w in control. Thus, given a

stationary policy for w, we need to assume we can compute its value, and consequently all relevant

components specific to w. Formally, the stationary information assumption assumes that: if

w∈V is stationary with policy πw and policy set Πw, then we know its value V
πw
w (s0), any policy

constraints Πwu, and any λv(s,s
′) for s=〈w,. . .〉.

This assumption has been trivially true up to this point because we have v|Av and all information

had already been computed for ancestors. Cases in which a subset of ancestors are given also follow

naturally. First, Chapter 5 discusses the case of policy constraint edges Πwv and independence

therein. Second, the case in which λv must be known starting at stationary controller vertex w

(i.e., s=〈w,. . . ,〉) is straight-forward in policy networks with tree dependency graphs—nearly every

policy network in this thesis. It is simply λv(s,s
′)=λw(sw,s

′
w) with all state factors in sw assigned

to match the corresponding factors in s. In any case, with the ability to compute components of

stationary vertices, we may now define a general notion of independence.

A vertex v∈V is independent of a vertex w∈V , denoted as v⊥w, if v’s optimal value V
∗
(s0) can

be computed without w. Specifically, v⊥w if: (1) w /∈{v}∪Av, (2) for all paths p=〈w,. . . ,u, . . . ,v〉=

Path(Vd, Ed, w, v) there exists a stationary vertex u. Importantly, independence is not commutative,

v⊥w 6=w⊥v. Also, this definition implicitly defines the policy network equivalent of d-separation;

however, any such causality of sorts is much simpler in policy networks as opposed to Bayesian

networks. Once independence v⊥w is established, we can compute the value of v without the need

for any such vertex w. Potential algorithms that analyze independence and exploit it to quickly

solve policy networks is a topic of interest for future work.
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3.4 Graphical and Notational Representations

Policy networks continue the tradition set by probabilistic graphical models (PGMs) with clean

and powerful graphical and notational representations. This allows for rich complex decision-making

with many objectives and levels of abstraction to be easily described and analyzed.

We first define a general graphical notation for any form of policy network; it does not assume a

dependency graph is given. Next, we define a simpler, more specific, graphical notation for certain

forms of policy network; it assumes the dependency graph is given. Finally, we define a simple

graphical notation for policy network values, in a similar style to the convenient notation used in

probability theory.

3.4.1 Graphical Representation

Figure 3.1 covers basic policy network notation. Each vertex as v∈V is a circle and each directed

edge e∈E as an arrow. Edges are directed and denote their policy dependencies by any relevant

variables. For example, policy constraints are denoted by their policy set Πe and policy transitions

are denoted by their function Te. When it is not ambiguous, it may suffice to denote parameters

instead, such as slack δe, an options’ initiation set Ie, or termination function βe. Here vertices and

edges are lowercase, and their sets are uppercase; however, this need not be the case in general.

The initial controllers v0 are denoted by double-lined circles. Stationary vertices are filled-in—e.g.,

solved by offline algorithms. In contrast, non-stationary vertices which are not filled-in—e.g., solved

by online algorithms. Plate notation may be used to easily group sets of similarly defined vertices.

Any vertex v which follows a standard MDP, POMDP, etc. model uses the notation v∼MDP(·),

v∼POMDP(·), etc. in the tradition of PGMs. Intuitively, the “∼” symbol refers to “selecting”

or “choosing” a policy from a policy space. This notation is used for convenience. It completely

describes the vertex’s policy set Πv, reward Rv, and an implicit self-loop edge with transition Tvv.

Formally, this extra notation means v∼MDP(Sv,Av,Tv,Rv) defines v with the set of policies

given by Πv={π :Sv→Av} with reward Rv :Sv×Av→R. Also, it defines the implicit edge—that

is, merely not graphically drawn—self-looping edge e=〈v,v〉∈E with policy transition Te=Tv. The

same formal definition holds for v∼SSP(Sv,Av,Tv,Cv,s
0
v,s

g
v), except with costs such that Rv=−Cv.

POMDPs are similarly defined as v∼POMDP(S,A,Ω,T,O,R) because they are simply a special

form of continuous state MDP called a belief MDP [63]. Formally, the set of policies is given by Πv=

{π :4|Sv|→Av} with reward Rv :4|Sv|×Av→R such that Rv(bv,av)=
∑
sv
bv(sv)R(sv,av). The

implicit edge e=〈v,v〉∈E has policy transition Te=τv with τv :4|Sv|×Av×4|Sv|→ [0,1] following

the belief MDP state transition as in Equations 2.21 and 2.22.

52



(a) v (c) v w (e)
vwi

i∈N
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Figure 3.2: Similar basic examples as shown in Figure 3.1 of the alternate graphical notation de-
scribed in Section 3.4.2 that is used to more quickly represent policy networks. Each v∈V follows
some model v∼MDP(Sv,Av,Tv,Rv): (a) stationary vertex; (b) non-stationary vertex; (c) constraint
edge; (d) transfer of control edge; (e) plate notation for a set of N constraints; and (f) mixture of
the concepts. Conveniently this alternate form explicitly defines the dependency graph.

3.4.2 Alternate Graphical Representation

The previous section above describes a lossless graphical representation for any policy network. It

makes no assumption about the dependency graph selected and allows for rich complex interactions

among vertices. While this notation is general, it can be a bit overwhelming to view, and lacks a

means to enforce a particular dependency graph to be used in the optimality criterion for the policy

network. We now provide an alternate graphical representation that is not as general but is simpler

and allows the dependency graph to be specified in the graphical form itself.

Formally, the graphical notation is nearly identical to Section 3.4.1 above, except that we render

the dependency graph 〈Vd,Ed〉 instead of the full policy network graph 〈V,E〉. Each vertex v∈Vd is

a circle as before, referring to the policy space Πv and reward Rv. Stationary vertices are filled-in;

non-stationary vertices are not filled-in. However for each edge e∈Ed, we now assume bidirectionality

in E. Formally, if 〈w,v〉∈Ed then {〈w,v〉,〈v,w〉}⊆E. Moreover the edge e=〈w,v〉 can be either:

(1) a transition edge, governed by bidirectional partial functions Twv and Tvw; or (2) a constraint

edge Πwv, unidirectional in the constraint, and assumed to follow either Equation 3.17 or 3.18 based

on if the state space is shared or not. To quickly delineate the two, we use a solid line for a transition

edge and a dotted line for constraint edge. Also this restricted graphical notation of an edge allows

us to omit explicitly stating Te or Πe on each edge, leveraging a solid or dotted line instead. The

remaining notation surrounding the model—v∼MDP(·), v∼SSP(·), v∼POMDP(·), etc.—is exactly

as detailed above.

Figure 3.2 shows example notation using this alternate graphical representation. All vertices are

equivalent to those corresponding in Figure 3.1 except the mixture of concepts (f). In Figure 3.2 (f),

the bidirectionality would require that edges {〈y,x〉,〈w,y〉,〈v,x〉} be added to E in Figure 3.1 (f).
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3.4.3 Notational Representation

Following in the tradition of probability theory, we provide a notational representation of value

for policy networks. Essentially, policy networks seek to compute value for collections of vertices.

We can capture this simply by a vector of values. We can also embed the properties of conditioning

and independence that were established previously in the formulation of value.

Let V ={v} denote a vertex whose policy is chosen from some v∼〈Πv,Rr〉 or v∼MDP(S,A,T,R).

We simply write the value for a policy π∈Πv as:

Va(v=π)=

[
V
π

v (s0
v)

]
.

with V v denoting the value following Equation 3.20 and its initial state sv=〈v,s0
x1
, . . . ,x0

x|Xv|
〉. When

the policy π is omitted, we assume the optimal policy is chosen to compute the optimal value:

Va(v)=

[
V
∗
v(s

0
v)

]
.

We can apply the useful definition of conditioning as defined in Section 3.3.5 to this notation.

Let V ={v,w} and Ed={〈w,v〉}. For a given stationary vertex w, the conditional value is:

Va(v|w)=

[
V
∗
v(s

0
v|w)

]
,

with V
∗
v(s

0
v|w) denoting computing V

∗
i in Equation 3.20 using πw and any other components offered

by the stationary vertex under the stationary information assumption. Conditional value operates

for any set or listed vertices, as it is defined in Section 3.3.5. Importantly, if we condition on a vertex

w∈Av, then we cannot condition that vertex on anything else; it is already assigned a stationary

policy and policy set.

Most vertices are, in fact, dependent on their ancestors to compute their value. In Section 3.3,

we actually compute Va(v|Av), since hidden in the definition of V
∗
v (Equation 3.19) contains a

dependence on all ancestors Av.

Fortunately, we can also apply the definition of independence as defined Section 3.3.6:

Va(v|w)=Va(v) if v⊥w.

Observe that Va(v|V −Av)=Va(v) by definition of the dependency graph and relative CSMDP.
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We can consider multiple vertices’ values simultaneously. Let V ={v,w}. The joint value is:

Va(v,w)=

Va(v|Av)

Va(w|Aw)

 .
This notation leverages block matrix notation. Hence, we can chain this definition any number of

times. For example, if V ={u,v,w}, then:

Va(u,v,w)=

 Va(u|Au)

Va(v,w|Av∪Aw)

=


Va(u|Au)

Va(v|Av∪Aw)

Va(w|Av∪Aw)

=


Va(u|Au)

Va(v|Av)

Va(w|Aw)

 .

Lastly, we can leverage the matrix notation by using standard basis vectors e1 =[1,0]T and

e2 =[0,1]T . Let V ={v,w}. We may also write the joint value in the form:

Va(v,w)=eT1 Va(v|Av)+eT2 Va(w|Aw).

In any case, this notational form of value, conditioning, and independence is simply an efficient

way to represent value. The rich mathematical manipulations in probability theory are not neces-

sarily needed here, given the more focused graphical structure to define value. We leave any detailed

analysis of this form to future work.

3.5 Theoretical Analysis

We now show the generality of policy networks by proving that they can encapsulate various

models such as the options framework and CMDPs. Additionally, this section also serves as a

demonstration of the design of policy networks to provide guidance for how to create them. Propo-

sition 1 begins with a statement regarding policy networks’ generality beyond (PO)MDPs.
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Proposition 1. Policy networks generalize MDPs.

Proof. For any MDP 〈Sv,Av,Tv,Rv〉, we must construct an equivalent policy network. Let V =

{v} with v∼〈Πv,Rv〉 for Πv={π :Sv→Av}. Let E={e=〈v,v〉} with transition Te=T such that

Pr(v,s′v|v,sv,av)=Te(sv,av,s
′
v)=Tv(sv,av,s

′
v). Or, using equivalent notation, simply let the vertex

be written as v∼MDP(Sv,Av,Tv,Rv). Let the initial controller be v0 =v.

We have X=V ={v}. By Equation 3.2, for any policy π, MXπ=Mv
Xπ for the state space

S={v}×Sv with s=〈v,sv〉∈S. By Equation 3.3, Mv
Xπ(s,s′)=µ(V,v,sv,πv(sv),v,s

′
v) as it=v for all

t. By Equation 3.1 and definition of Te=T above, µ(V,v,sv,πv(sv),v,s
′
v)=Pr(v,s′v|v,sv,πv(sv))=

T (sv,πv(sv),s
′
v).

By Equation 3.5, X={v}. This implies X=∅, obviating the need for M and λ. By Equa-

tion 3.8, only the first case applies, and [̂i∈X]=0. Thus, we arrive at M(s,s′)=MXπ(s,s′)=

Tv(sv,πv(sv),s
′
v).

The relative CSMDP has states S=S={v}×Sv, with s=〈v,sv〉∈S, and actions Av. By Equa-

tion 3.9, Pr(τ ,s′|s,πv(sv))=M(s,s′)=Tv(sv,πv(sv),s
′
v)[s

′
v=sv]

τ−1 for τ >0 and Pr(τ ,s′|s,πv(sv))=

0 for τ=0. Therefore, the time-differential state transition is Pr(dτ,s′|s,πv(sv))=Tv(sv,πv(sv),s
′
v)

[τ=1]. By Equation 3.10, we have F (s,πv(sv),dτ)=[τ=1], akin to Equation 2.24.

By Equation 3.13, R(s,πv(sv))=Rv(sv,πv(sv))+0=Rv(sv,πv(sv)), noting that F obviates the

need to consider ρ. Also, Pv=∅ implies by Equation 3.14 that Cv=∅. In other words, there are no

instances of transfer of control nor are there any constraints.

By Equation 3.20, with s=〈v,sv〉, we have:

V
π
(s)=Rv(sv,πv(sv))+γv

∑
s′v∈Sv

Tv(sv,πv(sv),s
′
v)V

π
(s′) (3.22)

with s′=〈v,s′v〉. Hence Equation 3.20 becomes the Bellman equation for the MDP in Equation 2.2.

Thus, we have represented any MDP’s states, actions, transition, reward, and value equations

with an policy network.

We consider two related cases of policy constraint edges: CMDPs in Proposition 2 and MODIA in

Chapter 7’s Proposition 26. Here, constraints limit the space of policies from parent vertices to a child

controller vertex. CMDPs represent a policy network with a shared both state and action space,

constrained offline with stationary policies. MODIA represents a policy network with a different

state space but a shared action space—illustrating how performing action can simultaneously affect

many models—constrained online with non-stationary policy sets.
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Proposition 2. Policy networks generalize CMDPs.

Proof. For any CMDP 〈S,A,T,R,C,c〉 with k constraints, we must construct an equivalent policy

network. Please see Figure 3.3 (a) for the graphical representation. Let V ={v0, . . . ,vk} with v0∼

MDP(S,A,T,R) and vj∼MDP(S,A,T,−Cj) for all j∈K={1, . . . ,k}. Policies for vj ∈V can be

deterministic Πj={π :S→A} or stochastic Πj={π :S×A→ [0,1]}; the analysis is identical. Thus,

without loss of generality, we will write the value equation for deterministic policies here; using

stochastic policies merely introduces an outer summation of a stochastic action selector for value

function in Equations 3.20 and 3.21. Let the initial controller be v0 =v0.

Let E={〈vj ,vj〉,∀j∈{0}∪K}∪{〈vj ,v0〉,〈v0,vj〉,∀j∈K}. Each edge 〈vj ,vj〉∈E are the self-

loops with policy transition edge Tvjvj (sj ,aj ,s
′
j)=Pr(v′j ,s

′
j |vj ,sj ,aj)=T (sj ,aj ,s

′
j)[v

′
j=vj ]. Each

edge 〈vj ,v0〉∈E has the policy constraint defined in Equation 3.17 with a slack of δvjv0 =V
∗
vj (s

0
vj )+

cj , such that Πvjv0 ={π∈Πvj |V
∗
vj (s

0
vj )−V

π

vj (s
0
vj )≤δvjv0}. Notationally we must include the sub-

script vj in V vj to delineate each value.

We have the dependency graph 〈Vd,Ed〉 with Vd=V and Ed={〈vj ,v0〉,∀j∈K}. Following the

optimality criterion in Section 3.3, we solve each relative CSMDP following the topological ordering

of the dependency graph. Thus, cases j∈K can be solved independently first, followed by case j=0.

Case j ∈ K: For each vertex vj with j∈K, we have X={vj}. This case follows almost

identically from Proposition 1. We include the details here for completeness and to highlight

the minor variations. By Equation 3.2, for any policy π, MXπ=M
vj
Xπ for the state space S=

{vj}×S with s=〈vj ,svj 〉∈S. By Equation 3.3, M
vj
Xπ(s,s′)=µ({vj},vj ,svj ,πvj (svj ),vj ,s′vj ) as it=vj

for all t. By Equation 3.1, the definition of Tvjvj =T above that places all probability weight

on preserving vj ’s control (i′=v′j=vj), and X={vj}, we have µ({vj},vj ,svj ,πvj (svj ),v′j ,s′v′j )=

Pr(v′j ,s
′
v′j
|vj ,svj ,πvj (svj ))=T (svj ,πvj (svj ),s

′
v′j

)[v′j=vj ].

By Equation 3.5, X={vj}. This implies X=∅, obviating the need for M and λ. By Equa-

tion 3.8, only the first case applies, and [̂i∈X]=0. Thus, we arrive at M(s,s′)=MXπ(s,s′)=

T (svj ,πvj (svj ),s
′
vj ), removing the unnecessary [v′j=vj ]=1 since, again, it=vj by S={vj}×S.

The relative CSMDP has states S=S={vj}×S, with s=〈vj ,svj 〉∈S, and actions A. By Equa-

tion 3.9, Pr(τ ,s′|s,πvj (svj ))=M(s,s′)=T (svj ,πvj (svj ),s
′
vj )[s

′
vj =svj ]

τ−1 for τ >0 with i
′
=vj , and

also simply Pr(τ ,s′|s,πvj (svj ))=0 for τ=0. Therefore, the time-differential state transition just fol-

lows T , with Pr(dτ,s′|s,πvj (svj ))=T (svj ,πvj (svj ),s
′
vj )[τ=1]. By Equation 3.10, F (s,πvj (svj ),dτ)=

[τ=1], akin to Equation 2.24.
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By Equation 3.13, R(s,πvj (svj ))=−Cj(svj ,πvj (svj ))+0=−Cj(svj ,πvj (svj )), noting that F ob-

viates the need to consider ρ. Also, Pvj =∅ implies by Equation 3.14 that Cvj =∅.

By Equation 3.20, with s=〈vj ,svj 〉, we have:

V
π

vj (s)=−Cj(svj ,πvj (svj ))+γvj
∑
s′vj
∈S

T (svj ,πvj (svj ),s
′
vj )V

π

vj (s
′) (3.23)

with s′=〈vj ,s′vj 〉. Hence Equation 3.20 becomes the Bellman equation for the CMDP’s constraints

in Equations 2.43 and 2.45. Thus, for each constraint j∈K, we can compute V
∗
vj (s

0
vj ) and the policy

constraint edges Πvjv0 .

Case j = 0: For vertex v0, we have X={v0}∪Pv0 =V . By Equation 3.2, for policies π, MXπ=∏
vj∈V M

vj
Xπ for the state space S=V ×S×·· ·×S with s=〈i,sv0 ,sv1 , . . . ,svk〉∈S. By Equation 3.3,

at time t=0, Mv0
Xπ(s,s′)=µ(V,v0,sv0 ,πv0(sv0),vj ,s

′
vj ). By Equation 3.1 and definition of Tvjvj =

T above, µ(V,v0,sv0 ,πv0(sv0),v0,s
′
v0)=Pr(v0,s

′
v0 |v0,sv0 ,πv0(sv0))=T (sv0 ,πv0(sv0),s′v0)[i′=v0]; the

probability of another controller vj 6=v0 is zero: µ(V,v0,sv0 ,πv0(sv0),v0,s
′
v0)=0. Also, each other vj

has M
vj
Xπ(s,s′)=[s′vj =s′vj ]; informally, they copy the state of the successor controller, which must

be s′v0 . Thus, by Equation 3.2, MXπ(s,s′)=T (sv0 ,πv0(sv0),s′v0)[i′=v0]. Therefore, at time t=1, we

have i1 =v0. The same logic as above applies in succession for all time t.

By Equation 3.5, X=V . This implies X=∅, again obviating the need for M and λ. By Equa-

tion 3.8, only the first case applies, and [̂i∈X]=0. Thus, we arrive at M(s,s′)=MXπ(s,s′)=

T (sv0 ,πv0(sv0),s′v0)[i′=v0].

The relative CSMDP has states S=S=V ×S×·· ·×S, with s=〈i,sv0 ,sv1 , . . . ,svk〉∈S, and ac-

tions A. By Equation 3.9, Pr(τ ,s′|s,πv0(sv0))=M(s,s′)=T (sv0 ,πv0(sv0),s′v0)[i′=v0][s′v0 =sv0 ]τ−1

for τ >0 and also simply Pr(τ ,s′|s,πv0(sv0))=0 for τ=0. Therefore, the time-differential state

transition follows T and enforces v0 is the controller: Pr(dτ,s′|s,πv0(sv0))=T (sv0 ,πv0(sv0),s′v0)[i′=

v0][τ=1]. By Equation 3.10, F (s,πv0(sv0),dτ)=[τ=1], akin to Equation 2.24.

By Equation 3.13, R(s,πv0(sv0))=R(sv0 ,πv0(sv0))+0=R(sv0 ,πv0(sv0)), noting that F obviates

the need to consider ρ. By Equation 3.20, with s=〈i,sv0 ,sv1 , . . . ,svk〉=〈v0,sv0 ,sv0 , . . . ,sv0〉, we have:

V
π

v0(s)=R(sv0 ,πv0(sv0))+γv0
∑
s′v0
∈S

T (sv0 ,πv0(sv0),s′v0)V
π

v0(s′) (3.24)

with s′=〈i′,s′v0 ,s
′
v1 , . . . ,s

′
vk
〉=〈v0,s

′
v0 ,s

′
v0 , . . . ,s

′
v0〉. This assignment of state s and successor s is a

consequence of: (1) the initial controller is v0 =v0, and (2) all time steps preserve v0 as the controller

with it=v0. The probability of any other controller is zero, and all states copy the state of v0. Thus,
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vi∼MDP(S,A,T,−Ci)
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j∈K

v∼MDP(S,A∪O,T,R)
oj∼〈{πj},R〉

(a) CMDP (b) Options

Figure 3.3: Two examples of policy networks: (a) a constrained MDP, traditionally for a planning
agent; and (b) the options framework, traditionally for a reinforcement learning agent.

such successors are omitted in the summation by replacing the sum over S and assigning the s and

s′ as stated.

Importantly, Pv0 ={v1, . . . ,vk} implies by Equation 3.14 that Cv0 =Pv0 . Therefore, we have our

desired set of k constraints. By Equation 3.15, any policy πv0 chosen for v0 must be subject to the

constraints: for each vj ∈Cv0 , V
∗
vj (s

0
vj )−V

πv0
vj (s0

vj )≤δvjv0 =V
∗
vj (s

0
vj )+cj . Equivalently we can write

each constraint as: −V πv0vj (s0
vj )≤cj . This is identical to the CMDP constraints in Equation 2.45.

Hence both cases show that Equation 3.20 becomes Equations 2.45 and 2.43: (1) the Bellman

equation for the CMDP’s constraints, and (2) the constrained Bellman equation for the CMDP’s

primary objective.

Thus, we have represented any CMDP’s states, actions, transition, reward, constraints, and value

equations within a policy network.

Next, we consider two related cases of policy transition edges: the options framework in Propo-

sition 3 and SAS in Chapter 6’s Proposition 22. Here, transfer of control happens between parent

and child vertices, both online (options) and offline (SAS). Options represent a policy network with

a shared state space and shared action space, learning online with a non-stationary policy. SAS

represents a policy network with different state space and different action space—illustrating how

how different models can interact—planning offline with a stationary policies.

Proposition 3. Policy networks generalize options.

Proof. For any MDP 〈S,A,T,R〉 and set of options O={O1 . . . ,Ok} with Oj=〈Ij ,πj ,βj〉, we must

construct an equivalent policy network. Please see Figure 3.3 (b) for the graphical representation.

As v is traditionally a reinforcement learning agent, we can represent the vertex’s policy as non-

stationary. In both offline planning and online learning, we are concerned with computing an optimal
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policy using options. We consider both Markov options and semi-Markov options; both follow the

same logic save for a variation in their state space.

In both Markov and semi-Markov cases, let V ={v,o1, . . . ,ok}, with K={1, . . . ,k}. Let E=

{〈v,v〉}∪{〈oj ,oj〉,∀j∈K}∪{〈v,oj〉,〈oj ,v〉,∀j∈K}. Each edge has a policy transition as well, defined

by the partial functions Tvv, Tojoj , Tvoj , and Tojv. The specific assignment of these four policy

transition edges is described in the two cases below.

We have the dependency graph 〈Vd,Ed〉 with Vd=V and Ed={〈oj ,v〉,∀j∈K}. Following the

optimality criterion in Section 3.3, we solve each relative CSMDP following the topological ordering

of the dependency graph. Thus, cases oj can be solved independently first, followed by case v.

First, we precisely define the Markov and semi-Markov option cases. Once defined, the remainder

of the proof applies to both these cases. Namely, we detail the oj vertices and then, finally, we detail

the v vertices.

Step 1: Below we define the policy networks for: (1) Markov and (2) semi-Markov options.

Case Markov Options: Let v∼MDP(S,Av,Tvv,Rv) and for each option Oj let oj∼〈Πoj ,Rv〉

with Av=A∪O and only the option policy Πoj ={πj} available to oj , following πj :S→Av. With-

out loss of generality in MDPs, actions can be defined for each state (i.e., Av(sv)), handling any

invalid execution of options in states. In policy networks, we can either define Πv to omit any

such invalid policies, or define a policy constraint that removes them: Πvv={π∈Πv|π(sv)∈A∪

{Oj |sv∈Ij(sv)},∀sv∈S}. Let Rv be Rv(sv,av)=R(sv,av) if av∈A and Rv(sv,Oj)=R(sv,πoj (sv))

if av=Oj ∈O.

For v’s state transitions, let Tvv(sv,av,s
′
v)=T (sv,av,s

′
v) if av∈A as normal. Also, for option

actions av=Oj ∈O, let Tvoj (sv,Oj ,s′oj )=(1−βj(s′oj ))T (sv,πoj (sv),s
′
oj ) transfer control to the op-

tion oj—when allowed by v’s reduced policy space from Ij . Interestingly, we also must allow the

transfer to immediately fail after the option performs one action, as represented by Tvv(sv,Oj ,s′v)=

βj(s
′
v)T (sv,πoj (sv),s

′
v).

Similarly for each option oj ’s state transitions, let Tojoj (soj ,aoj ,s
′
oj )=(1−βj(s′oj ))T (soj ,aoj ,s

′
oj )

if aoj ∈A preserve controller oj following (1−βj(s′oj )). Conversely, we let Tojv(soj ,aoj ,s
′
v) =βj(s

′
oj )

T (soj ,aoj ,s
′
v) transfer control back to v stochastically following βj(s

′
oj ). If desired, options can

be trivially defined to transfer control to other options, as done with v. However, to preserve the

original options framework definition, we assume here that each fixed option policy πj does not

execute another option. Formally, for all soj ∈S, πj(soj ) /∈O.

Case Semi-Markov Options: Semi-Markov options have a similar structure, except the shared

state space is H̄ instead of S. Thus, the state is h̄=〈s0,a0,s1,a1, . . . ,at−1,st〉∈H̄, with a t particular
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for the state h̄. Let v∼MDP(H̄,Av,Tvv,Rv) and for each option Oj let oj∼〈Πoj ,Rv〉 with Av=

A∪O. Only the option policy Πoj ={πj} available to oj follows πj :H̄→Av.

For v’s state transitions, let Tvv(h̄v,av, h̄
′
v)=T (s0

v,av,s
′
v)[h̄

′
v=〈s′v〉] if av∈A as normal, essen-

tially ignoring the option’s time component in the state space. Also, for option actions av=Oj ∈O,

let Tvoj (h̄v,Oj , h̄′oj )=(1−βj(s′oj ))T (s0
v,πoj (s

0
v),s

′
oj )[h̄

′
oj =〈s′oj 〉] transfer control to the option oj—

when allowed by v’s reduced policy space from Ij . Interestingly, we also must allow the trans-

fer to immediately fail after the option performs one action, as represented by Tvv(h̄v,Oj , h̄′v)=

βj(s
′
v)T (s0

v,πoj (s
0
v),s

′
v)[h̄

′
v=〈s′v〉].

Similarly for each option oj ’s state transitions, let Tojoj (h̄oj ,aoj , h̄
′
oj )=(1−βj(s′oj ))T (stoj ,aoj ,s

′
oj )

[h̄′oj =〈s0
oj ,a

0
oj , . . . ,a

t−1
oj ,stoj ,aoj ,s

′
oj 〉] if aoj ∈A preserve controller oj following (1−βj(s′oj )). Con-

versely, let Tojv(h̄oj ,aoj , h̄
′
v)=βj(s

′
oj )T (stoj ,πoj (s

t
oj ),s

′
v)[h̄

′
v=〈s′v〉] transfer control back to v stochas-

tically following βj(s
′
oj ). If desired, options can be trivially defined to transfer control to other

options, as described above.

Step 2: Below we evaluate the optimality criterion for: (1) any vertex oj and (2) vertex v. We

focus the remainder of the proof on the Markov case, as the semi-Markov case below is nearly

identical.

Case oj: For each vertex oj with j∈K, we have X={oj}. This case follows almost identically

from Propositions 1 and 2. We include the details here for completeness and to highlight the

minor variations. By Equation 3.2, for any policy π, MXπ=M
oj
Xπ for the state space S={oj}×S

with s=〈oj ,soj 〉∈S. By Equation 3.3, M
oj
Xπ(s,s′)=µ({oj},oj ,soj ,πoj (soj ),oj ,s′oj ) as it=oj for all

t given X={oj}. By Equation 3.1, the definition of Tojoj above that places all probability weight

on preserving oj ’s control (i′=o′j=oj) if the action is in A. It also shifts all probability weight

on preserving oj ’s control by the definition of µ and given X={oj}. Specifically, there are two

piecewise cases for µ, either s′oj 6=soj or s′oj =soj . In the first case, µ({oj},oj ,soj ,πoj (soj ),o′j ,s′o′j )=

Pr(o′j ,s
′
o′j
|oj ,soj ,πoj (soj ))=(1−βj(s′o′j ))T (soj ,πoj (soj ),s

′
o′j

)[o′j=oj ∧s′oj 6=soj ]. In the second case,

µ({oj},oj ,soj ,πoj (soj ),o′j ,s′o′j ) = Pr(o′j ,s
′
o′j
|oj ,soj ,πoj (soj )) = ((1−βj(s′o′j ))T (soj ,πoj (soj ),s

′
o′j

) +∑
s′v∈S

βj(s
′
o′j

)T (soj ,πoj (soj ),s
′
v))[o

′
j=oj ∧s′oj =soj ]. Let this piecewise state transition be denoted

simply by T ′(soj ,πoj (soj ),s
′
oj ) below, obviating redundant and unnecessary terms such as [o′j=oj ].

By Equation 3.5, X={oj}. This implies X=∅, obviating the need for M and λ. By Equa-

tion 3.8, only the first case applies, and [̂i∈X]=0. Thus, we arrive at M(s,s′)=MXπ(s,s′)=

T ′(soj ,πoj (soj ),s
′
oj ).

The relative CSMDP has states S=S={oj}×S, with s=〈oj ,soj 〉∈S, and actions A. By Equa-

tion 3.9, Pr(τ ,s′|s,πoj (soj ))=M(s,s′)=T ′(soj ,πoj (soj ),s
′
oj )[s

′
oj =soj ]

τ−1 for τ >0 with i
′
=oj , and
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also simply Pr(τ ,s′|s,πoj (soj ))=0 for τ=0. Therefore, the time-differential state transition just fol-

lows T , with Pr(dτ,s′|s,πoj (soj ))=T ′(soj ,πoj (soj ),s
′
oj )[τ=1]. By Equation 3.10, F (s,πoj (soj ),dτ)=

[τ=1], akin to Equation 2.24.

By Equation 3.13, R(s,πoj (soj ))=R(soj ,πoj (soj ))+0=R(soj ,πoj (soj )), noting that F obviates

the need to consider ρ. Also, Poj =∅ implies by Equation 3.14 that Coj =∅.

By Equation 3.20, with s=〈oj ,soj 〉, we have:

V
π

oj (s)=R(soj ,πoj (soj ))+γoj
∑
s′oj
∈S

T ′(soj ,πoj (soj ),s
′
oj )V

π

oj (s
′) (3.25)

with s′=〈oj ,s′oj 〉. Hence Equation 3.20 becomes the Bellman equation (Equation 2.2). Importantly,

the option policy πj is the only policy available for optimization following Equation 3.19 given that

Πoj ={πj}. Thus, for each option oj , we can compute the value of the option V
∗
oj (s

0
oj )=V

πj
oj (s0

oj ).

Case v: For vertex v0, we have X={v0}∪Pv0 =V . By Equation 3.2, for policies π, MXπ=∏
oj∈V M

oj
Xπ for the state space S=V ×S×·· ·×S with s=〈i,sv,so1 , . . . ,sok〉∈S. The next two para-

graphs detail the state transition following Equation 3.3 and µ(V,v,sv,av,w,s
′
w)=Pr(w,s′w|v,sv,av),

by Equation 3.1.

For vertex v, by Equation 3.3, only the first (1) and second (2) cases can be non-zero: (1a) if i′=v,

i=v, and πv(sv)∈A, then Mv
Xπ(s,s′)=µ(V,v,sv,πv(sv),v,s

′
v)=T (sv,πv(sv),s

′
v) follows the state

transition as normal; (1b) if i′=v, i=v, and πv(sv)∈O, then Mv
Xπ(s,s′)=µ(V,v,sv,πoj (sv),v,s

′
v)=

βj(s
′
v)T (sv,πoj (sv),s

′
v) considers if transfer of control to the option fails; (1c) if i′=v and i=oj then

Mv
Xπ(s,s′)=µ(V,oj ,soj ,πoj (soj ),v,s

′
v)=βj(s

′
oj )T (soj ,πoj (soj ),s

′
v) follows the state transition giving

control back to v; and (2) if i′=oj then Mv
Xπ(s,s′)=[s′v=s′oj ] makes v copy the state transition of

the option oj in control.

For each option vertex oj , by Equation 3.3, only the first (1), second (2), and fourth (4)

cases can be non-zero: (1a) if i′=oj and i=oj then M
oj
Xπ(s,s′)=µ(V,oj ,soj ,πoj (soj ),oj ,s

′
oj )=

(1−βj(s′oj ))T (soj ,πoj (soj ),s
′
oj ) follows the state transition as normal; (1b) if i′=oj and i=v then

M
oj
Xπ(s,s′)=µ(V,v,sv,πoj (sv),oj ,s

′
oj )=(1−βj(s′v))Tvoj (sv,πoj (sv),s′oj ) follows the state transition

as normal; (2) if i′=v yields M
oj
Xπ(s,s′)=[s′oj =s′v] so that oj copies the state transition of controlling

vertex v; and (4) if i′ 6=v and i′ 6=oj , M
oj
Xπ(s,s′)=[s′oj =soj ] pauses until control is transferred back

to v. Since the options only have one policy πj to choose from, it does not matter if they update

following other options. If desired, a simple edges that fully connect all options to each other will

ensure they all use the latest state, but this is not necessary for this proposition.

62



Thus, by Equation 3.2, we have now defined the full Markov chain MXπ(s,s′) as the state

transition following T and transfer of control following Ij and βj .

By Equation 3.5, X=V . This implies X=∅, again obviating the need for M and λ. By

Equation 3.8, only the first case applies, and [̂i∈X]=0. Thus, we arrive at the state transition

M(s,s′)=MXπ(s,s′)=Mv
Xπ(s,s′)Mo1

Xπ(s,s′) · · ·Mok
Xπ(s,s′). For example, the probability that v is in

control as normal is computed by: M(s,s′)=T (sv,πv(sv),s
′
v)[s

′
o1 =s′v] · · · [s′ok =s′v]. Also, as another

example, the probability that oj is in control and does not return control to v is computed by:

M(s,s′)=[s′v=s′oj ][s
′
o1 =so1 ] · · ·(1−βj(s′oj ))T (soj ,πoj (soj ),s

′
oj ) · · · [s

′
ok

=sok ].

The relative CSMDP has states S=S=V ×S×·· ·×S, with s=〈i,sv,so1 , . . . ,sok〉∈S, and actions

A. By Equation 3.9, we have Pr(τ ,s′|s,πv(sv))=(MU
τ−1

)(s,s′) [τ >0∧ i′=v]. By construction of

M and U , Pr(dτ,s′|s,πv(sv)) is exactly the probability that the option terminates after τ steps in

state s′, as stated in the original paper [122].

By Equation 3.13, R(s,πv(sv))=R(sv,πv(sv))+E[R(sτ
t+1
oj ,πoj (s

τt+1
oj ))+ · · · ]. Since the underly-

ing M is constructed to be identical to that of the SMDP for options, we may write R(s,πv(sv))

using Equation 2.38 and the state transition using Equation 2.40 pOj . By Equation 3.20, with

s=〈i,sv,so1 , . . . ,sok〉 and s′=〈i′,s′v,s′o1 , . . . ,s
′
ok
〉, we have:

V
π

v (s)=R(sv,πv(sv))+
∑
s′v∈S

pOj (sv,s
′
v)V

π

v (s′). (3.26)

Finally, by Equation 3.14 that Cv=∅, as there are no constraint edges Πojv. However, trivially

if we included Πvv as described above, then it merely removes options at select states following the

Ij . This is equivalent to defining an action set for each state A(s).

Hence both cases show that Equation 3.20 forms an equivalent SMDP, in Markov reward process,

resulting in the identical expected reward and value to that of the options framework.

Thus, we have represented any collection of options’s states, actions, transition, reward, con-

straints, and value equations within a policy network.

3.6 Evaluation

Home healthcare robots serve in household and eldercare scenarios, providing solutions to a

wide array of helpful tasks ranging from cleaning to medicine delivery [102]. Surveys conducted by

Broadbent et al. [21] analyzed and ranked the desired tasks the robot could do to help improve the

lives of the elderly. Both elderly people and healthcare staff were surveyed. We focus on a robot
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Figure 3.4: The policy network for the home healthcare robot.

solution that captures three top-ranked needs: (1) medicine notification and delivery; (2) cleaning;

and (3) monitoring and helping with falls.

The few mobile healthcare robots that exist tend towards hand-engineered decision-making sys-

tems that work well for their specific implementation [49]. One of the notable exceptions of a general

model-based approach involves an early form of hierarchical POMDP [91]. They partitioned a single

POMDP’s action space into smaller groups, solving a collection of identical POMDPs with differing

reduced action spaces. While successful, this early seminal work lacked the generality of a policy

network, as policy networks can allow different models to be integrated (state and action spaces), can

handle multiple objectives (as in CMDPs), and can leverage a grounding in SMDPs (as in options).

The objective of this robot demonstration is to show how policy networks can be used to solve

these large problems. It also implicitly suggests how to think about using policy networks to break up

the problem into each sub-component for use within the framework. The demonstration is evaluated

by illustrating that a policy network consists of compact easy-to-solve sub-problems, as compared

to an otherwise intractable large monolithic (PO)MDP.

Problem Description Consider a healthcare robot with a set of high-level tasks it must continu-

ously complete. The medicate task is selected to complete by the high-level and requires navigating

to the bathroom, retrieving medicine, finding the patient, and delivering it to them. The clean

task is also selected and requires moving any out-of-place objects back in place while vacuuming.

The monitor task must operate at all times, reactively interrupting any other task, and requires

monitoring and detecting a fall of an elderly person. If confident in the detection, the robot should

check on the person and call for a healthcare professional’s help. The low-level path planning must

take special care to safely traverse the house.
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Policy Network Vertex Name V |S| |A| |Ω| |Γ| Time

High-Level Task Selector h 16 4 — — <0.1

Medicate Task t1 289 13 5 1224 159.8

Clean Task t2 145 13 3 612 14.0

Fall Monitor/Assist Task fi 2 3 2 22 <0.1

Low-Level Path Planner pij 17766 9 — — 0.92

Table 3.1: The problem sizes and run times for each model.

Policy Network Solution Figure 3.4 shows the policy network for the healthcare robot. We

provide a description of each vertex below. Also, Table 3.1 shows the problem sizes and results of

solving these problems using nova [136], with value iteration (VI), point-based VI (PBVI) [90], and

harmonic functions [133], for MDP, POMDP, and path planning models, respectively. PBVI has a

policy size denoted as |Γ|. Harmonic function path planning (denoted Harmonic(·)) is equivalent to a

special class of SSP with uniform state transitions, goals Gpij⊂Sp, and cost of 1 for obstacles Op⊂Sp.

We now outline a concise description of each of the five models below, due to space constraints, and

will provide all source code with the model details.

The high-level task h handles issues I={t1, t2,fi,∅} with Sh=2I and Ah=I. Let ∅ denote a

“complete” or “no-op” state and action here. The high-level h transfers control by Thi to the start

state of the corresponding task when selected as an action. Let a set of regions R (e.g., kitchen,

bathroom, and bedroom) be given for the map (|R|=12 in Figure 3.5). The medicate task t1 has

St1 =R×R×{Y,N}∪{∅}, for the robot and person regions, as well as if the medicine is carried or not.

At1 =R refer to navigation to a region by the path planner by Tij and Tji. Ωt1 ={Y,N}×{Y,N}∪{∅}

refers to detection of a person or not, holding medicine or not, and completion. The clean task t2

is similarly defined with St2 =R×R∪{∅} and A2 =R as it searches for a location to clean. Ωt2 =

{Y,N,∅} refers to detection of a person or not and completion. The monitor task fi has state space

Sf ={Y,N} for if the person has fallen and needs help. Af ={call,ask,∅} denotes calling for help,

asking if the person needs help, and no-op. Ωf ={Y,N} refers to detecting a fall or not. The executor

ε follows MODIA, with a preference for call and ask over region navigation actions R. Tih transfers

control back to h when in a task complete state sc. The path planner pij navigates between regions

J=R×R in the occupancy grid map. The paths are modeled by solutions to Laplace’s equation

called harmonic functions [29, 133]. Figure 3.5 shows a full implementation of this policy network

on a real robot.
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Discussion We observe the policy networks naturally model this home healthcare robot domain—

it clearly breaks the problem into tractable subproblems, with clearly defined objectives, and links

them together in a theoretically sound manner. Compare this with a traditional monolithic POMDP

of just t1, t2, and fi. S=R×(R×{Y,N}∪{∅})×(R∪{∅})×{Y,N} for the robot, patient (holding

medicine or not), and clean locations, plus if a fall exists or not, yielding |S|=7800. A=R∪Af

and Ω=Ωt1×Ωt2×Ωf , yielding |A|=15 and |Ω|=30. These monolithic POMDPs grow exponentially

in their state, action, and observation spaces as the number of tasks increase, and are shown to be

intractable [134]. Also, their reward is diluted as it weighs all tasks in one model and objective, losing

semantic meanings in its conflation. Policy networks address these problems by growing linearly in

the number of tasks and preserving semantic meanings of task objectives.

3.7 Conclusion

We now revisit the questions posed in the introduction. First, how are CMDPs related to

options and can these two models be combined? In policy networks, they are different types of edges

between collections of distinct models: policy constraints and policy transitions. By simply adding

any desired vertices and corresponding edges, we can easily combine both ideas, as evident by the

previous section. Second, what does it mean to perform an action? In policy networks, it means

conditioning on an action so as to induce a state update in any models that share the same action

space. Third, how do these operate when the state and/or action spaces are different? Following the

definition of performing an action, any shared action space induces state updates in the collection of

models, as in options or more generally SMDPs. With different action spaces, the policies can still

affect one another through transfer of control, treated as an abstraction or macro-action. Finally, is

there a principled mathematical model that enables the integrated design of multiple models with

these concepts? We show in this chapter that policy networks form such a model. They provide a

formal approach to generalize select state-of-the-art models and use them within a single reasoning

system. The implementation of policy networks demonstrates that they can be used effectively to

model and solve a challenging home healthcare robot problem.

Policy networks are fully defined in a complete general form in this thesis; however, this chapter

represents ongoing work that will be expanded in a number of ways in future work. First, the nuances

and complexity of the policy network’s presentation will be streamlined and refined. Second, multiple

other models, such as perhaps MAXQ [34] and abstract MDPs (AMDPs) [47], will be proven to be

generalized by policy networks. Third, the properties and benefits for using policy networks, such
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as how conditioning and independence can improve solving them, will be further developed and

evaluated. Fourth, more demonstrations and solutions using policy networks will be created, this

includes policy network solutions in the domains of home healthcare robots and autonomous vehicles,

as well as search-and-rescue robots and delivery robots. Overall, this work lays the foundation for the

scalable integration of multiple models in support of reasoning about complex real-world domains

for long-term autonomy.
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Figure 3.5: Experiments with the home healthcare robot using this policy network in the real
household shown above. Three highlights are shown: (1) medicine retrieval for task t1, (2) medicine
delivery completion with transfer t1→h→ t2, and (3) interruption of cleaning task t2 by detecting
a fall with task fi and calling for assistance.
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CHAPTER 4

CONTROLLER FAMILY POLICIES

Policy networks represent a unified general perspective on decision-making with multiple models

integrated together. The notion of a policy is crucial to a policy network, as each vertex refers to

a policy set for a reward. However, the actual policy computed is almost always approximating the

true solution to the MDP or POMDP. This is particularly evident in POMDPs, for which solvers

really return a set of α-vectors for belief-points, a finite state controller (FSC), or even filter beliefs

through a compression function. How does this representation of policy work with a policy network?

In this chapter, we present a family or class of policies called the controller family. We formally

prove that it encapsulates popular POMDP policy forms and their value functions. We include an

example of creating novel policy forms within the family, and implement the form in simulation and

on a real robot to illustrate its benefits. This controller family policy form is therefore usable in

the vertices of a policy network, capturing all common representations of policy under one unified

formulation.

4.1 Introduction

The partially observable Markov decision process (POMDP) is one of the most general single

agent decision-making models [63]. Over the past two decades, POMDP solution formulations and

approximate algorithms have enjoyed rapid growth and increased interest, specifically point-based

methods [90], finite state controller policies [3], and compression techniques [107]. With the improved

tractability these solutions afford, POMDPs are increasingly used in real world deployed robotic

applications ranging from aircraft collision avoidance systems [67] to self-driving cars [134]. However,

POMDPs are PSPACE-complete, requiring improved techniques to be developed to facilitate more

widespread use. Towards this goal, we provide a novel formulation of POMDP value and policy that

unifies the state-of-the-art approaches, gives new insights, and provides a solid foundation on which

to build the next generation of solutions which use these improved policy representations.

The current generation of POMDP solutions individually arose from disparate ideas about how

to explore small sets of reachable beliefs, define node-based abstractions, or find reduced models
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representing a similar problem. Each method resulted in a distinct form of policy and value function

representation, on top of which an algorithm was constructed. While each approach is successful in

its own right, it is not clear how they are related to one another. This knowledge gap manifests itself

by the lack of a unified view on the POMDP value equations, policies, and resulting algorithms,

limiting the potential of new approaches and leaving many questions unanswered. For example, can

we integrate point-based and FSC approaches in a principled manner? Is there a general method

to introduce compression into point-based or FSC policy forms? What methods can automatically

select the abstracted states (nodes)? In general, what is the relation between expanding more

belief points, adding FSC nodes, or exploring the number of bases in a compressed model? From a

foundational perspective, we might even ask what the mathematical reason behind the existence of

value iteration and policy iteration? Finally, is there an underlying principled framework to design

POMDP solutions? This chapter aims at taking steps towards providing answers to these questions.

We present the controller family of policy forms as a general formulation of policy and value [140].

It consists of a set of nodes, an action selector function, a node selector function, and a function

approximator with a specific form of value function acting as a constraint. These placeholder nodes

and functions can be assigned to specific values or left unconstrained. We show how various policy

forms emerge by constraining these elements.

As a motivational analogy, consider exponential family distributions which generalize popular dis-

tributions such as binomial, exponential, Dirichlet, and Gaussian. The exponential family presents

a probability density function with placeholder functions (e.g., sufficient statistic function, natural

parameter, and partition function). Constraining these placeholder functions in particular ways

produces the specific popular distributions. In the same manner, we define controller family policies

with a value function using placeholder functions. Constraining these placeholder functions in par-

ticular ways produces specific popular approximate policy forms: point-based, FSC, value-directed

compression (VDC), and exponential-family principle components analysis compression (E-PCA).

This chapter defines the controller family and rigorously proves it encapsulates these policy forms.

Our primary contributions are: (1) a formal statement of the controller family (Section 4.2); (2)

a detailed theoretical analysis mapping the three widely-used policy forms to the controller family

(Section 4.3); (3) a discussion of controller family policies within policy networks and the analogies

to probablistic graphical models (Section 4.4); and (4) a novel belief-integrated FSC-based policy

form with a robot demonstration of its execution and an analysis of its improvement over a vanilla

FSC-based policy form (Section 4.5).
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4.2 Controller Family Policies

The controller family are policies defined by the form π=〈X,ψ,η,σ〉. X is a set of r controller

nodes, acting as an internal memory for the agent and referring to compact relevant aspects (e.g.,

belief points, state features, or compressed beliefs). ψ :X×4|S|×A→ [0,1] denotes the stochastic

selection of action a at node x and belief b with ψ(x,b,a)=Pr(a|x,b). η :X×4|S|×A×Ω×X→

[0,1] denotes the stochastic selection of successor node x′ given at node x and belief b, action a

was performed yielding observation ω with η(x,b,a,ω,x′)=Pr(x′|x,b,a,ω). Lastly, σ :X×4|S|→R

denotes a function approximator of V . Commonly, σ(x,b)=
∑
s b(s)V (x,s), with node x’s α-vector

V (x,s), is used to approximate infinite horizon with the finite horizon α-vectors. Generally, we will

see that approximate algorithms assume V (x,b)=σ(x,b) to compute their values.

The objective is to find a controller family policy π that maximizes the expected reward:

E
[ ∞∑
t=0

γtR(bt,πt(bt)|π,b0
]

(4.1)

with bt denoting a random variable for the belief state at time t generated following T , O, and πt

denoting a random variable for the policy’s selected action generated following its controller node

over time X from ψ and η. As such, we obtain the value of a controller family policy, which depends

on the controller node x and the belief b:

V (x,b)=
∑
a∈A

ψ(x,b,a)
[
R(b,a)+γ

∑
ω∈Ω

Pr(ω|b,a)
∑
x′∈X

η(x,b,a,ω,x′)σ(x′, b′aω)
]

(4.2)

with R(b,a)=
∑
s b(s)R(s,a) and b′aω following the belief update equation. We often assume initial

x0∈X and b0∈4|S|. Also, it is convenient to define Q(x,b,a) by the equation in [·]. In the most

general form, the objective is to compute values for all components, including the computation of

V , to maximize the function approximator σ(x,b) for all x and b. Given an initial node and belief,

the objective is: maxX,ψ,η,σ,V σ(x0, b0) subject to the definition of V (x,b) in Equation 4.2 and any

extra constraints on 〈X,ψ,η,σ〉. We provide a general non-linear programming (NLP) formulation

of this optimization in Table 4.1. Extra constraints added to the NLP, which are described in the

next section, will produce the various approximate policy forms.

We define a controller family policy with a function approximator. Finite stochastic controllers

(FSCs) and function approximators have been explored in various forms in-depth before. Critically,

this chapter presents this unified formulation and a novel perspective on the formal core of POMDP

algorithm policy and value representations. We are not encompassing any specific algorithmic nu-
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Function: SolveControllerFamilyPolicyPOMDP(·)
Given: S, A, Ω, T , O, R, X, σ, x0∈X, b0∈4|S|

Variables: ψ(x,b,a), ∀x,b,a η(x,b,a,ω,x′), ∀x,b,a,ω,x′ V (x,b), ∀x,b
Maximize: V (x0, b0)

Bellman Constraints:

V (x,b)=
∑
a∈Aψ(x,b,a)

[
R(b,a)+γ

∑
ω∈ΩPr(ω|b,a)

∑
x′∈X η(x,b,a,ω,x′)σ(x′, b′aω)

]
Function Approximation Constraint: V (x,b)=σ(x,b), ∀x,b
Probability Constraints:

ψ(x,b,a)≥0, ∀x,b,a
∑
a∈Aψ(x,b,a)=1, ∀x,b

η(x,b,a,ω,x′)≥0, ∀x,b,a,ω,x′
∑
x′∈X η(x,b,a,ω,x′)=1, ∀x,b,a,ω

Table 4.1: A general NLP formulation using an unconstrained controller family policy for POMDPs.

ances or details. Our work establishes important new links among the various POMDP policy and

value representations that are used by different algorithms. Early work informally described similar

concepts, but lacked any formal results as modern algorithms were not yet developed [83] [19]. Other

work compares the models themselves rather than the POMDP’s policy and value forms [16] [13].

Surveys have derived algorithmic commonalities among strictly point-based approaches [110]. The

remaining literature discussed in the chapter compares algorithms, namely in terms of performance,

whereas we find the common threads underlying their design.

At a high-level, we observe that X is a free set and ψ, η, and σ are free functions. If we condition

them on the value function and policy, in an appropriate manner, we can enforce a particular

structure to focus the resulting policy form. A major contribution of this chapter are the formal

proofs that select state-of-the-art approximate policy forms are actually specific instances of a broad

family of policies.

4.3 Theoretical Analysis

We now prove various policy forms are members of the controller family. Each time we: (1)

define its normal policy form and value, (2) represent its policy as a controller family policy, and (3)

prove the resulting value equation is identical.

4.3.1 Optimal Policy Formulations

Importantly, Equation 4.2 does not enable an “improved optimal equation” beyond what is

achievable with Equation 2.17. The optimal solution can always be expressed by the original Bellman

optimality equation, but the controller family equation does encapsulate it. Interestingly, we can

construct policies that are not representable by a simple mapping of belief to action; however, no

72



such policy can ever obtain values higher than that of the optimal formulation. This added flexibility

is instead exploited in approximations. These simple but necessary facts are proven in Proposition 4.

Proposition 4. The optimality policy form is a member of the controller family.

Proof. We must write Equations 2.17 and 2.20 using Equation 4.2. Let X=4|S|, ψ(x,b,a)=

[Q(x,b,a) ≥Q(x,b,a′)∀a′], η(x,b,a,ω,x′)=[x′=b′aω], and σ(x,b)=V (x,b) with Iverson bracket [·],

b′aω resulting from the belief update equation, and b≡x for each. This produces Equation 2.17. For

finite horizon, let X=R(b0) with ψ as above. Let η(x,b,a,ω,x′)=[
∑
s′ b
′
aω(s′)V (x′,s′)≥

∑
s′ b
′
aω(s′)

V (x′′,s′)∀x′′] (i.e., an argmax) with α-vector V (x,s) for belief/node x. Let σ(x,b)=
∑
s b(s)V (x,s).

This produces Equation 2.20. Also, we can write a policy π :4|S|→A as the controller family policy

πc=〈X,ψ,η,σ〉. Let X, η, and σ be as above. Let ψ(x,b,a)=[π(x)=a] since x=b. We can add

arbitrary stochasticity to any beliefs x=b, both in action ψ and successor η, representing policies

unobtainable otherwise.

Insights (1) The node selection X is the policy’s domain (e.g., beliefs). (2) We write ψ and η as

maximizations by constraining them by parts of the equation. (3) Equation 2.19 can be interpreted

as: η≡maxα and σ≡
∑
s b(s)α(s).

4.3.2 Point-Based Policy Formulations

Point-based policies avoid the exponential growth of reachable belief points by exploring a

subset B⊆R(b0). Given any belief b∈4|S|, we can extract the policy’s action π(b) 7→aα using

α=argmaxα′
∑
s b(s)α

′(s). We denote a point-based policy by π=〈B,Γ〉. The point-based update

equation, given previous α-vectors Γ′, is [90]:

Γaω={[V α
′

aω (s1), . . . ,V α
′

aω (sn)]T ,∀α′∈Γ′}, Γb={R(·,a)+
∑
ω∈Ω

argmax
α′∈Γaω

∑
s∈S

b(s)α′(s),∀a∈A},

Γ={argmax
α∈Γb

∑
s∈S

b(s)α(s),∀b∈B} (4.3)

with V α
′

aω (s)=γ
∑
s′O(a,s′,ω)T (s,a,s′)α′(s′) and vector R(·,a)=[R(s1,a), . . . ,R(sn,a)]T . Each ini-

tial α(s)=mins′mina′R(s′,a′)/(1−γ) to ensure α-vectors weakly monotonically increase [79].

The original forms of point-based methods apply Equation 2.20 on a fixed grid over the be-

lief simplex [79]. Point-based value iteration (PBVI) in Equation 4.3 originally operated over all

beliefs, selecting them by solving linear programs to find “witness” (i.e., improvable in value) be-

liefs [145]. The tractable general incarnation of PBVI explores reachable beliefs and interleaves
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belief updates with belief expansion techniques [90]. Perseus does all belief expansion initially then

intelligently orders the beliefs to do less updates overall, as an α-vector can improve many beliefs

simultaneously [118]. HSVI2 [113] and SARSOP [72] both have a tighter interleaving of update and

expansion, maintaining lower and upper bounds to test convergence and cleverly selecting action-

observation pairs to tighten these bounds. Recent work suggests a modular approach to mix the

algorithms’ components, which can be competitive in some cases [110].

The formal mapping between point-based and controller family policies is in Proposition 5.

Proposition 5. Point-based policies are a member of the controller family.

Proof. We must write Equation 4.3 using Equation 4.2. Let X=B with each x∈X corresponding to

a point-based belief x∈B, distinct from the current belief b∈R(b0). Let σ(x,b)=
∑
s b(s)V (x,s)=∑

sx(s)V (x,s) always requiring x=b∈B. This is the critical assumption that makes point-based

algorithms work: to compute the values the only beliefs that matter are in B. Since the objective

only optimizes values over X, it removes the dependence on R(b0). We rewrite Equation 4.2, noting

Pr(ω|b,a) cancels with b′aω, as:

V (x,s)=
∑
a∈A

ψ(x,b,a)
[
R(s,a)+

∑
ω∈Ω

∑
x′∈X

η(x,b,a,ω,x′)γ
∑
s′∈S

T (s,a,s′)O(a,s′,ω)V (x′,s′)
]

with
∑
s b(s) moved outside the summations such that V (x,b)=

∑
s b(s)V (x,s). Simply reference x

and x′ here as α and α′ to rename α(s)=V (x,s) and α′(s′)=V (x′,s′). Recognize V α
′

aω (s) to obtain:

α(s)=
∑
a∈A

ψ(x,b,a)
[
R(s,a)+

∑
ω∈Ω

∑
x′∈X

η(x,b,a,ω,x′)V α
′

aω (s)
]
.

As Proposition 4, ψ(x,b,a)=[Q(x,b,a)≥Q(x,b,a′)∀a′] and η(x,b,a,ω,x′)=[
∑
s b(s)V

α′

aω (s)=
∑
s b(s)

V α
′′

aω (s)∀α′′], both equivalent to argmax. This produces Equation 4.3. Optionally, we could use the

more flexible probabilistic softmax function, such as:

η(x,b,a,ω,x′)=
exp{

∑
s b(s)V

α′

aω (s)/τ}∑
x′′ exp{

∑
s b(s)V

α′′
aω (s)/τ}

(4.4)

with softmax temperature τ→0+. Also, we can write a point-based policy πp=〈B,Γ〉 as a controller

family policy πc=〈X,ψ,η,σ〉 as in Proposition 4.

Insights (1) Node selection X is the set of explored beliefs. (2) Node iteration—iterating to

improve the set of selected nodes—is what most point-based approaches rely on. (3) Node (successor)

selector η and action selector ψ can be written with softmax, enabling easy derivatives [19].
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4.3.3 Finite State Controller Policy Formulations

Finite state controller (FSC) methods instead describe a policy as an FSC that is executed from

an initial belief [51]. An FSC policy is defined by π=〈X,ψ̂, η̂〉. X is a set of nodes. ψ̂ :X×A→ [0,1]

and η̂ :X×A×Ω×X→ [0,1] ignore any dependence on an explicitly maintained belief and follow the

FSC alone. Policy iteration (PI) is commonly used with FSC policy representations. PI alternates

between policy evaluation and policy improvement steps, though techniques exist to perform them

simultaneously [3]. Evaluating policy π requires solving a system of equations:

V (x,s)=
∑
a∈A

ψ̂(x,a)
[
R(s,a)+γ

∑
s′∈S

T (s,a,s′)
∑
ω∈Ω

O(a,s′,ω)
∑
x′∈X

η̂(x,a,ω,x′)V (x′,s′)
]

(4.5)

with V (x,b)=
∑
s b(s)V (x,s), x0∈X, and b0∈4|S|. This formula is derived from the recognition

and use of a cross-product MDP formed from states and controller nodes.

The original PI defines a policy as bounded regions on the belief simplex (e.g., resulting from

Γ) and converts it to an FSC for policy evaluation [117]. This proved intractably complex. Instead

the policy itself can be represented as an FSC. Policy improvement performs the Bellman update

in Equation 2.20, assigns these α-vectors as new potential nodes, then adds, merges, or prunes

them [51]. To avoid exponential growth, bounded PI (BPI) explores single new node at each iteration,

at the cost of getting stuck in local optima [95]. Point-based PI (PBPI) does Hansen’s PI but uses

the point-based update in Equation 4.3 [59]. Recent work casts both evaluation and improvement as

one non-linear program (NLP) [3]. A dual formulation exists, but only for deterministic FSCs [70].

The straight-forward but necessary mapping from FSC to the controller family is in Proposition 6.

Proposition 6. FSC policies are a member of the controller family.

Proof. We must write Equation 4.5 using Equation 4.2. Let X be the same in both. Let ψ(x,b,a)=

ψ̂(x,a) and η(x,b,a,ω,x′)= η̂(x,a,ω,x′) simply ignore the current maintained b. Let σc(x,b)=∑
s b(s)V (x,s). Rewrite Equation 4.2, apply the definition of Pr(ω|b,a), and recognize we can

again pull
∑
s b(s) outside the summations to obtain Equation 4.5 with V (x,b)=

∑
s b(s)V (x,s). For

deterministic FSCs, we also ensure ψ̂ and η̂ are 0 or 1 via parameters yx∈A and zxaω∈X such

that we also have ψ̂(x,a)=[a=yx] and η̂(x,a,ω,x′)=[x′=zxaω]. Also, we must write an FSC policy

πf =〈Xf ,ψf ,ηf 〉 as a controller family policy πc=〈Xc,ψc,ηc,σc〉, which can be done as above.

Insights (1) Node iteration to improve X occurs in BPI and PBPI. (2) Nodes are constrained

(i.e., fixed-sized controller) in the NLP solution, but it does simultaneous value and policy iteration
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because V , ψ, and η are free variables. (3) Parameters can be added to a controller family’s elements

with a fixed structure encoding these parameters in the elements (e.g., y for ψ, and z for η, above).

4.3.4 Compression Policy Formulations

Compression techniques construct a mapping from the original POMDP to a smaller reduced

model. There are two standard general approaches that we consider: value directed compression

(VDC) [94] and exponential family principle components analysis (E-PCA) [107]. Both approaches

attempt to find a function f :4|S|→4r that projects beliefs in n dimensional space to a lower r≤n

dimensional space. In PCA and linear VDC, this takes the form of a matrix F ∈Rn×r that acts as

a change of basis. In general, this function f is applied to a set of beliefs B⊆4|S| to produce an

approximate POMDP described by B̃, T̃ :B̃×A×B̃→ [0,1], and R̃ :B̃×A→R. We prove that all

these forms are representable in the controller family.

Each approximate belief b̃∈4r is projected from some original belief b∈4|S| by b̃T =bTF for

linear and b̃=f(b) for non-linear. For the linear case, a belief b can be reconstructed as b̂≈b

with b̂=(F †)T b̃; orthonormal columns yields b̂=F b̃. For the non-linear case, a belief b can be

reconstructed with a function inverse b̂=f–1(b̃). In general, we consider these beliefs to be non-

negative and renormalized, as both VDC and E-PCA papers discuss. If they are not, then the

resulting compressed model would not be a valid (PO)MDP, as beliefs and state transitions must be

probabilities over 4|S|. It does not necessarily affect the change of basis, and without it algorithms

can run into issues. In the cases when it does still work, it falls outside the proper definition of a

(PO)MDP.

Value Directed Compression VDC compresses the beliefs with either a lossless or lossy f

creating a smaller POMDP on which any solver can be applied [94]. To focus our analysis, we

consider the linear VDC using F as it is the favored form to extend [76] [126] [130]. Similar logic

applies for general approaches using non-linear f . The original model forms lossless compression

F by Krylov iteration. Let Ra∈R|S| be defined as Rai =R(si,a). Let T aω∈Rn×n be defined as

T aωij =Pr(sj ,ω|si,a)=T (si,a,sj)O(a,sj ,ω). Krylov iteration methods start with F1j=Raj . Then,

for each a and ω, they iteratively assign F·i+1 =T aωF·i if it is linearly independent for all F·1, . . .,

F·i−1 [94]. Lossy variants can compute F by linear programming or truncated Krylov iteration.

Truncated Krylov iteration selects up to a fixed r≤n and removes the largest error column in F at

each step. Other lossy variants employ non-negative matrix factorization (NMF) over a given fixed
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set of beliefs, either by orthogonal NMF to ensure FF †≈I [76] or by locality preserving NMF to

ensure Lipschitz continuity is preserved in the compressed model [126].

The VDC compressed problem requires that Ra=FR̃a and T aωF =FT̃ aω. Since the columns

of F are linearly independent by construction, we take the pseudoinverse to derive the compressed

model:

R̃a=F †Ra and T̃ aω=F †T aωF. (4.6)

The policy π̃ :4r→A is be evaluated with Ṽ π̃ :4r→R by:

Ṽ π̃(b̃)= b̃T R̃π̃(b̃) +γ
∑
ω∈Ω

Ṽ π̃(b̃T T̃ π̃(b̃)ω). (4.7)

Lemma 1. The linear VDC policy is a member of the controller family.

Proof. We must write Equation 4.7 as Equation 4.2. Let X=B̂⊆4|S| be all possible reconstructed

beliefs, with each x= b̂. For example, if starting at x=b0, X=R̂(b0) are all possible reconstructed

beliefs following T aω and F . Let ψ(x,b,a)=[π̃(b̃)=a], since VDC uses a policy evaluation form.

Let η(x,b,a,ω,x′)=[b̂TT aω=x′]. Let σ(x,b)=V (x, b̂)/‖b̂‖1 = b̂T α̂/‖b̂‖1, with the α-vector dot prod-

uct, and α̂=Fα̃. By the definition of σ(x,b), the only beliefs ever visited are the reconstructed b̂

corresponding to x. Apply to Equation 4.2:

V (x, b̂)=R(b̂, π̃(b̃))+γ
∑
ω∈Ω

Pr(ω|b̂, π̃(b̃))V (x′, b̂TT π̃(b̃)ω)/‖b̂TT π̃(b̃)ω‖1

with x= b̂, b̃T = b̂TF , and x′= b̂TT π̃(b̃)ω from η’s definition. It is simple to show that ‖b̂TT π̃(b̃)ω‖1 =

Pr(ω|b̂, π̃(b̃)). Apply this fact with the definitions of R (as vectors) and V :

V (x, b̂)= b̂TRπ̃(b̃) +γ
∑
ω∈Ω

b̂TT π̃(b̃)ωFα̃.

Apply definition of b̂, and then recognize both R̃ and T̃ :

V (x, b̂)= b̃TF †Rπ̃(b̃) +γ
∑
ω∈Ω

b̃TF †T π̃(b̃)ωFα̃

= b̃T R̃π̃(b̃) +γ
∑
ω∈Ω

b̃T T̃ π̃(b̃)ωα̃.

With b̃ we know x and b̂, so we can rename V (x, b̂)= Ṽ (b̃). Recognize Ṽ (b̃)= b̃T α̃ to obtain Equa-

tion 4.7. Also, we can rewrite any policy π̃ :4r→A as the controller family policy π=〈X,ψ,η,σ〉

by assigning the elements be as above.
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Exponential Family Principle Component Analysis E-PCA computes a non-linear compres-

sion of the reachable beliefs using E-PCA [107] and applies fitted value iteration [48] on the resultant

reduced belief MDP. E-PCA is used over PCA to better represent the fact that beliefs are proba-

bilities. This generalized form requires a link function ` :4|S|→4|S|. The exponential link function

is given by `(F b̃)=exp{F b̃} with F ∈Rn×r. It enables us to recover a belief b≈ b̂ with b̂=exp{F b̃}.

Thus, the link function acts an inverse f–1(b̃)= b̂=`(F b̃). In general, the link function determines

the type of exponential family random variable. A loss function is then defined by minimizing the

generalized Bregman divergence between b and b̂. For the choice of an exponential link function,

we have a Poisson belief error model, and equates to minimizing unnormalized KL divergence. The

solutions to F and B̃ are convex optimization problems solvable using the partial derivatives of this

loss function. The process for B̃ is also used to project belief b to the compressed belief space b̃,

defining f(b)= b̃. Fitted value iteration (FVI) is used in the E-PCA compressed belief MDP with a

averager function approximator. E-PCA policy π̃ :B̃→A is determined from value Ṽ :B̃→R:

Ṽ (b̃)=max
a∈A

R̃(b̃,a)+γ
∑
b̃′∈B̃

T̃ (b̃,a, b̃′)Ṽ (b̃′) (4.8)

with k-nearest neighbors computing the nearest k>0 belief neighbors such that w :B̃×4r→ [0,1]

and w(b̃, b̃′)=(1/k) if b̃ is one of k closest beliefs from B̃ for b̃′, with w(b̃, b̃′)=0 otherwise. The

reward and state transition are defined, with b̂=f–1(b̃) and b̃′aω=f(b̂′aω), as:

R̃(b̃,a)=
∑
s∈S

b̂(s)R(s,a) and T̃ (b̃,a, b̃′)=
∑
ω∈Ω

Pr(ω|b̂,a)w(b̃′, b̃′aω).

Lemma 2. The E-PCA policy is a member of the controller family.

Proof. We must write Equation 4.8 as Equation 4.2. Let X=B̃ be all compressed beliefs considered,

with b̂=f–1(b̃). Let ψ(x,b,a)=[Q(b̂,a)≥Q(b̂,a′)∀a′], since E-PCA’s FVI uses an optimality form.

Let η(x,b,a,ω,x′)=w(b̃′, b̃′aω), noting that from x= b̃ we compute b̂, then b̂′aω, and finally b̃′aω. Let

σ(x,b)=V (x, b̂) with b̂ computed from x= b̃. By the definition of σ(x,b), the only beliefs ever visited

are the reconstructed b̂ corresponding to x. Apply this to Equation 4.2 to yield:

V (x, b̂)=max
a∈A

∑
s∈S

b̂(s)R(s,a)+γ
∑
x′∈X

∑
ω∈Ω

Pr(ω|b̂,a)w(b̃′, b̃′aω)V (x′, b̂′)
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with the definition of R and reordering of summations. Rename V (x, b̂)= Ṽ (b̃) since b̃ uniquely

determines x and b̂. Recognize R̃ and T̃ to obtain Equation 4.8. Also, we can rewrite any policy

π̃ :4r→A as the controller family policy π=〈X,ψ,η,σ〉 by assigning the elements as above.

Compression Policy Formulations Proposition 7 formally combines the above lemmas, showing

linear and non-linear compression forms are generalized and remarks on other subsumed methods.

Proposition 7. Compression policies are members of the controller family.

Proof. By Lemmas 1 and 2, we find that the controller family generalizes compression equations and

policy representations. Since VDC generalizes state aggregation [17], model minimization [45], and

linear predictive state representations (PSR) [78], so too does the controller family. Additionally,

since the proof is independent of `, controller family generalizes any choice of ` for E-PCA.

Insights (1) Node selection is the compression technique itself, since X is the compressed or

reconstructed beliefs. (2) Function approximators σ make value constant over the belief; instead,

the value’s belief (i.e., b in V (x,b)) is replaced with node’s reconstructed belief. (3) Node selection

are thus assigned to ensure the node’s belief properly updates.

4.4 Policy Networks with Controller Family Policies

The controller family as defined here represents a general form of policy and value for POMDPs.

As the POMDP generalizes the discrete MDP, this policy form can also generalize controllers for

use in an MDP. Policy networks define vertices as a policy set for a reward function. Typically, we

define a policy as either deterministic or stochastic, with this policy set being a subset or equal to

the full space of such policies. A natural extension is to define this policy set more generally with a

controller family policy. This allows the value, objective, and policy to be as general as possible.

Formally, a policy network 〈V,E〉 using a controller family set of policies, for any v∈V we are

given the fixed controller nodes X and function approximator σv :Xv×4|Sv|→R. The policy set for

v is simply Πv={〈ψv,ηv〉} for action selector ψv :Xv×4|Sv|×Av→ [0,1] and node successor selector

ηv :Xv×4|Sv|×Av×Ωv×Xv→ [0,1]. In other words, it is any assignment of action selector ψv and

node successor selector ηv.

The policy network Bellman equation in Equation 3.20 can be generalized using a controller

family policy form. Two important points regarding the state must be first defined. First, any

finite MDP state can be generalized by a POMDP belief state. Mechanically, the semantic change

necessary is to consider reachable beliefs B instead of just reachable states S (i.e., s=b and S=B).
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Domain BI-FSC-Based Policy FSC-Based Policy

Name |N | Time ADR |B| Time ADR

Aloha-10 10 109.2 523.0 50 15.0 163.0

Grid-4x3 5 16.4 0.83 10 18.8 0.58

Hallway2 7 155.4 0.25 10 67.2 0.27

Tiger 3 13.8 11.7 6 20.7 -20.0

Table 4.2: Results using new policy form with same NLP algorithm and same number of FSC nodes
(|N |). Metrics: Time (seconds, 10 trials) and average discounted reward (ADR, 100 trials). Bold
indicates statistically significant improvement.

Both consider transfer of control to ancestors in the same manner as described in Chapter 3. Second,

the controller nodes x∈X are essentially considered part of the state, except its stochasticity is

governed by the ηv after each action is performed and observation is made. These actions are

performed following the ancestors, which result in a belief MDP state transition (i.e., observation

emitted) in the same manner as described in Chapter 3. In summary, while we use POMDP notation

here for consistency, it is equivalent to an underlying belief MDP. For example, for vertex v∈V , the

most general value equation V for node x and belief b would be:

V
π
(x,b)=

∑
a∈Av

ψ(xv, bv,a)
[
Rv(x,b,a)+

∑
x′∈X

∑
b
′∈B

∞∑
τ=1

γτPr(dτ,x′,b
′|x,b,a)σπ(x′,b

′
)
]
. (4.9)

We will leave the detailed analysis of this complex general form to future work.

4.5 Evaluation

Now we demonstrate the efficacy of the controller family as a tool for describing novel policy and

value representations. Importantly, the main contribution of this chapter remains the formulation of

controller family and theoretical analysis, rather than this new example of a controller family policy.

Recall, the controller family is not an algorithm; it is a representation of policy and value. This is

included to provide evidence of its usefulness and guidance for how to create new forms of policy.

Intuitively, we define a belief-integrated FSC as a member of the controller family with some

FSC nodes with some belief point nodes. FSC nodes follow the free stochastic successor node

selector (e.g., NLP). Beliefs nodes follow an argmax (e.g., PBVI). The belief points used, however,

are reconstructed from compressed beliefs (e.g., E-PCA). The resulting value equation is amenable

to node iteration via PBVI’s expand step followed by E-PCA, and policy iteration via an NLP.

Formally, a belief-integrated FSC (BI-FSC) is a controller family policy π=〈X,ψ,η,σ〉 that has
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Figure 4.1: Robot experiment. Path: FSC (blue), belief (green) actions.

its nodes X represent both FSC nodes and compressed belief-points. Let X=N ∪B̃ with N a set

of FSC nodes and B̃⊆4|S|. Let λ∈ [0,1] be a weight between both approaches. Let η(x,b,a,ω,x′)

be either: (1−λ)η̄(x,b,a,ω,x′) if x,x′∈N ; λsoftmax over B̃ if x∈N and x′∈B̃; or η̄(x,b,a,ω,x′)

if x∈B̃ and x′∈N . We can use a Taylor series approximation of softmax (e.g., the 0-th order is

1/|B̃|). Let σ(x,b) be either:
∑
s b(s)V (x,s) if x∈N ; or

∑
s b̂
′
aω(s)V (x,s) if x∈B̃ and b̂=f–1(x).

Understanding the BI-FSC Policy Form What does this novel policy form look like in prac-

tice? Figure 4.1 shows results from real robot POMDP navigation. The POMDP has S as a 7×5

grid, A as eight directions and stop, and Ω as the “bump” sensor. We solve the BI-FSC with an

NLP using SNOPT [44] on the NEOS Server [32]. The traversed path includes intentional “feeling”

for walls with successful localization. Interestingly, this policy uses the interspersed belief nodes’

decisions to help guide the stochastic FSC nodes’ decisions to the goal (blue and green in Figure 4.1).

How does this new policy form improve performance over just a pure FSC policy form? Table 4.2

shows results of a pure FSC-based policy versus a BI-FSC-based policy (λ=0.5) on standard bench-

mark domains. The NLP algorithm is used by both policy forms to isolate a direct comparison of

different policy forms, instead of the algorithms used on top of a chosen policy form. Experiments

were run with SNOPT on the NEOS Server. BI-FSC policies are suited for domains that have many

local optima (e.g., Aloha-10 and Tiger) in which solvers like SNOPT easily get stuck. BI-FSCs

obviate the issue by infusing important beliefs to help find the global optima. Thus, BI-FSCs are

able to greatly outperform FSC-based policies in ADR (especially Aloha-10 and Tiger) and can even

improve time.

4.6 Conclusion

We now revisit the questions from the introduction. How can we simultaneously integrate belief

point-based and FSC-based techniques? Nodes can be defined to be beliefs and FSC nodes, with
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the successor node selector to be a free variable or argmax. Is there a way to introduce compression

into policy forms? Simply select compressed or reconstructed beliefs for some or all nodes; other

elements (e.g., successor node selectors) use these reconstructed beliefs. Can we automatically select

some of the nodes (i.e., node iteration)? Simply use any prior approach appropriate to the type of

node—belief nodes use belief exploration (e.g., HSVI2), FSC nodes use node addition/pruning (e.g.,

BPI), or compressed nodes use compression (e.g., E-PCA). In general, how are iteration techniques

related? Each is an operator on a different type of node as described above.

Lastly, what is the mathematical reason for the existence of value and policy iteration? From

the perspective offered by the controller family, it is determined by the action selector ψ. When ψ

is constrained to a fixed function, we have value iteration. This assignment prevents policy iteration

because the policy is determined by the other free elements; the values V determine the mapping

from belief to action. Conversely, when ψ is at all unconstrained, V and ψ are both free and can be

computed separately (e.g., policy iteration’s evaluation/improvement steps) or together (e.g., NLP).

In conclusion, is there an underlying principled framework to design POMDP policies? This

chapter defines the controller family as an answer to this question. We show they generalize the

policy and value representations used by state-of-the-art solutions. To validate its effectiveness, we

construct a novel policy formulation that infuses beliefs into an FSC. We demonstrate this improved

policy form’s execution on a real robot acting in the world, and show it overcomes some well-known

issues with a vanilla FSC. Finally, we will provide our source code with the goal of building new

controller family policies to improve POMDP solutions under this unified formal language with the

greater research community.
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CHAPTER 5

MULTI-OBJECTIVE DECISION-MAKING

In this chapter, we present a general model for reasoning about multiple objectives. Leveraging a

graph of constraining relationships among the objective functions, we allow each objective to select

policies from a restricted space of policies that ensure all ancestor objectives are within a slack of

their optimal value. We provide both optimal and approximate algorithms, and show how it can be

used for multi-objective autonomous vehicle route planning.

This model demonstrates a generalization of two previous multi-objective models. Moreover,

it is a special case of a policy network in which all edges simply form a directed acyclic graph

of constraints in the same state-action space. These relationships are proven here. In general, this

multi-objective decision-making model is useful for any domain in which there is an easily identifiable

preference structure for higher priority domain objectives to be satisfied before lower priority domain

objectives.

5.1 Introduction

Reasoning about multiple objectives is prevalent in many real-world problem domains such as

water reservoir control [23], industrial scheduling [1], energy-conserving smart environments [75],

anthrax outbreak detection [116] and autonomous vehicles [142, 135]. Multi-objective Markov deci-

sion processes (MOMDPs) represent a model of multiple objectives with two main methodologies to

structure their typically conflicting nature: scalarization and preference orderings. Scalarization ap-

proaches attempt to weigh each objective properly in a complex function, creating a single-objective

MDP which can be solved with standard techniques [103]. However, finding this scalarziation func-

tion is non-trivial, and suffers from both computational complexity issues and the conflation of the

reward function, losing any semantic meaning the objectives might have once had. We instead lever-

age the latter, using a preference ordering over objectives [81, 114, 43, 2, 142, 135]. We assign a

preference structure and only considers other objectives in the case of tie-breaking, combined with

the notion of slack or constraints to liberate successive objectives’ choice. In our proposed approach,

this ordering is defined by the topological order of a directed acyclic graph (DAG) over the con-
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straints. We call this general decision-making model a topological MDP (TMDP), and its partially

observable version a topological POMDP (TPOMDP).

Previous work called ordinal dynamic programming, for both finite [81] and infinite [114] horizon

MDPs, placed a strict chain ordering over objectives. This structure is also called a lexicographic

MDP (LMDP). Ties among equivalently value-optimal policies were broken by evaluating succes-

sive objectives. However it is rare that many policies are even available for each successive objective

because they must be exact matches to other maximally optimal policies. Ordinal dynamic program-

ming was explored within reinforcement learning [43]. This work included a notion of a minimum

criterion value to allow more policies for successive objectives to explore. Later work began to apply

these linearly chained orderings for robot path planning [82], but the problem still remains. One

model that does overcome this issue is called a constrained MDP (CMDP) [2]. It instead defines

a flat equal structure over the objectives, instead of an iterated linear chain, with some slack that

allows them to be reduced up to some constraint value. Our work presents a model that generalizes

both lexicographic and constrained MDPs, allowing for slack when tie-breaking among objectives in

a topologically-ordered graph of constraints.

The partially observable cases of multi-objective POMDPs (MOPOMDP) have been explored

to a lesser degree, generalizing the POMDPs with a vector of rewards [115], although they used an

evolutionary algorithm approach to solve them. For example, within this context, simpler lexico-

graphic preference orderings over MOPOMDPs have been considered [100]. It becomes immediately

apparent in such a lexicographic POMDP (LPOMDP) that ties in value are exceedingly rare in be-

lief space α-vectors. Similar to CMDPs, constrained POMDPs (CPOMDP) have also been explored

to a limited degree, though primarily with respect to algorithms that solve them approximately

with point-based techniques [57, 65]. Our work here also includes the partially observable case,

generalizing the lexicographic and constrained POMDPs.

Foundational questions regarding lexicographic orderings and constraints in MOMDPs with pref-

erence orderings still remain. What would allow a larger space of policies to be considered to fix this

common problem with lexicographic orderings? How are lexicographic orderings and constraints

related? Is there a common algorithm that can solve both problems? Does a model exist that gen-

eralizes both? Can such a model describe novel multi-objective sequential optimization problems?

We take steps toward providing answers to these questions.

Our work introduces the topological MDP (TMDP) which generalizes both lexicographic order-

ings and constraints in MDPs. This also describes and extends the line of work on recent lexico-

graphic MDP (LMDP) models [142, 135, 131]. The objective is to maximize each objective following
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a graph describing their preference relations. As part of this, we define a notion of slack—allowable

deviations from optimal values—for each objective in the graph. Slack allows more policies to be con-

sidered in successive objective functions, while simultaneously capturing the notion of a constraint.

Overall, the lexicographic orderings in L(PO)MDPs equate to a linearly ordered chain graph and

the constraints in C(PO)MDPs equate to a flattened two-level fan graph. We show that both are

representable in a topological (PO)MDP that applies a general topological ordering over objectives

defined by a directed acyclic graph. Preference orderings remain a core technique in multi-criteria

decision-making but to the best of our knowledge there have not been any general models that en-

capsulate these previous models into such a versatile network of constraints. Conditional preference

networks (CP-nets) define a graph over variables with a conditional preference table for use in deter-

mining the final decision given the assigned decision of each variable in the network [15]. Generalized

additive independence (GAI) decomposition networks use a graph to construct a scalarization func-

tion, and can employ clever pruning techniques [46]. However, both of these approaches do not solve

the challenging multi-objective sequential decision-making problems for MDPs or POMDPs, and do

not allow for any flexible slack constraints, as in our proposed TMDP and TPOMDP models.

To ground our analysis in an real-world application of multi-objective decision-making, we con-

sider a semi-autonomous [146] driving scenario. The autonomous vehicle (AV) needs to plan a route

that allows both the vehicle and driver to be in control, depending on if the driver is attentive to

the road or distracted. The AV is able to drive on main roads. It monitors the state of the human

driver and decides if it can transfer control to them to traverse side roads, as needed. The objective

is to reach the destination as quickly as possible, while allowing some slack to spend more time

autonomous.

Our primary contributions are: (1) a formal definition of the TMDP and TPOMDP models

(Sections 5.2 and 5.3); (2) a general algorithm for solving TMDP and TPOMDPs as well as two

scalable approximations (Section 5.4); (3) an application of TPOMDPs for semi-autonomous vehi-

cles with multiple route planning objectives (Section 5.5); (4) a theoretical analysis of models and

algorithms (Section 5.6); (5) a formal representation of TMDPs and TPOMDPs as a policy net-

work (Section 5.6.2; and (6) an evaluation of a TPOMDP on semi-autonomous vehicle domain using

real-world road data of 10 cities (Section 5.7).
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5.2 Topological MDP

Lexicographic or ordinal MDPs allow for a sequence of constraints to be defined. Each constraint

is dependent on the optimal values of the ancestors. Conversely, constrained MDPs allow for a list

of constraints to be applied simultaneously, each bounded by a given constant. The key insight

behind a TMDP is that these represent two extremes of a rich landscape of constrained problems.

We instead consider any arbitrary directed acyclic graph of constraints.

A topological Markov decision process (TMDP) is a sequential decision-making model

defined by the tuple 〈S,A,T,R,E,δ〉:

• S is a finite set of states;

• A is a finite set of actions;

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s;

• R=[R1, . . . ,Rk]T is a vector of reward functions for K={1, . . . ,k} such that Ri :S×A→R

denotes an immediate reward Ri(s,a) for performing action a in state s;

• E⊆K×K is a finite set of edges over the k rewards forming a directed acyclic graph, with

one leaf/sink reward vertex which, without loss of generality, is reward vertex k; and

• δ :E→R+ is a function mapping edges e=〈i, j〉∈E to a non-negative slack constraint δ(e)≥0,

or also overloading notation by the equivalent δ(i, j)≥0.

As in MDPs, a TMDP stationary policy is either deterministic π :S→A or stochastic π :S×A→

[0,1]. Distinct from MDPs, and rather aligned with CMDPs, TMDPs can require stochastic policies

to obtain optimal value (Proposition 10) since they generalized both LMDPs (Proposition 8) and

CMDPs (Proposition 9). For notational clarity, we will use deterministic policies; however, stochastic

policies follow in the natural way, identical to their use in an MDP.

The infinite horizon TMDP with initial state s0 has a discount factor γ∈ [0,1). For a policy

π, it is based on the expected rewards:

E
[ ∞∑
t=0

γtR(st,π(st)
∣∣∣π,s0

]
(5.1)
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with st denoting the random variable for the state at time t generated following T . Thus, for a

policy π, the value V π :S→R is the expected reward at state s following:

Vπ(s)=R(s,π(s))+γ
∑
s′∈S

T (s,π(s),s′)Vπ(s′) (5.2)

Given the DAG E we define two helpful sets. Let Pi⊂K denote the set of all parents of i∈K.

Let Ai⊂K denote the all ancestors of i∈K.

Additionally, the graph is assumed to have one leaf/sink reward vertex. If there are multiple

vertices, then the set of policies in which the optimal policy is selected for the agent to actually

execute is ill-defined. Such graphs, however, are entirely mathematically correct in that the policy

sets and values can be computed, but would leave this final important step ambiguous. Thus, we do

not consider such graphs in this work. From a policy network perspective, the initial controller is

the leaf/sink vertex k, always remaining in control. Hence, any non-ancestor vertices do not impact

the behavior of the agent.

5.2.1 Optimality Criterion

In an MDP, we can maximize the value of an initial state (i.e., assume s0 is given) or over all

states (i.e., make no such assumption). They turn out to be equivalent, as shown by SSPs. In

TMDPs, we can also assume the initial state is provided or not in the exact same manner for the

objective being optimized. Here, we will assume maximization starting from a known initial state

s0 for consistency across definitions—both the TMDP and the TPOMDP—with the other forms

following identically in the natural way from MDPs.

Interestingly, there is an orthogonal property regarding the slack constraints: we can enforce the

slack bound only at the initial state or, more rigidly, universally across all states. While the former

is much cleaner and easier to use, the latter is very useful to approximate the former, as we will

show in the subsequent sections.

The initial slack TMDP with initial state s0 is the recursively defined objective to find a policy

π that maximizes the expected value for reward i∈K following:

maximize V πi (s0)

subject to V ∗w(s0)−V πw (s0)≤δ(w,v), ∀v∈Ai∪{i},∀w∈Pv
(5.3)

with V ∗w(s0) denoting the optimal value of ancestor w recursively following this same constrained

objective. The astute reader might recognize the policy network constraint edge slack formulation
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from Equation 3.17. We will show how TMDPs are a special case of the much more general policy

network in Section 5.6.2. As such, this can be equivalently written in terms of policy sets:

Πi={π∈Π|V ∗w(s0)−V πw (s0)≤δ(w,v),∀v∈Ai∪{i},∀w∈Pv} (5.4)

with optimal policy π∗ constrained to policies within the set Πi.

We observe that this is also equivalent to the recursive restriction of policy sets following the

DAG E. Formally, given any parent vertices j∈Pi and their policy sets Πj , the policy set for i is:

Πi=
⋂
j∈Pi

Πji (5.5)

with edge constraints Πji from parents j to vertex i following:

Πji={π∈Πj |V ∗j (s0)−V πj (s0)≤δ(j, i)}. (5.6)

This follows a similar form as the policy network constraint edges in Equation 3.17. Importantly,

this assumes one can compute Πj and do not need to keep all ancestors of i. We will see that the

local action restriction (LAR) can do this by approximating the full policy set Πi using local sets

of actions at each state. But generally speaking, we must at least know all the constrained-optimal

values V ∗j for all ancestors of i.

The universal slack TMDP with initial state s0 is the recursively defined objective to find a

policy π that maximizes the expected value for reward i∈K following:

maximize V πi (s0)

subject to V ∗w(s)−V πw (s)≤δ(w,v), ∀v∈Ai∪{i},∀w∈Pv,∀s∈S
(5.7)

with V ∗w(s) denoting the optimal value of ancestor w recursively following this same constrained

objective. Again, this can be equivalently written in terms of sets of policies:

Πi={π∈Π|V ∗w(s)−V πw (s)≤δ(w,v),∀v∈Ai∪{i},∀w∈Pv,∀s∈S} (5.8)

with optimal policy π∗ constrained to policies within the set Πi. We may also equivalently compute

Πi here following Equation 5.5 and edge constraints Πji from parents j to vertex i:

Πji={π∈Πj |V ∗j (s)−V πj (s)≤δ(j, i),∀s∈S} (5.9)
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similar to Equation 5.6. Technically, in these definitions, if we have an initial state we should only

consider the reachable states from s0 in the universal slack TMDP objective definition; however, we

defined it here in the most general case.

Hereafter, the final policy set defined at the single leaf vertex is referred to as the optimal set of

policies Π∗, with optimal policy selected to execute denoted π∗∈Π∗. When necessary, to delineate

between the two objectives (e.g., in Section 5.6’s Proposition 12), for objective i, we mark the set of

initial slack policies as ΠI
i and the set of universal slack policies as ΠU

i . Finally, when not specified

otherwise, we let optimality be with respect to the initial slack objective.

5.2.2 Lexicographic MDP

A special case of the TMDP is called a lexicographic MDP [142]. It defines a graph as a chain with

an allotted slack at each successive objective. We briefly define it here for the sake of completeness

and as a simple useful example of the TMDP.

A lexicographic MDP (LMDP) is a sequential decision-making model defined by the tuple

〈S,A,T,R, δ〉:

• S is a finite set of states;

• A is a finite set of actions;

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s;

• R=[R1, . . . ,Rk]T is a vector of reward functions for K={1, . . . ,k} such that Ri :S×A→R

denotes an immediate reward Ri(s,a) for performing action a in state s; and

• δ=[δ1, . . . , δk−1]T is a vector of non-negative slack constraints δi≥0.

The policy, value, and objectives are the same as in TMDPs, with each objective (vertex) i itera-

tively constrained by the 1, . . . , i−1 before it. The term lexicographic comes from the lexicographic

preference ordering over objectives. The precursor ordinal multi-objective MDPs are essentially

LMDPs with each slack value set to zero. Formally, the objective function follows the universal

slack TMDP objective in Equation 5.7 over all states s0, such that for each reward i<k, a policy π

must preserve the slack constraint V ∗i (s)−V πi (s)≤δi for all s∈S.

Interestingly, the solution originally proposed called lexicographic value iteration (LVI) uses

local action restriction (LAR) to ensure that at each action deviation did not deviate more than a
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local one-step slack ηi≥0 from optimal. Formally, LVI defined action sets Ai(s)⊆A for all i<k,

with A1(s)=A. Then, using the action set of i, the successor objective i+1 had action set:

Ai+1(s)={a∈Ai(s)|V ∗i (s)−Q∗i (s,a)≤ηi}. (5.10)

These action sets were maintained for each state, running value iteration k times following the

objective order 1, . . . ,k. This has one main drawback: it can over-restrict the policy space since

policy is restricted only locally via Ai(s) instead of over the actual policy space [92]. A generalized

version of LVI is provided in Section 5.4 as well as theoretical results regarding LVI in Section 5.6.

5.2.3 Stationarity

As we show in Section 5.6.2, TMDPs are a special case of policy networks. Hence, we will use the

same terminology here, leaving aside the comprehensive relatively formal analysis to this upcoming

section. Thus, for a vertex i∈K, we call it stationary if the policy and its policy set are fixed

and given. For example, while solving a TMDP we must compute each policy set either implicitly

through V ∗i (s0) or explicitly through Πi; in both cases we call the reward vertex i stationary once

it is solved. As another example, it can simply be given, in which case it is also called stationary.

This is foundational to the concept of independence within a TMDP.

Any TMDP offline planning algorithm attempts to exploit these independences to solve all re-

maining relevant vertices, making them also stationary, before the agent’s execution in the environ-

ment. To clarify, this is essentially the planning that converts a policy network with non-stationary

vertices to one with stationary vertices; the result is a stationary policy for the initial controller

vertex. For a TMDP, once the planning algorithm has solved the vertices, then it can be converted

to its policy network form, which will have many, if not all, vertices marked as stationary. Of course,

online planning and reinforcement learning would allow for non-stationary vertices at the point of

execution; however, we will leave this interesting and complex domain to future work.

5.2.4 Graphical Representation

The DAG formed by E enables a straight-forward visualization of the TMDP’s topological con-

straint relationships. Formally, the visualized graph is defined by the tuple 〈K,E〉: vertices to refer

to the reward functions i∈K, and edges e∈E refer to the constraints, each of which has a corre-

sponding slack δe. We can write the slack δe, or just the actual number of the slack, along each

edge. Additionally, a vertex’s stationarity can be easily rendered by shaded vertex. Recall that this

stationarity refers to the initial, pre-computation, given assignment of a policy set, either implicitly
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Figure 5.1: Basic examples of the graphical notation that is used to represent a TMDP’s topological
constraints, for each reward vertex i∈K. The examples shown are: (a) an MDP before solving it;
(b) an MDP after solving it; (c) a simple two-reward LMDP; (d) a simple two-constraint CMDP;
(e) plate notation for a set of K ′=K−{k} constraints; and (f) mixture of the concepts for a set of
K ′′=K−{1,2,k} constraints.

by V ∗i (s0) or explicitly by Πi. This directly aligns with the notation used by Bayesian networks, as

well as policy networks which will be shown generalize TMDPs in the subsequent sections.

Figure 5.1 shows six example TMDPs. We observe in (b) how stationarity is denoted by a filled

in vertex. Also, we suggest here how a linear chain of constraints can be constructed in (c) as defined

in LMDPs, or even a fan of constraints in (d) as defined in CMDPs. For convenience, edges can

denote their slack values directly as shown in (d) or simply state the slack constant name as in (c).

As in Bayesian networks and policy networks, in cases when objectives can be visually grouped due

to the DAG structure, we may use the plate notation shown in (e) and (f).

When considering the process of solving a TMDP, it quickly becomes apparent that a large

input of k objectives might be computationally onerous. Is some way to leverage knowledge of

stationary policy sets in order to rapidly compute the final policy, such as in (f)? In Bayesian

networks, for example, we can compute the full joint probability quickly if independences among

random variables are found, as well as efficiently store the Bayesian network. Can TMDPs benefit

from a similar analysis? It turns out that TMDPs have a very similar notion of independence.

Since a TMDP follows from a policy network, it shares the same definition of independence as in

Section 3.3.6.

5.3 Topological POMDP

As the POMDP is an extension of the MDP to include partial observability, so to can we derive

a TMDP with partial observability. In fact, as in POMDPs, a topological POMDP is merely

a continuous TMDP with a special structure resulting in PWLC a value function. As such, we
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will briefly state the TPOMDP for completeness, referring to Section 5.2 and highlighting any key

distinctions.

A topological partially observable Markov decision process (TPOMDP) is a sequential

decision-making model defined by the tuple 〈S,A,Ω,T,O,R,E,δ〉:

• S is a finite set of states;

• A is a finite set of actions;

• Ω is a finite set of observations;

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s;

• O :A×S×Ω→ [0,1] is an observation function such that O(a,s′,ω)=Pr(ω|a,s′) is the proba-

bility of observing ω given action a was performed resulting in successor s′;

• R=[R1, . . . ,Rk]T is a vector of reward functions for K={1, . . . ,k} such that Ri :S×A→R

denotes an immediate reward Ri(s,a) for performing action a in state s;

• E⊆K×K is a finite set of edges over the k rewards forming a directed acyclic graph, with

one leaf/sink reward vertex which, without loss of generality, is reward vertex k; and

• δ :E→R+ is a function mapping edges e=〈i, j〉∈E to a non-negative slack constraint δ(e)≥0,

or also overloading notation by the equivalent δ(i, j)≥0.

The definition of policy is identical to TMDPs, with the same properties such as generally requiring

stochastic policies to obtain optimal value. As in a POMDP, the TPOMDP operates over a belief

b∈4|S| of the world following the POMDP description in Chapter 2. Consequently, they follow

the same belief update in Equation 2.13. For notational brevity, we will write equations with

deterministic policies π :4|S|→A. They also generalize the LPOMDP and CPOMDP models in the

same manner as TMDPs do for the LMDP and CMDP models (Section 5.6).

The infinite horizon TPOMDP with initial state s0 has a discount factor γ∈ [0,1). For a policy

π, it is based on the expected rewards:

E
[ ∞∑
t=0

γtR(bt,π(bt)
∣∣∣π,b0] (5.11)
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with bt denoting the random variable for the belief at time t generated following T and O. For a

policy π, the value V π :4|S|→R is the expected reward at belief b following:

Vπ(b)=R(b,π(b))+γ
∑
ω∈Ω

Pr(ω|b,π(b))Vπ(b′π(b)ω) (5.12)

and R(b,a)=
∑
s b(s)R(s,a) and b′π(b)ω following the belief update equation.

As in POMDPs, the infinite horizon TPOMDP is undecidable. However, it shares the same

value function for each objective, just in vector form. Thus, we may leverage the PWLC property

of a similar finite horizon TPOMDP objective to approximate the infinite horizon TPOMDP.

Following the same logic as POMDPs and leveraging Equation 2.19, we may use a set of α-vectors

Γi for each objective i∈K, with their collection Γ={[α1, . . . ,αk]T ∈Rk|∀i∈K,αi∈Γi}, to represent

the value function. The finite horizon Bellman equation for policy π at belief b:

Vπ(b)=R(b,π(b))+γ
∑
ω∈Ω

max
α′∈Γ

∑
s∈S

b(s)
∑
s′∈S

T (s,π(b),s′)O(π(b),s′,ω)α′(s′). (5.13)

The graphical representation of a TPOMDP is identical to that of a TMDP, as is the notion of

stationarity and independence.

5.3.1 Optimality Criterion

Both notions of optimality follow directly from a TMDP with state space of beliefs using

TPOMDP value Equation 5.12. Thus, an initial slack TPOMDP objective for initial belief b0

is the recursively defined objective to find a policy π that maximizes the expected value for reward

i∈K following:

maximize V πi (b0)

subject to V ∗w(b0)−V πw (b0)≤δ(w,v), ∀v∈Ai∪{i},∀w∈Pv
(5.14)

with V ∗w(b0) denoting the optimal value of ancestor w recursively following this same constrained

objective. Again, this can be equivalently written in terms of policy sets:

Πi={π∈Π|V ∗w(b0)−V πw (b0)≤δ(w,v),∀v∈Ai∪{i},∀w∈Pv} (5.15)

with optimal policy π∗ constrained to policies within the set Πi. The universal slack TPOMDP

objective follows naturally from the TMDP in the same manner.
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5.3.2 Lexicographic POMDP

As the TMDP can define a chain of slack constraints to produce the LMDP, the LPOMDP with a

chain of constraints produces a lexicographic POMDP. Formally, a lexicographic MDP (LMDP)

is a sequential decision-making model defined by the tuple 〈S,A,Ω,T,O,R, δ〉:

• S is a finite set of states;

• A is a finite set of actions;

• Ω is a finite set of observations;

• T :S×A×S→ [0,1] is a state transition function such that T (s,a,s′)=Pr(s′|s,a) is the prob-

ability of successor state s′ given action a was performed in state s;

• O :A×S×Ω→ [0,1] is an observation function such that O(a,s′,ω)=Pr(ω|a,s′) is the proba-

bility of observing ω given action a was performed resulting in successor s′;

• R=[R1, . . . ,Rk]T is a vector of reward functions for K={1, . . . ,k} such that Ri :S×A→R

denotes an immediate reward Ri(s,a) for performing action a in state s; and

• δ=[δ1, . . . , δk−1]T is a vector of non-negative slack constraints δi≥0.

The policy, value, and objectives are the same as in TPOMDPs, with each objective (vertex) i

iteratively constrained by the 1, . . . , i−1 before it. Formally, the objective function follows a universal

slack TPOMDP objective for initial belief b0, such that for each reward i<k, a policy π must preserve

the slack constraint V ∗i (b)−V πi (b)≤δi for all b∈4|S|.

The lexicographic value iteration (LVI) for LPOMDPs also used local action restriction

(LAR) at each belief explored. Thus, each action deviation did not deviate more than a local

one-step slack ηi≥0 from optimal. Formally, LVI defined action sets Ai(b)⊆A for all i<k, with

A1(b)=A. Again, using the action set of i, the successor objective i+1 had action set:

Ai+1(b)={a∈Ai(b)|V ∗i (b)−Q∗i (b,a)≤ηi}. (5.16)

These action sets were maintained for each belief explored b∈B⊆R(b0), running value iteration k

times following the objective order 1, . . . ,k. With this equation, we can also consider any explored

subset of beliefs B such as those explored by PBVI. This variant is called lexicographic point-

based value iteration (LPBVI). A generalized version of LVI, and its approximation LPBVI, is

provided in Section 5.4 as well as theoretical results regarding LVI and LPBVI in Section 5.6.
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Figure 5.2: Examples of action restriction and slack affordance. The true value functions (gray
dotted lines) are approximated by the α-vectors from below (black lines). The first value function
V1 (left) is reduced up to the slack δ1 to afford the second value function V2 (right) to greatly increase
its value. This example illustrates LVI’s operation.

Example A two objective LPOMDP, or more generally TPOMDP, is shown in Figure 5.2. It

depicts two belief points b1 and b2; two value functions V1 and V2; and four α-vectors for each

value function. The unknown true (infinite horizon) value of V1(b) and V2(b) are shown, as well as

the original V ′1(b) and V ′2(b) which would have been selected if slack was not introduced. First we

examine V1. For belief b1, we observe two α-vectors: α11 and α14. The difference between b1 ·α11

and b1 ·α14 is greater than the allowed slack η1. Therefore, α14 is thrown out of Γt1. Conversely, for

belief b2, the b2 ·α12 and b2 ·α13 are within ηi so Γt1 contains both. These two sets of α-vectors define

the actions available to V2. We make three observations about V2. First, α24 corresponds to the

potential α-vector that would have been available had we not removed α14’s action. Its actual value

was higher, but the first value function restricted the set of available actions for the second value

function. Second, α13’s action inclusion for the actions available at b2 in V2 enabled it to obtain a

higher value (with α23) than it would have if we had only allowed the maximal action to be taken

(with α22). Third, the infinite horizon values of V ′1(b) decreased slightly to V1(b) because we allowed

for slack in order to greatly improve the second value function from V ′2(b) to V2(b).

5.4 Algorithm

We begin by describing the general approach to solve a TMDP or TPOMDP. Essentially, we

simply follow the DAG’s topological order, solving that vertex until we arrive at the leaf. As

a consequence of the duality of the optimality criteria, there are two types of algorithm. Then

we discuss infeasibility in TMDP and TPOMDP resulting from infeasible constraints. Once these

concepts are established, we propose the general algorithm for TMDPs and TPOMDPs as well as

two approximations following the two types of algorithm.
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5.4.1 Duality in Algorithms

The general algorithm is simple given TMDP constraints form a directed acyclic graph (DAG).

For each objective, we can follow the topological order of the DAG and solve the optimization

problem corresponding to Equation 5.3. This optimization problem is a quadratically constrained

linear program (QCLP) and can be solved using non-linear programming (NLP) [3]. However,

this is challenging for TPOMDPs who must explore an exponential number of beliefs. In this

case, a controller family policy form such as a simple FSC can be used to solve it approximately.

Alternatively, we can approximate the policy set restrictions using a more general form of LVI with

LAR at states or beliefs.

Interestingly, these two approaches correspond to the equivalent definitions of the optimality

criteria in Equations 5.3 and 5.4 for the initial slack TMDP, or Equations 5.7 and 5.8 for the universal

slack TMDP. In the first case, we compute the values V ∗i (s0) to implicitly represent the policy sets.

In the second case, we compute the policy sets Πi—or approximations of them—explicitly. Both

implicit and explicit algorithms are described in this section. The experiments on autonomous

vehicles focus on an explicit approximate algorithm based on LVI.

Implicit algorithms for TMDPs require solving for the value V ∗i (s0). Mathematical program-

ming using NLP-based forms are the most natural way to do this because the slack constraints use

the values V ∗i (s0) to ensure they are satisfied. The benefits are: (1) the optimal values are actually

computed so it can return the correct optimal policy; and (2) the NLP form can be solved by very

efficient off-the-shelf solvers that are easy to use. The drawbacks are: (1) for any vertex i, we must

have constraints for all its ancestors Ai; and (2) for large state spaces such as in TPOMDPs this is

impossible to write as a solvable NLP.

Explicit algorithms for TMDPs require solving for the policy sets Πi. LVI-based approaches

are the most natural way to do this because storing the action sets Ai(s) are surrogates for part

of the policy set Πi. The benefits are: (1) it can benefit from the most popular scalable Bellman

optimality equation algorithms such as PBVI; and (2) it is typically much faster to use VI-based

algorithms custom-made for MDPs rather than solving an NLP using generic NLP algorithms. The

drawbacks are: (1) it typically over-restricts the space of policies at each step, yielding TMDP

policies that are not optimal; and (2) more memory is required to store the set of actions Ai(s).

5.4.2 Infeasibility

As with CMDPs, sometimes the constraints are impossible to satisfy. This creates infeasible

solutions in the mathematical programming problem. Formally, we call a TMDP or TPOMDP
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Algorithm 2 An algorithm to compute the optimal policy of a TMDP.

Require: 〈S,A,T,R,E,δ〉: The TMDP to solve.
1: procedure SolveTMDP(K, E, x, k)
2: 〈π∗,V∗(s0),Π〉 ← 〈π0,0k,{}〉
3: for i←x1, . . . ,xk do
4: Ai ← {j∈K|∃p∈ Path(K, E, j, i) }
5: 〈π∗i ,V ∗i (s0),Πi〉 ← SolveRelativeCMDP(S, A, T , R, i, Ai, V∗(s0), Π∗)
6: 〈π∗,V∗(s0),Π〉 ← 〈π∗i ,V∗(s0)+V ∗i (s0)ei,Π∪{Πi}〉
7: return π∗

8: x ← ComputeReversePostOrderDFS(K, E, k)
9: return SolveTMDP(K, E, x, k)

infeasible if there exists an i∈K and a slack constraint δ(j, i) such that the optimization problem

Equation 5.3 (or Equation 5.7) is infeasible.

From the perspective of the policy sets, this would create an empty intersection of the objectives’

parents sets. Infeasibility can be checked, as shown in Algorithm 2. It can be checked in both the

implicit form, which computes values V ∗i (s0)—approximately if it uses an NLP with a controller

family policy like an FSC—and the explicit form, which maintains the policy sets Πi—approximately

if it uses LAR to store only the action sets for each state.

Technically our definition of slack being satisfied, V ∗j (s0)−V πj (s0)≤δ(j, i) for 〈j, i〉∈E, is not as

general as a CMDP’s −V πi (s0)≤ci. There may not exist any policy that satisfies the constraint ci if

the assignment is too harsh. Therefore in a TMDP, only infeasibility with respect to the intersection

of constraints is possible, omitting infeasibility with respect to a single constraint in isolate. We

determined that this form of infeasibility was unnecessary to include because: (1) the use of slack

is much more intuitive universally, especially to a user [142, 135], whereas the CMDP constraints

are not as universal; (2) a system designer would not consider an impossible agent constraint; and

(3) the defined the slack constraint cleanly unifies many other models such as LMDPs and MODIA.

That said, it is a trivial change to use the CMDP constraint form instead; the TMDP properties

hold in the same manner.

5.4.3 Optimal Algorithm

Algorithm 2 defines the general algorithm to solve a TMDP. The TPOMDP can be solved in

exactly the same manner. On Line 2, both π0∈Π and 0k=[0, . . . ,0]T ∈Rk are initial assignments

for the policy and value, respectively. On Line 6, we simply overwrite the optimal policy, store the

optimal value in the correct vector location using standard basis ei, and store the policy set used

to constrain any children. Path(K, E, j, i) returns the set of paths between j and i on 〈K,E〉.

SolveRelativeCMDP(S, A, T , R, i, Ai, V∗, Π∗) solves the relative CMDP (e.g., via Equation 5.3
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Function: ApproximatelySolveRelativeCMDP(·)
Given: S, A, T , R, i∈K, Ai, x0∈X, s0∈S, V ∗v (s0), ∀v∈Ai
Variables: ψ(x,a), ∀x,a η(x,a,x′), ∀x,a,x′ V̂j(x,s), ∀x,s, ∀j∈Ai∪{i}
Maximize: V̂i(x

0,s0)

Bellman Constraints:

V̂v(x,s)=
∑
a∈Aψ(x,a)

[
Rv(s,a)+γ

∑
s′∈S T (s,a,s′)

∑
x′∈X η(x,a,x′)V̂v(x′,s′)

]
, ∀v∈Ai∪{i}

Slack Constraints:

V̂ ∗w(s0)− V̂ πw (x0,s0)≤δ(w,v), ∀v∈Ai∪{i},∀w∈Pv
Probability Constraints:

ψ(x,a)≥0, ∀x,a
∑
a∈Aψ(x,a)=1, ∀x

η(x,a,x′)≥0, ∀x,a,x′
∑
x′∈X η(x,a,x′)=1, ∀x,a

Table 5.1: An NLP using an FSC to approximate SolveRelativeCMDP(·) in Algorithm 2.

or 5.7). It returns an optimal policy π∗i , the value of this optimal policy V ∗i , and the set of policies Πi

for this vertex. The term relative refers to the relative position in the DAG’s topological order. An

approximate NLP algorithm for SolveRelativeCMDP(i)s provided in the proceeding subsection.

Moreover, an approximate Bellman equation-based algorithm for SolveTMDP(i)tself is provided as

well. The astute reader might recognize that this algorithm is a special case of the policy network’s

Algorithm 1 in Chapter 3 as the TMDP is a special case of a policy network.

5.4.4 Finite State Controller Algorithm

Ideally for an implicit algorithm, we employ an NLP solver such as SNOPT [44] for the math-

ematical optimization problem in Equation 5.3 or 5.7 for Algorithm 2’s SolveRelativeCMDP(.)

The problem is that this is intractable for these generic solvers, especially for a TPOMDP, in com-

parison to the specialized algorithms designed to solve MDPs and POMDPs. Thankfully, as we saw

in Chapter 4, we can leverage a finite state controller (FSC) as a policy instead to more compactly

represent a policy for use in NLP solvers.

The general NLP solution that uses an FSC is presented in Table 5.1 for a TMDP. Specifically,

we use an FSC 〈X,ψ,η〉 shown, with action selector ψ :X×A→ [0,1] and successor selector η :

X×A×X→ [0,1]; however, we could easily use any policy in the controller family as described

in Chapter 4. In the solution, notice that the constraints of ancestors Ai are satisfied, provided we

iteratively store all ancestor values in V∗ as part of Algorithm 2’s inner loop over the topological

order x of DAG E. Also notice that the. This shows the two drawbacks to implicit algorithms for

TMDPs.

Importantly, a third drawback emerges with approximate implicit algorithms such as this: the

optimal V ∗i (s0) is not actually computed, instead we compute an approximate V̂ ∗i (s0) (e.g., using
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Algorithm 3 Local action restriction to approximate SolveTMDP(·) in Algorithm 2.

Require: 〈S,A,T,R,E,δ〉: The TMDP to approximately solve.
Require: η: The local slack, used at each state, specific for each e∈E.
1: procedure ApproximatelySolveTMDP(K, E, x, k, η)

2: 〈π∗,V̂∗,A〉 ← 〈π0,{},{}〉
3: for i←x1, . . . ,xk do
4: Pi ← {j∈K|∃〈j, i〉∈E}
5: Ai(s) ← A∩

(⋂
j∈Pi

{
a∈Aj(s)

∣∣∣V̂ ∗j (s)−Q̂∗j (s,a)≤η(j, i)
})

, ∀s∈S
6: 〈π∗i , V̂ ∗i 〉 ← SolveMDP(S, Ai, T , Ri)

7: 〈π∗,V̂∗,A〉 ← 〈π∗i ,V̂∗∪{V̂ ∗i },A∪{Ai}〉
8: return π∗

9: x ← ComputeReversePostOrderDFS(K, E, k, η)
10: return ApproximatelySolveTMDP(K, E, x, k, η)

an FSC policy form). Consequently the constraints do not actually represent slack from the optimal

policy’s value V ∗j (s0)−V πj (s0)≤δ(j, i), only deviation from an approximate policy’s value V̂ ∗j (s0)−

V̂ πj (s0)≤δ(j, i). Hence, even if it is merely an ε error from optimal, with |V ∗i (s0)− V̂ ∗i (s0)|=ε>0,

then this error can still result in arbitrarily poor policies for descendent objectives. Moreover, even

just the computation of the value of a policy could also be off by some ε with |V πi (s0)− V̂ πi (s0)|=ε>0,

producing similar erroneous results. This can even propagate over each objective i, leading to

unbounded violations of the slack when compared with the true optimal value. In summary, implicit

algorithms compute V ∗i (s0) and approximations cannot exactly compute this, instead computing

V̂ ∗i (s0). This results in a slack guarantee only with respect to the approximate value V̂ ∗i (s0), not

the true value V ∗i (s0).

5.4.5 Local Action Restriction Algorithm

Ideally for an explicit algorithm, we store the entire Πi in Equations 5.4 or 5.8, each time

computing the intersection of the constraint edges Πji for each j∈Pi using Equation 5.5 with

either Equation 5.6 or 5.9. The problem is that this is intractable to store, again this is essentially

impossible for a TPOMDP. As in the case of implicit algorithms, we can also leverage approximate

algorithms based on the Bellman optimality equations by iteratively restricting actions at states.

Specifically, we generalize LVI for the TMDP and TPOMDP by recording a set of action sets

A, with each Ai∈A denoting a set of available actions Ai(s)⊆A at each state s∈S for objective

i∈K. Formally, let Ai :S→P(A) denote this mapping from state to action set. All nodes begin with

Ai(s)=A for all i and s. At each step of the original Algorithm 2, we can simplify Lines 4-6 by only

considering the intersection of parent action sets and instead solving a much simpler MDP rather

than a much more complex CMDP. As in LVI, we only keep the actions within a local one-step slack
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η :E→R+ of the value. This allows us to leverage a standard Bellman optimality equation-based

algorithm for Algorithm 2’s Line 5. Therefore, instead of storing all combinations of actions, we are

able to: (1) store a quadratic number of policies in the form of actions O(|K||A||S|), rather than an

exponential number of policies O(|K||A||S|), one for each i∈K; (2) leverage the formal definition of

MDPs that allows for action sets at each state; (3) perform an intersection operation that produces

exactly one unique successor set of actions at each iteration; and (4) ignore all unnecessary ancestors

to focus on intersecting parent actions within slack. Algorithm 3 describes this modified approximate

process formally.

Importantly, a third drawback emerges with approximate explicit algorithms too, similar to the

approximate implicit algorithm described above: the optimal set of policies within slack Πi is not

actually computed, instead we compute an approximate Π̂i. For example, using local action sets

Ai(s) for all states s, Π̂i={π∈Π|π(s)∈Ai(s),∀s∈S}. Consequently, the constraints do not actually

represent all the policies that are within slack from optimal. Instead, as we will show in the next

section, with the proper assignment of local one-step slack η(j, i)=(1−γ)δ(j, i) the approximate set

of policies is a subset of the true set Π̂i⊆Πi. Thus for a child vertex, this can produce arbitrarily

poor policies and values when compared with the true optimal values obtainable if the full policy

set had been used. Furthermore, this error can also propagate to descendants the DAG, leading to

unbounded violations of the slack when compared with the true optimal value; this is a similar effect

to the approximate method above. In summary, explicit algorithms compute Πi and approximations

cannot exactly compute this, instead computing Π̂i. This results in a slack guarantee only with

respect to the approximate value V̂ ∗i (s0), not the true value V ∗i (s0).

5.5 Application to Autonomous Vehicles

In many real-world applications, we must more than one concern, such as cost, quality, or time.

Within the context of autonomous vehicles (AVs), we consider the problem of route planning. The

primary objective is to reaching a goal address as quickly as possible, weighing the speed limits and

stochasticity of traffic lights and any traffic. Additionally, since this is an AV, we are willing to take

longer routes provided more time is spent autonomous on autonomy-capable roads. We formally

define this focused problem as an LMDP, allowing for additional AV-related objectives to be easily

added as a TMDP.
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5.5.1 Problem Definition

The multi-objective route planning problem is defined by a strongly connected weighted

directed graph 〈V,E,w,δ,σ,ψ〉. V is a set of vertices forming intersections. E⊆V ×V is a set

edges between intersections, thus defining roads. However, only some roads Ec⊆E are deemed

officially autonomy-capable—main roads with a speed limit greater than or equal to 30—with

non-autonomy-capable roads discouraged. w :E→R+ is the cost in time (in seconds) for traversing

each road. The probability of traversing a road is assumed to be given as part of this. Generally, it

should be proportional to any historical traffic data. For simplicity of discussion here, we assume this

is a known ε>0 additional cost in seconds applied to each w(e); this can be made vertex and edge

dependent, if desired, for use with historical traffic data. We can assume initial and goal vertices

are provided as part of V , denoted v0∈V and vg∈V , respectively.

There are two objectives: time and autonomy. Primarily, we seek to minimize the cost to reach

the goal location. However, we are willing to sacrifice the faster routes up to a slack of δ∈R+ seconds

in order to improve the amount of time spent autonomously along the route.

This is a simple application of semi-autonomy [26, 146, 132] in which control of the system is

transferred between a human λ and an agent ν, denoted I={λ,ν}. In our semi-autonomous driving

scenario, the main focus will be on transfer of control decisions based on the driver’s level of fatigue;

formally, we denote attentive α and tired τ as X={α,τ}. We assume the human becomes more

fatigued over time, modelled by a probability ψ=0.1 of becoming fatigued at each time step. The

multi-objective model we use is motivated by an extensive body of engineering and psychological

research on monitoring driver fatigue and risk perception [58, 97]. We will assume both a perfect

monitoring of the human—as an LMDP—as well as imperfect monitoring via noisy sensors—as an

LPOMDP—instead assuming a known success rate of σ=0.75. Chapter 6 provides a comprehensive

study of semi-autonomous systems.

5.5.2 Multi-Objective AV Route Planning Formulation

This route planning problem is an LMDP 〈S,A,T,R, δ〉 with k=2 rewards. S=V ×V ×X×I

describes the decisions made at the intersection of roads, the level of fatigue of the driver, and which

agent is controlling the vehicle. A=D×I describe the possible directions (roads) to take at a vertex

(intersection) (e.g., D={←,↑,→}) and which agent should be in control next. Let θ :V ×V ×D→V

map each previous intersection, current intersection, and a direction taken to a successor vertex in

the graph following E, including self-loops for invalid directions.
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The state transition T must capture the route planning graph as well as the driver’s fatigue

changing over time. Formally, T is defined by Equation 5.20 with three distinct state transition

functions: Tv, Tx, and Ti, one for each state factor. Each considers a state s=〈p,v,x, i〉, an action

a=〈d,j〉, and a successor state s′=〈p′,v′,x′, i′〉. First, Tv describes the validity of an action following

the route planning graph:

Tv(p,v,d,p
′,v′)=

 1, if v′=θ(p,v,d)∧p′=v

0, otherwise
. (5.17)

Next, Tx describes the driver’s fatigue level potentially increasing:

Tx(x,x′)=



1, if x=τ ∧x′=τ

ψ, if x=α∧x′=τ

(1−ψ), if x=α∧x′=α

0, otherwise

. (5.18)

Lastly, Ti describes the effect to transferring control between agents:

Ti(i, j, i
′)=

 1, if i′=j

0, otherwise
. (5.19)

We combine Equations 5.17, 5.18, and 5.19 to get our state transition:

T (s,a,s′)=Tv(p,v,d,p
′,v′)Tx(x,x′)Ti(i, j, i

′). (5.20)

Chapter 6 formalizes these notions into a general framework, allowing for probabilistically rich

interactions among agents and with the environment.

The first reward function R1 measures the time spent during travel, including the expected time

to wait an each intersection:

R1(s,a)=

 −w(〈v,θ(p,v,d)〉), if v 6=vg

0, otherwise
. (5.21)

The second reward function R2 must also consider if the driver is fatigued and if the road is

autonomy-capable:
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R2(s,a)=


−w(〈v,θ(p,v,d)〉), if v 6=vg∧ i=λ∧(x=τ ∨〈v,θ(p,v,d)〉∈Ec)

−ε, if v 6=vg∧¬(i=λ∧(x=τ ∨〈v,θ(p,v,d)〉∈Ec))

0, otherwise

, (5.22)

which essentially measures a cost whenever autonomy is not being used properly.

Additionally, we can consider the LPOMDP version of the problem 〈S,A,Ω,T,O,R, δ〉 with all

set and function assignments as above. Ω=X denotes the noisy observations of the driver’s level

of fatigue. Thus, O follows the model of the sensor noisy from an eye tracker or other monitoring

device [58, 97]:

O(a,s′,ω)=

 σ, if ω=x′

(1−σ), if ω 6=x′
. (5.23)

5.6 Theoretical Analysis

The TMDP has a very flexible structure for relating constrained objectives to one another.

Consequently, we begin by formally generalizing the LMDP and CMDP with the TMDP in Propo-

sitions 8 and 9—in fact, they represent two extreme cases of a TMDP: chain- and fan-structured

graphs, respectively.

Proposition 8. Topological MDPs (TDPs) generalize lexicographic MDPs (LMDPs).

Proof. We must construct an LMDP using a TMDP. Let the TMDP’s S, A, T , and R be equivalent to

the LMDP. Given k objectives, let E={〈i, i+1〉,∀1≤ i≤k−1}. Let δ(i, i+1) be any slack assignment

from the LMDP (e.g., 0 or some δi≥0). We observe that we have reconstructed the LMDP’s objective

(Equation 2.47) with the initial slack TMDP objective (Equation 5.3).

Proposition 9. Topological MDPs (TMDPs) generalize constrained MDPs (CMDPs).

Proof. We must construct a CMDP using a TMDP. Let the TMDP’s S, A, and T be equivalent to

the CMDP. Let R be equivalent to the CMDP, except let R1, . . . , Rk−1 be the cost functions in

CMDPs instead of rewards, with Ri(s,a)=−Ci(s,a) for each such i. Since expectation is a linear

operator, the CMDP’s constraint objective values denoted V̄ πi (s0) are exact negations of the values

computed by the TMDP denoted V πi (s0) such that V πi (s0)=−V̄ πi (s0). Let the TMDP’s Rk be

identical to the CMDP’s maximizing objective reward. Let E={〈i,k〉,∀1≤ i≤k−1}. Given the

CMDP’s constraints ci, let δ(i,k)=ci−V ∗i (s0). This slack definition results in the TMDP parental

constraints of the form: V ∗i (s0)−V πi (s0)≤ci−V ∗i (s0). This yields −V πi (s0)≤ci, which equates to

the original CMDP constraints V̄ πi (s0)≤ci.
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An important corollary of the CMDP mathematical optimization problem being representable by

the TMDP, as shown in Proposition 10, is that stochastic policies may be required for some TMDP.

This also holds for TPOMDPs for the same reason.

Proposition 10. There exist TMDPs that require stochastic policies to obtain their maximal value.

Proof. By Proposition 9, a CMDP mathematical optimization problem can be represented as a

TMDP; the value equation is the same in both, whether deterministic or stochastic. (In fact, each

iteration of objectives is just a CMDP.) In some cases, CMDPs can require stochastic policies to

obtain their maximally value [2]. Thus, there exist TMDPs which require stochastic policies to

obtain their maximal value.

Similarly, we also can ensure that an optimal stationary policy exists by leveraging the properties

of CMDP. This is shown in Proposition 11.

Proposition 11. There exists an optimal stationary policy for any TMDP.

Proof. For each objective i∈K, following a sequence of the topological order x=〈x1, . . . ,xk〉 of DAG

E, we have a CMDP defined by Equation 5.3 (or Equation 5.7). By induction on i, we show that

TMDPs admit an optimal stationary policy.

Base Case: The root nodes of E are first in the topological order. They are MDPs which have

optimal stationary policies [8].

Induction Step: Assume true for all ancestors Ai of i, which is equivalent to assuming true fol-

lowing the sequence x of the topological ordering. An optimal stationary policy produces an optimal

value for all ancestors. These form constraints in the objectives Equation 5.3 (or Equation 5.7). To

solve for objective i, we have a CMDP, which have an optimal stationary policy [2]. This policy may

need to be stochastic, as in Proposition 10.

Thus by induction, we have shown that the k-th objective admits an optimal stationary policy.

Therefore, there exists an optimal stationary policy for any TMDP.

Next, we focus on the relation of policies. Due to the definition of initial and universal slack,

a straight-forward property emerges: comparing the optimization of any objective i, the set of

universal slack policies is more restricted than the set of initial slack policies. Importantly, this does

not mean that the final policy sets ΠI
k and ΠU

k necessarily have any relation for k>2 because they

can each iteratively restrict in divergent ways. Consequently, Proposition 12 proves that given the

same ancestor policy sets, the application of Equation 5.7 constraints the policy space more than
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Equation 5.3. However, this relation is a useful property to understand how Algorithm 3, and thus

LVI for L(PO)MDPs, operates for the universal and initial slack objectives.

Proposition 12. For any TMDP and an objective i∈K, given the stationary policy sets Πv of

all i’s ancestors v∈Ai, the set of policies for the initial slack objective ΠI
i and the universal slack

objective ΠU
i are related by ΠU

i ⊆ΠI
i .

Proof. By definition of initial slack in Equation 5.3, there are fewer constraints in the optimization

problem than the definition of universal slack in Equation 5.7. Therefore, the set of policies satisfying

universal slack ΠU
i must be a subset of (or equal to) the policies of initial slack ΠI

i . Equivalently, we

can simply observe the policy sets in Equation 5.4 versus Equation 5.8. At each objective i, universal

slack contains a weak subset of the policies that satisfy the initial slack. Therefore, ΠU
i ⊆ΠI

i .

We can convert any TPOMDP to an equivalent belief TMDP using the same mapping as for

POMDPs and belief MDPs [101, 63]. Consequently, these properties hold for TPOMDPs as well,

following the same logic.

Corollary 1. Topological POMDPs (TPOMDPs) generalize lexicographic POMDPs (LPOMDPs).

Corollary 2. Topological POMDPs (TPOMDPs) generalize constrained POMDPs (CPOMDPs).

Corollary 3. There exist TPOMDPs that require stochastic policies to obtain their maximal value.

Corollary 4. For any TPOMDP and an objective i∈K, given the stationary policy sets Πv of all i’s

ancestors v∈Ai, the set of policies for the initial slack objective ΠI
i and the universal slack objective

ΠU
i are related by ΠU

i ⊆ΠI
i .

Corollary 5. There exists an optimal stationary policy for any TPOMDP.

5.6.1 Analysis of Algorithms

Now we turn our attention to Algorithms 2 and 3. Recall that the latter algorithm also encom-

passes the more specific lexicographic value iteration (LVI) for L(PO)MDPs. First, however, we

consider the optimal algorithm in Proposition 13, proving that it indeed returns the optimal policy

following either of the optimality criteria.

Proposition 13. Algorithm 2 returns the optimal policy for the initial (or universal) slack objective.

Proof. On Line 8, we produce a sequence x that preserves the topological order of DAG E. On

Line 9, and subsequently Lines 3-6, this sequence is followed for each objective i. Line 4 defines

105



the ancestors of i by definition. Line 5 solves the relative CMDP following the optimality criterion,

recursively defined for objective i, in Equation 5.3 (or Equation 5.7). Line 6 simply stores the results.

Finally, the last updated policy π∗=π∗k, which is the definition of an optimal policy for a TMDP.

Therefore, Algorithm 2 returns the optimal policy for the initial (or universal) slack objective.

With optimality of Algorithm 2 established, we can evaluate how the approximate local action

restriction (LAR) from Algorithm 3 performs.

In practice, the TMDP and TPOMDP operate differently for LAR because they are based on

value iteration (VI) and point-based VI (PBVI), respectively. As such, we will provide separate

proofs for each, first focusing here on LAR for TMDPs. Proposition 14 then proves that there is a

unique fixed point in the spaces of value functions V̂∗ when following Algorithm 3. This is important

to ensure LAR algorithms actually converge to a collection of values.

Proposition 14. Algorithm 3’s local action restriction (LAR) converges to a unique fixed point V̂ ∗i

for all i∈K, if |Ai(s)|>1 for all i∈K and s∈S.

Proof. For each objective i∈K, following a sequence of the topological order x=〈x1, . . . ,xk〉 of DAG

E (Algorithm 3, Line 9), we have a CMDP defined by Equation 5.3 (or Equation 5.7). By induction

on i, we show that TMDPs admit an optimal stationary policy.

Base Case: The root nodes i∈K of DAG E are first in the topological order. They are MDPs, so

the Bellman optimality equation operator used in Line 6 is a contraction map in the Banach space

of value functions V̂ πi [8]. As in all MDPs, Banach’s fixed point theorem proves this converges to a

unique fixed point V̂ ∗i .

Induction Step: Assume true for all ancestors Ai of i, which is equivalent to assuming true

following the sequence x of the topological ordering; all ancestors converged to a unique fixed point,

resulting in an optimal value. By Line 5, each one was restricted by their parents in sequence. Line

6 results in action sets for each state such that each parent’s local one-step slack η(j, i) is satisfied. If

there exists a state s such that |Ai(s)|=0, then we can simply return infeasibility, as would occur in

any CMDP whose constraints are not satisfiable. If |Ai(s)|>0 for all states s, then we have an MDP

with action sets at each state. Such MDPs admit the same Bellman optimality equation operator,

as used in Line 6, that is again a contraction map in the Banach space of value functions V̂ πi [8, 10].

Again, Banach’s fixed point theorem proves this converges to a unique fixed point V̂ ∗i .

Thus by induction, we have shown that the k-th objective converges to a unique fixed point in

value space. Therefore, local action restriction (Algorithm 3) converges to a unique fixed point V̂∗

for all values in any TMDP.
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Now that we have established that convergent values exist, we must ensure that the slack con-

straints are satisfied at each step of LAR in Algorithm 3. Proposition 15 formally proves that a

local one-step slack of η(j, i)=(1−γ)δ(j, i) guarantees that slack is satisfied for each parent for the

universal slack objective criterion.

Proposition 15. For a TMDP and an objective i∈K, given the values V̂ ∗j of i’s parents j∈Pi, if

Algorithm 3’s local action restriction (LAR) assigns local one-step slack η(j, i)=(1−γ)δ(j, i), then

the universal slack constraint is satisfied V̂ ∗j (s)− V̂ πj (s)≤δ(j, i) for all s∈S and any policy π∈Π̂i.

Proof. Let V̂ π,tj (s) be t applications of Equation 5.2 following any policy π∈Π̂i, and let V̂ ∗,tj (s)

be t applications of Equation 5.2 following any optimal policy π∗∈Π̂i, both starting at a state

s∈S. Additionally, Q̂∗,tj (s,π(s)) is a one-step action deviation following any policy π, after which

an optimal policy π∗ is followed for the remaining t−1 iterations.

First, we will show for any parent j∈Pi and any state s∈S that:

V̂ π,tj (s)≥ V̂ ∗,tj (s)−
t∑

τ=0

γτη(j, i) (5.24)

by induction on t iterations of the Bellman equation operator.

Base Case: At t=0, by the definition of π(s)∈Ai(s), we have local slack equation:

V̂ ∗,0j (s)−Q̂∗,0j (s,π(s))≤η(j, i) ⇒ V̂ ∗,0j (s)−Rj(s,π(s))≤η(j, i)

⇒ V̂ ∗,0j (s)− V̂ π,0j (s)≤η(j, i) ⇒ V̂ π,0j (s)≥ V̂ ∗,0j (s)−η(j, i)

Induction Step: Assume for t−1 the induction hypothesis:

V̂ π,t−1
j (s)≥ V̂ ∗,t−1

j (s)−
t−1∑
τ=0

γτη(j, i)

is true. We must show that Equation 5.24 true for t now:

V̂ π,tj (s)=Rj(s,π(s))+γ
∑
s′∈S

T (s,π(s),s′)V̂ π,t−1
j (s′) by Equation 5.2

≥Rj(s,π(s))+γ
∑
s′∈S

T (s,π(s),s′)
(
V̂ ∗,t−1
j (s′)−

t−1∑
τ=0

γτη(j, i)
)

by induction hypothesis

≥
(
Rj(s,π(s))+γ

∑
s′∈S

T (s,π(s),s′)V̂ ∗,t−1
j (s′)

)
−
t−1∑
τ=0

γτ+1η(j, i) by rewrite and normalize

≥Q̂∗,tj (s,π(s))−
t−1∑
τ=0

γτ+1η(j, i) = Q̂∗,tj (s,π(s))−
t∑

τ=1

γτη(j, i) by definition of Q̂∗,tj
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By the definition of LAR’s slack in Algorithm 3, Line 5, we have V̂ ∗,tj (s)−Q̂∗,tj (s,π(s))≤η(j, i).

Rearrange this, apply to Q̂∗,tj , and group η in the sum:

V̂ π,tj (s)≥ V̂ ∗,tj (s)−η(j, i)−
t∑

τ=1

γτη(j, i)= V̂ ∗,tj (s)−
t∑

τ=0

γτη(j, i).

Thus, by induction on t, we have shown that Equation 5.24 is true for all t.

Now let t→∞ and evaluate Equation 5.24:

V̂ π,tj (s)≥ V̂ ∗,tj (s)−
t∑

τ=0

γτη(j, i) by Equation 5.24

≥ V̂ ∗,tj (s)−
∞∑
τ=0

γτη(j, i) by γ∈ [0,1) and η(j, i)≥0

≥ V̂ ∗,tj (s)− η(j, i)

1−γ
by geometric series

V̂ ∗,tj (s)− V̂ π,tj (s)≤ η(j, i)

1−γ
by rearranging

Finally, if we assign η(j, i)=(1−γ)δ(j, i), then for all t→∞ we obtain V̂ ∗j (s)− V̂ πj (s)≤δ(j, i).

Provided parent slack is satisfied, we can finally relate local action restriction to the two optimal-

ity criteria. Proposition 16 states the conservative over-restriction that this approximate algorithm

computes at each step, as compared with the initial and universal objectives.

To this end, let the policy set Π̂i={π∈Π|π(s)∈Ai(s),∀s∈S} denote the set of policies resulting

from Algorithm 3’s local action restriction, given the approximation of ancestor policy set restrictions

via Ai(s). Let Π̂I
i and Π̂U

i denote the initial and universal objectives applied to i, respectively,

given the approximation of ancestor policy set restrictions via Π̂v={π∈Π|π(s)∈Av(s),∀s∈S} for

all v∈Ai. In other words, Π̂i applies one optimization step of LAR at i via Algorithm 3’s Lines

4-7, Π̂I
i applies one optimization step via Equation 5.3, and Π̂U

i applies one optimization step via

Equation 5.7. In all cases, the same stationary ancestor policy sets Π̂v are used to isolate a direct

comparison of the effects.

Proposition 16. For a TMDP and an objective i∈K, given the stationary policy sets Π̂v of all

i’s ancestors v∈Ai, if Algorithm 3’s local action restriction (LAR) assigns local one-step slack

η(j, i)=(1−γ)δ(j, i) for all j∈Pi, then Π̂i⊆Π̂U
i ⊆Π̂I

i .

Proof. By Proposition 15, for all parents j∈Pi, we have the universal slack constraint satisfied

V̂ ∗j (s)− V̂ πj (s)≤δ(j, i) for any policy π∈Π̂i. By the definition of universal slack optimality criterion
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in Equation 5.7, we have satisfied all constraints. This results in the policy sets Π̂U
i following the

equivalent intersection of parent policy sets in Equation 5.5:

Π̂U
i =

⋂
j∈Pi

Π̂U
ji

with universal slack constraint edges in Equation 5.9:

Π̂U
ji={π∈Π̂j |V̂ ∗j (s)− V̂ πj (s)≤δ(j, i),∀s∈S}.

Thus, Π̂i⊆Π̂U
i . By Proposition 12, we obtain Π̂i⊆Π̂U

i ⊆Π̂I
i .

Again, since every TPOMDP can be converted to an equivalent belief TMDP, many of the proofs

are identical. For example, Propositions 13 and 14 apply to TPOMDPs as well. However, while this

continuous (belief) TMDP is theoretically sound and valid, in practice it is intractable for the same

reasons as a POMDP, CPOMDP, or LPOMDP: it operates over R(b0)⊆4|S|. Instead we leverage

PBVI-based methods for Algorithm 3’s Line 6, which operate over a fixed set of beliefs B⊆4|S|.

Consequently, our choice of local one-step slack η(j, i) must change in order to preserve the slack

constraints. The new equation uses PBVI-related variables, specifically the density of beliefs δB≥0

and the maximal (worst-case) error after t iterations denoted as εti≥0 [90]. Due to δB requiring a

linear program to solve, we can instead use an approximation δ̂B≥0. They are:

δB= max
b′∈4|S|

min
b∈B
‖b−b′‖1 and δ̂B=max

b′∈B
min
b∈B
‖b−b′‖1.

Also, we will assume the PBVI-based algorithm is initialized by Rmini /(1−γ) so that V̂ ∗i ≤V ∗i is

a lower bound on the true values V̂ ∗i ≤V ∗i [79, 90]. We formally state the definition of η(j, i) in

Proposition 17 and prove it satisfies universal slack.

Proposition 17. For a TMDP and an objective i∈K, given the values V̂ ∗j of i’s parents j∈Pi, if

Algorithm 3’s local action restriction (LAR) assigns local one-step slack:

η(j, i)=(1−γ)δ(j, i)−
Rmaxj −Rminj

1−γ
δB (5.25)

then the universal slack constraint is satisfied V̂ ∗j (b)− V̂ πj (b)≤δ(j, i) for all beliefs b∈4|S| and any

policy π∈Π̂i.
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Proof. For any policy π∈Π̂i, any parent j∈Pi, and any belief b∈4|S|:

V̂ ∗j (b)− V̂ πj (b)≤V ∗j (b)− V̂ πj (b) by Rmini /(1−γ)

≤V ∗j (b)−(V πj (b)−εtj) by worst-case upper bound

≤(V ∗j (b)−V πj (b))+εtj by rewrite

≤ η(j, i)

1−γ
+εtj by Proposition 15

≤ η(j, i)

1−γ
+
Rmaxj −Rminj

(1−γ)2
δB by Pineau et al. [90]

The worst-case upper bound comes from the fact that V̂ πj (b)∈ [V πj (b)−εtj ,V πj (b)] after any t iterations

of PBVI [90].

As in Proposition 15, we can select η(j, i) to ensure slack δ(j, i) is satisfied. We also select

a maximum of 0 to ensure a valid slack of δ(j, i)≥0, equivalently satisfying the constraint that

V̂ ∗j (b)− V̂ πj (b)≥0. Thus, if we want to show that:

V̂ ∗j (b)− V̂ πj (b)≤δ(j, i)=
η(j, i)

1−γ
+
Rmaxj −Rminj

(1−γ)2
δB

then we solve for η(j, i) and ensure δ(j, i)≥0 as described above:

η(j, i)=(1−γ)δ(j, i)−
Rmaxj −Rminj

1−γ
δB .

We return infeasible if there exist any η(j, i)<0; or if desired, simply take the max{0,η(j, i)}.

Interestingly, this assignment has the desired property that as we improve the density of our

belief points (i.e., B→4|S| and δB→0), the acceptable value of each η(j, i) converges to the result

from Proposition 15. Additionally, the bound makes intuitive sense: η describes the acceptable slack

for one iteration’s action’s deviation from optimal. It turns out that the adjustment of ((Rmaxi −

Rmini )/(1−γ))δB is exactly the definition of PBVI’s one-step error [90], which obviously must be

accounted for in the tolerable amount of one-step slack η.

Finally, the same logic as Proposition 16, instead leveraging Proposition 17 and Corollary 4,

allows us to arrive at the same relation using PBVI-based local action restriction in Corollary 6.

Corollary 6. For a TPOMDP and an objective i∈K, given the stationary policy sets Π̂v of all

i’s ancestors v∈Ai, if Algorithm 3’s local action restriction (LAR) assigns local one-step slack in

Equation 5.25 for all j∈Pi, then Π̂i⊆Π̂U
i ⊆Π̂I

i .
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5.6.2 Policy Network Representation of TMDPs

We now prove in Proposition 18 and Figure 5.3 how any TMDP (or TPOMDP) is representable as

a policy network. In the proof, we refer directly to the formal definition established in Section 5.2,

and assume the initial slack objective criterion. However, we will refer to the TMDP’s edges as

ET to differentiate it from the policy network’s edges E. TMDPs serve as an example of how

policy networks can describe iteratively constraining each other’s policy spaces with the same state

and action spaces across all vertices. It demonstrates how policy networks can allow for rich sets

of constraints, which are organized hierarchically, to properly model the kinds of complex multi-

objective problems found in real-world domains.

vk

...

v1

δ(1,2)

δ(k−1,k)

vi∼MDP(S,A,T,Ri)

vk

vi

δ(i,k)

i∈K′

vi∼MDP(S,A,T,Ri)

vk

...

vj

δ(j, i′)

δ(i,k)

j∈Pi
i∈Pk

vi∼MDP(S,A,T,Ri)

Figure 5.3: LMDP (left), CMDP (center), and an example tree graph TMDP (right) represented as
a policy network, with K ′=K−{k} and i′∈Pk.

Proposition 18. Policy networks generalize TMDPs.

Proof. For any TMDP, we must construct an equivalent policy network. See Figure 5.3. Let

V ={vi,∀i∈K} with v∼MDP(·) as in the figure with shared state and action spaces. Let E=

{〈vi,vj〉,〈vj ,vi〉,∀〈j, i〉∈ET } (bi-directional) with edges e=〈vj ,vi〉 having policy constraint:

Πe={π∈Πvj |V ∗vj (s
0)−V πvj (s

0)≤δ(j, i)}.

Thus, this policy network produces the same Bellman equations and initial slack optimality criterion

of a TMDP.
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5.7 Evaluation

Semi-autonomous systems require collaboration between a human and an agent in order to

achieve a goal [26, 146]. We experiment within the previously described autonomous vehicle domain.

In this domain, an AV may only drive autonomously on some subset of autonomy-capable roads,

requiring manual driving on the remaining roads. The driver may be attentive or tired [142, 135].

The AV must reason about the driver capability to minimize travel time; however, we allow for a

slack in travel time in order to improve the amount of time spent autonomous.

We use a real-world dataset and allow for autonomy whenever the speed limit is greater than

30 miles per hour—that is, on main roads. State transitions capture the likelihood that the human

driver will drift from attentive to tired. In the LMDP case, the AV’s location, who is in control,

and driver’s state of attentiveness are perfectly observable by the interior sensors. In the LPOMDP

case, we relax the assumption to allow for noisy observations over the driver’s state.

Tables 5.2 and 5.3 show the problem sizes and run times over 10 cities, as well as the values of

both objective functions at the initial state or belief. The LPOMDP case used a uniform belief over

the attentiveness of the driver. To improve the scalability of local action restriction for both the

LMDP’s value iteration and the LPOMDP’s PBVI, we developed a GPU-based parallel variant for

both LMDPs and LPOMDPs.

Experiments were conducted with an Intel(R) Core(TM) i7-4702HQ CPU at 2.20GHz, 8GB of

RAM, and an Nvidia(R) GeForce GTX 870M graphics card using C++ and CUDA(C) 6.5. The

results demonstrate that the GPU implementation can produce a speedup of more than two orders

of magnitude over the CPU implementation. Note, however, that our CPU implementation here

used STL objects, whereas the GPU used arrays. In improved version of this code is provided in

nova [136] with continued development in the library resulting in a speedup closer to an order of

magnitude.

Figures 5.4 and 5.5 demonstrates an policies for a sections of Denver, Austin, San Francisco, and

Boston. The arrows mark the policy at each intersection; green arrows mean the driver drivers, and

purple arrows mean the AV drives. The light blue roads denote autonomy-capable roads, and the

white roads denote non-autonomy-capable roads. The green path denotes the optimal policy given

an initial starting point. For the LPOMDP, values and actions exist within an impossible-to-visualize

high-dimensional belief space. As such, we simply took two “slices” over this space: assuming the

physical state and autonomy were observable, as in the model, we assigned a probability of being

tired to 0.2 (i.e., likely attentive) and 0.8 (i.e., likely tired).
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Figure 5.4: Example LMDP policy for Denver (top), Austin (center), and San Francisco (bottom)
with driver attentive (left) and tired (right).

City |S| |A| CPU GPU

Chicago 400 10 3.3 3.9

Denver 616 10 12.9 6.4

Baltimore 676 8 14.1 5.7

Pittsburgh 864 8 15.4 7.9

Seattle 1168 10 63.5 14.2

Austin 1880 10 433.3 29.8

San Francisco 2016 10 4685.7 159.4

Los Angeles 2188 10 273.5 37.8

Boston 2764 14 11480.9 393.2

New York City 3608 10 16218.5 525.7

Table 5.2: LMDP problem domain sizes (|S| and |A|) and run times (CPU and GPU) for autonomous
vehicle LMDP experiments over 10 cities using real-world data from OpenStreetMap.
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Figure 5.5: Example LPOMDP policy for Boston with driver belief 0.2 (left) and 0.8 (right).

City Name |S| |A| |Ω| |B| V̂ π1 (b0) V̂ π2 (b0) CPU GPU

Austin 92 8 2 230 57.4 35.9 14.796 3.798

San Francisco 172 8 2 430 97.8 53.8 51.641 8.056

Denver 176 8 2 440 123.7 77.3 60.217 8.299

Baltimore 220 8 2 550 56.2 43.9 104.031 11.782

Pittsburgh 268 10 2 670 148.0 142.2 169.041 19.455

Los Angeles 380 8 2 950 167.9 114.4 298.794 25.535

Chicago 404 10 2 1010 67.4 31.6 399.395 36.843

Seattle 432 10 2 1080 111.2 66.9 497.061 48.204

New York City 1064 12 2 2660 108.1 73.7 — 351.288

Boston 2228 12 2 5570 109.3 79.2 — 2424.961

Table 5.3: LPOMDP problem domain sizes (|S|, |A|, and |Ω|), the value following the policy π at ini-
tial beliefs (V̂ πi (b0)), and run times (CPU and GPU) for autonomous vehicle LPOMDP experiments
over 10 cities using real-world data from OpenStreetMap.

We observe in all examples that the policy produces the desired result of first minimizing the

distance to get from the start to the goal, but also considering the time spent autonomous, namely

when the driver is tired. For example, in Figure 5.4’s Austin example—the center two subfigures—

we observe that the primary “minimize time” objective (Equation 5.21) is clearly chosen over the

secondary “minimize time spent not autonomus“ objective (Equation 5.22). Note that Equation 5.21

does not condition its reward on the driver’s level of fatigue, meaning if the slack δ=0 then both

attentive and tired state factor assignments (i.e., x=α or x=τ) would produce the same path

that minimizes time. However, since our slack is positive δ>0, policies that favor the secondary

objective— drive on autonomy-capable roads (in blue)—is chosen when the state factor is tired x=τ .

If we were to allow δ→∞ then the agent would ignore the primary objective in complete favor of

the secondary objective. Slack allows for a natural tuning parameter between any pair of objective

functions, with a clear mathematical formalism, and a useful practical description understablable

by an end-user, say of an autonomous vehicle.
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5.8 Conclusion

We present a model for a multi-objective MDP and POMDP that admits a hierarchical preference

structure over the collection of objectives. The hierarchical preference structure is a directed acyclic

graph (DAG) that induces a topological order over the objectives. As such, we call the model a

topological MDP (TMDP) or topological POMDP (TPOMDP) depending if it has full or partial

observability, respectively. For each pair of objectives directly connected by the DAG, we define

a slack constraint edge—that is, allowable deviation from optimal of the parent objective in favor

of the child objective’s optimization. This model’s characterization of slack constraints and the

generality in preferences allows for a natural description of many real-world problem domains with

multiple, prioritized objectives.

We rigorously prove that the T(PO)MDP generalizes a number of previous models, such as

the lexicographic MDP (LMDP) and constrained MDP (CMDP). We present two forms of objective

criteria, initial and universal slack, proving their relation. We also provide a number of algorithms for

T(PO)MDPs: (1) an optimal algorithm that solves the T(PO)MDP; two approximate algorithms

for TMDPs using: (1) non-linear programming, and (2) local action restriction (LAR); and an

approximate PBVI-based TPOMDP algorithm for TPOMDPs that uses LAR as well. We formally

prove the relationship of these algorithms with the true and approximate values returned by the

objective criteria.

To illustrate our model’s applicability to real-world problems, we examine its performance within

the recently proposed semi-autonomous driving domain. Our experiments show that our algorithms

can solve practical TMDPs and TPOMDPs with large state-spaces–in line with the capabilities of

state-of-the-art POMDP solvers.

In future work, we will expand our investigation of TMDPs and TPOMDPs and their applica-

tions. For example, the area of proactive learning—query multiple cost-varying oracles for noisy

labels to build an accurate dataset and classifier—must trade-off a budget, belief over dataset accu-

racy, and the number of queries [137]. We hope to explore larger hierarchical preference structures

over the objectives. Finally, we will provide our source code to facilitate the creation and use of

TMDPs and TPOMDPs in practical real-world systems.
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CHAPTER 6

SEMI-AUTONOMOUS SYSTEMS

In this chapter, we present a formal model for a semi-autonomous system—an agent who can be

controlled by many distinct actors, including a human. Importantly, we discuss the critical transfer

of control process between each of the actors. We illustrate how this can be used for autonomous

vehicle route planning that proactively reasons about the second-to-second control transfer between

a human driver and the vehicle. More broadly, the semi-autonomous system model shows how

humans can be integrated into an agent system to leverage the human’s capabilities at key points.

This enables it to overcome the rare but inevitable situations in which the agent cannot properly

act, given its known limitations. A small bit of human aid can make an otherwise undeployable AI

or robot actually deployable, as is the case with autonomous vehicles.

This model has a mathematical mechanism that facilitates a two-level hierarchy. It is a demon-

stration of the transfer of control process between models in a policy network. This is formally

proven and discussed. In general, semi-autonomous systems are best used for domains in which

there are multiple controllers of a single robotic agent, namely any number of humans or other

agents, each of which can approve actions or even gain control of the agent to greatly expand the

ability for the system to accomplish its goals.

6.1 Introduction

Autonomous systems have been deployed in a wide variety of applications such as space explo-

ration [147], reservoir control [23], energy conservation [75], and autonomous driving [134]. These

systems, however, almost universally require human intervention or interaction at some point in

order to achieve their objectives (e.g., the Mars rovers), or recover from failure (e.g., the Roomba

vacuum cleaner). Within the proposed automated planning solutions to these problems, few if

any approaches take full advantage of this collaboration. Instead, they commonly resort to default

hard-coded behaviors instead of integrating human capabilities into the planning process [11]. Semi-

autonomous systems (SAS) capture explicitly this collaborative process in which a human and an

agent—or any number of actors—work together to achieve a goal, smoothly transferring control over
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the system back and forth, while proactively considering each actor’s capabilities and the human’s

preferences [146, 132].

New challenges arise in semi-autonomous systems because the overall plan must factor the

inherent uncertainty and unpredictability associated with human behavior. We consider a semi-

autonomous driving domain where the vehicle can operate autonomously only on well-mapped roads

under ideal conditions. To reach a distant destination, the vehicle may require the human to occa-

sionally take control. This transfer of control process requires second-to-second monitoring as various

messages are conveyed to the driver. It is also not always successful given an allotted time window

and the driver’s state (e.g., distracted). These factors must be taken into consideration as the system

is planning its long-term route. Additionally, this process of transfer of control must incorporate

these factors to provide a measure of safety for the system. Car companies are already developing

nascent semi-autonomous capabilities and user interfaces to support transfer of control [85], but

research has been sparse on generalized planning models.

Previous work on semi-autonomous systems has focused on preventing or reacting to human

error [4], for example, automatically correcting an undesired lane change [61] or human-reactive

implementations of adaptive cruise control [99]. While a long line of research exists on collaboratively

controlling a system [27], planning with the explicit consideration of the human in the plan execution

cycle has been lacking [42]. No existing algorithm explicitly tackles the transfer of control problem.

Our proposed collaborative multiagent framework is quite distinct from existing approaches for

collaboration such as SharedPlans [50], Teamwork [123], and Dec-POMDP [9]. First, a SAS requires

exactly one actor to be in control of plan execution at any given time. Second, this fact requires

explicit mechanisms for transferring control among the actors. Finally, a SAS must proactively plan

to leverage each actor’s capabilities (or lack thereof) as it efficiently moves in the state space.

Our primary contributions are: (1) a formal definition of a SAS and its key properties (Sec-

tion 6.2); (2) a general transfer of control model as a hierarchical approach for integrating domain

action planning with transfer of control (Section 6.3); (3) an application of SAS for semi-autonomous

vehicles (Section 6.4); (4) an analysis showing the hierarchical model is a strong SAS (Section 6.5);

(5) a formal representation of SAS as a policy network (Section 6.5.1; and (6) an evaluation of the

approach for 10 cities using real road data that show the benefits of the method (Section 6.6).
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6.2 Semi-Autonomous Systems

Semi-autonomous systems (SAS) rely on collaboration between a human and an agent in order to

achieve some goals while maintaining a measure of safety [146]. We consider semi-autonomy within

the context of automated planning, extending an SSP to support semi-autonomy.

Formally, a semi-autonomous system (SAS) is a sequential decision-making model defined

by the tuple 〈I,S,A,T,C,G,L〉:

• I is a set of actors (i.e., the controlling entities);

• S=S×I is a set of factored states: a standard states S and the current controlling actor I;

• A=A×I is a set of factored actions: a standard actions A and the next desired actor I;

• T :S×A×S→ [0,1] is a transition function, comprised of a state transition Ti :S×A×S→ [0,1]

for each actor i∈I, and control transfer function ρ :S×I×I→ [0,1];

• C :S×A→R+ is a cost function;

• G⊆S is a set of goal states; and

• L⊆S is a set of live states with L={〈s, i〉∈S|i∈ψ(s)} for actor capability function ψ :S→2I .

The actors I of the system describe controlling entities, which include at a minimum an autonomous

agent ν and possibly a human λ; we focus in this work on situations involving these specific two

actors. Note the distinction made between a generic agent versus an actor. Only one entity is

acting in the system, though multiple exist, as opposed to the more general agent which might act

simultaneously as others such as in a Dec-POMDP.

The states must record who is in control at any given time, and the actions must record intentions

to switch control to new actors. In SAS, we cannot always assume that transfer of the control has

a flawless execution. Hence our T is factored into two components: Ti and ρ. Formally, the actor

state transition function, denoted Ti :S×A×S→ [0,1], describes how an actor i∈I can operate

in the world when in control. The control transfer function, denoted ρ :S×I×I→ [0,1], describes

the result of attempting to transfer control from the current actor in a given state. The SAS state

transition function for s=〈s, i〉, a=〈a, î〉, and s′=〈s′, i′〉 is:

T (s,a,s′)=


Ti(s,a,s

′), if i=î=i′

Ti(s,a,s
′)ρ(s, î, i′), if i6=î

0, otherwise

. (6.1)
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In Equation 6.1, the first component corresponds to keeping the current actor, which simply follows

the actor’s state transition. The second component describes the actor still in control but seeking

to switch to a different actor at the next state. The third component indicates that it is impossible

to take control from an actor without the desire to transfer.

We develop a hierarchical approach to transfer control that treats each decision of the high-level

planning process as a macro-action or an option [122], which involves micro-actions to support the

successful transfer of control. This hierarchical design seems particularly suited for our target domain

of semi-autonomous driving. Here, we perform path planning on large, world-scale roads in time

scales of minutes or hours. Transfer of control, however, requires much more care, and is done in

time scales of seconds. If we were to path plan with transfer of control at full detail everywhere along

the route, the state spaces would be astronomically large. For example, for the smallest problem

instance in our experiments (Pittsburgh), this would blow up the state space by a factor of 387,

resulting in a POMDP with approximately 7.6×104 states. Instead, we take advantage of the fact

that transfer of control is a generic process that depends on a handful of context variables such as

the time remaining to complete the transfer and some general driving conditions (e.g., transferring

control on a straight road, turns, low-speed, and high-speed). Apart from that, the way in which

the transfer of control is performed is largely independent of the remaining route and destination.

This enables us to generalize the transfer process and model it as a compact state transition at the

higher level following ρ.

Following Zilberstein [146], a SAS of type I (SAS-I) does not explicitly model the human in

the execution loop, whereas a SAS of type II (SAS-II) does. Thus, we have presented a SAS-II

as we explicitly model the human within our set of actors (λ∈I).

Within a SAS, we define two types of histories. First we define the meaning of any trajectory

over states and actions, given the limits of the stochastic state transition. This is called a realizable

history is a sequence of the form h̄=〈s0,a0, . . . ,s`〉 such that for all st, at, and st+1, T (st,at,st+1)>

0. The set of all realizable histories starting at s0∈S with horizon `∈N is denoted H̄(s0, `). Next,

we define a more constrained history with respect to a specific policy. Here a policy π :S→A is a

mapping from factored states to factored actions. Formally, given policy π, a policy realizable

history, is a realizable history h̄ such that ∀t,at=π(st). We denote the set of all policy realizable

histories starting at state s0∈S with horizon `∈N as H̄π(s0, `).

Given a policy π, the agent incurs a cost per time step given by C :S×A→R+ as it tries to reach

a goal state from G⊆S. For initial state s0∈S, the objective is to find a policy π that minimizes

the expected cost:
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E
[ ∞∑
t=0

C(st,π∗(st))|π,s0
]
. (6.2)

A policy is optimal if it minimizes the expected cost over time, also called the value of a state

V :S→R. This defines an SSP. The Bellman optimality equation in SAS for state s:

V (s)=min
a∈A

(
C(s,a)+

∑
s′∈S

T (s,a,s′)V (s′)
)
. (6.3)

Following Bertsekas and Tsitsiklis [10], this equation produces an optimal policy π∗ under two as-

sumptions. First, a proper policy must exist that can reach a goal with probability 1 from s. Second,

all improper policies must incur infinite cost at states that cannot reach a goal with probability 1.

Such SSPs can be solved using search methods such as LAO* [52].

So far we have described a concrete model that explicitly represents the current actor (controlling

entity) and the dynamics for attempting to transfer control among actors. We now introduce actor

capability constraints for SAS, which specify limits on the abilities of actors to control the system

under certain conditions, through the function ψ. Formally, an actor capability function (ACF)

ψ :S→2I maps states to the actors capable of acting in that state. For example, in the semi-

autonomous driving domain, the autonomous agent may not be able to drive on every road, but

only on well-mapped roads or under certain weather conditions. Thus, the planner must incorporate

the limited capabilities of the autonomous agent, as well as the uncertainty regarding transfer of

control between the human and agent, in order to construct a route from a starting location to a

destination.

The actor capability function defines a formal notion of live state, that is a state in which an actor

can control the system. Thus, live states L={〈s, i〉∈S|i∈ψ(s)} are states which satisfy the ACF

ψ. Live states are states in which the system is considered active or safe because the controlling

entity can act there. We require these constraints to be satisfied for all SAS. Formally, live state

constraints are: (1) G⊆L and (2) ∀s /∈L, ∀a∈A, ∀s′∈L, T (s,a,s′)=0.

Unlike general dead ends [68], which are states from which the goal becomes unreachable, our live

state constraints form a particular structured type of dead end that is easier to analyze (largely be-

cause these conditions are explicitly captured by L). In fact, we will show that our semi-autonomous

vehicle formulation produces policies that guarantee avoidance of non-live states. In general, this

requires us to prove that the given transfer of control model produces a ρ that never enters a non-live

state. This key mechanism is described in the following section. We now formalize this.
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Our objective is to characterize policies and systems in terms of their ability to maintain live

state. We present three key properties of policies and SAS themselves. A policy π is strong if for

all s0∈L and `∈N, and for all h̄∈H̄π(s0, `) and t∈{0, . . . , `}, st∈L. A SAS is strong if there exists

a optimal strong policy. A policy π is conditionally strong if there exists an s0∈L and `∈N, such

that for all h̄∈H̄π(s0, `) and t∈{0, . . . , `}, st∈L. A SAS is conditionally strong if an optimal

conditionally strong policy exists. A policy π is weak if it is not strong or conditionally strong. A

SAS is weak if its optimal policies are weak. Finally, we extend these terms from policies to an entire

SAS. A SAS is said to be strong (conditionally strong) if there exists a strong (conditionally

strong) policy π∗ that is optimal. Otherwise, the SAS is said to be weak.

6.3 Transfer of Control

Transfer of control (TOC) is the critical method that enables effective and safe transference of the

controlling entity within the stochastic decision-making process. TOC both to and from a human

requires the optimal selection of various messages (e.g., visual or auditory) in order to prompt the

human to reengage and ensure smooth transference. Each message type presents a trade-off between

the efficacy of alerting the human to the agent’s intention and the human’s amiable perception of the

agent (e.g., aggregated annoyance). For example, a continuous alarm is effective but undesirable,

and a blinking light is not as effective but more favorable. Additionally, the system receives noisy

observations of the human’s state of engagement due to the limited sensing capabilities available.

Thus, it instead must make decisions based on a belief regarding the engagement level. Finally,

this is a time-sensitive sequential optimization problem due to the limited time window in which

control may be transferred. For example, in semi-autonomous driving, the vehicle may not be able

to operate on insufficiently mapped roads and must seamlessly relinquish control before reaching

these roads. We model this process using a POMDP. First, we formally define the TOC problem,

then POMDPs, and finally construct the POMDP model of TOC.

6.3.1 Problem Definition

The transfer of control (TOC) problem is a tuple 〈H,M,O,T ,Ph,Pc,Po,C〉. H is a set of

human states. M is a set of available messages to inform the user of the desire to transfer control.

The absence of a message is indicated by ∅∈M (i.e., no operation or ‘NOP’) and is always available.

O is the set of observations made by sensors, which provide partial information about the human’s

state. T ={1, . . . , τ} is a set of limited time steps for the transfer of control to complete (e.g., τ

seconds). Ph :H×M×T ×H→ [0,1] is the probability of the human state transitioning from h
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to h′ given message m was sent t time steps ago, such that we have Ph(h,m,t,h′)≡Pr(h′ |h,m,t).

Pc :H×M×T → [0,1] is the probability that control will be transferred given the human state h and

that message m was sent t time steps ago. If control is transferred, then the process terminates; the

agent knows when this occurs. Po :H×O→ [0,1] is the probability of making a sensor observation o

given the human state is h, such that Po(h,o)≡Pr(o|h). C :H×M×T →R+ is the cost of sending

message m given human state h and t time steps since sending the last message (i.e., C(h,m,t)).

The agent can always abort, ending the transfer attempt.

The human has a true hidden state h∈H. This changes over time as the agent selects a message

mt∈M for each t∈T , forming sequence m=〈m1, . . . ,mτ 〉. The objective is to minimize the total

sum of message costs; however, failing to transfer control without safely aborting should strictly be

avoided. Thus, the agent must also decide when to abort.

Importantly, control can be transferred either way in this model. That is, it captures requesting

control to be both taken from and given to the agent. Furthermore, different TOC problems may be

defined, each encoding a different environment or scenario in which control must be transferred. For

example, a vehicle taking control on a highway turn, or a human taking control on a quiet suburban

road, are both different transfer of control instances.

6.3.2 Transfer of Control POMDP Formulation

We model the control transfer problem as a POMDP called a TOC POMDP 〈S̄, Ā, Ω̄, T̄ , Ō, R̄〉.

The state space is S̄=T ×H×M×T ∪E with a set of ‘end result’ states E={⊕,	,�} denoting

‘success,’ ‘failure,’ and ‘aborted,’ respectively. Each state captures the time remaining, current

human state, the previous message sent, and how long it has been since that message was sent, as

well as the outcome of the transfer of control. The action space Ā=M∪{�} is the messages to send

and the ‘abort’ action (denoted �). The observation space Ω̄=O∪E represents the observations,

and lets the model know the end result, as per the problem definition. The state transition function

needs to encapsulate the notions of human state, as well as the success or failure of transferring

control. We break this into two scenarios.

The first scenario examines transitions only among non-end result states such that s,s′ /∈E , with

state factors denoted s=〈t,h,m,tm〉 and s′=〈t′,h′,m′, t′m〉. This scenario has two non-zero cases

each with the same probability. In both, control has not successfully transferred yet, so we always

update the human state and count down the timer (via constraint t′= t−1≥0). The first case

encodes the effect of sending a message fromM\{∅}. The second case encodes the effect of a ‘NOP’

message ∅. Formally, for any s, a, and s′:
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T̄ (s,a,s′)=


P̄ if a /∈{�,∅}∧m′=a∧ t′m=0

P̄ if a=∅∧m′=m∧ t′m=min{tm+1, τ}

0 otherwise

(6.4)

with P̄=(1−Pc(h,m,tm))Ph(h,m,tm,h
′) above.

The second scenario examines transitions to an end result state: successor s′∈E . This scenario

has four non-zero cases. The first case is simply the absorbing states E . The second case is immediate

termination via the abort action �. The third case captures the ever-possible chance of successful

control transfer (⊕). The fourth case handles a failure (	) transition by running out of time. Thus,

for a state s, action a, and successor s′ we have:

T̄ (s,a,s′)=



1 if s=s′∈E

1 if s /∈E ∧a=s′=�

Pc(h,m,tm) if s /∈E ∧a 6=�∧s′=⊕

1−Pc(h,m,tm) if s /∈E ∧ t=0∧a 6=�∧s′=	

0 otherwise

(6.5)

with s=〈t,h,m,tm〉 above provided s /∈E .

The observation transition function only needs to model two components. First, the agent always

has perfect knowledge of the final outcome state. Second, the agent makes noisy observations from

sensors which hint at the true human state (e.g., a face or eye tracker in a vehicle). Formally, for

action a, successor state s′, and observation ω:

Ō(a,s′,ω)=


1 if ω=s′∈E

Po(h′,ω) if s′ /∈E ∧ω∈O

0 otherwise

(6.6)

with states s′=〈t′,h′,m′, t′m〉 above provided s′ /∈E .

The reward function has four components. First, there are costs associated with all normal

messages, as defined by the TOC problem. Second, an arbitrarily small ε>0 cost is given for a NOP

∅. Third, there is a large penalty for unnecessary aborting. Fourth, failure repeatedly incurs the

maximal cost. Thus, for state s and action a:
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R̄(s,a)=



−C(h,m,tm) if s /∈E ∧a /∈{∅,�}

−ε if s /∈E ∧a=∅

−C∗ if s /∈E ∧a=�∧ t>0

−C∗ if s=	

0 otherwise

(6.7)

with s=〈t,h,m,tm〉 and a non-success penalty C∗ (e.g., C∗=`Cmax for Cmax=maxh,m,tm C(h,m,tm)).

Within a TOC POMDP, the end result terminal states are fully observable, as well as each state

factor except for the true human state H. So all beliefs, including initial belief b0, only contain

uncertainty regarding these human states. Thus, for true initial state s0, the initial state b0 is

defined as:

b0(s)=


1 if s0∈E ∧s=s0

1/|H| if s0 /∈E ∧ t= t0∧m=m0∧ tm= t0m

0 otherwise

(6.8)

with states s=〈t,h,m,tm〉 above provided s /∈E .

6.4 Application to Autonomous Vehicles

The TOC formulation as a POMDP enables us to incorporate semi-autonomy into stochastic path

planning problems. Again, our main motivation is the semi-autonomous driving domain. Route

decisions are made at intersections of roads; however, only well-mapped main roads are capable

of autonomy. While the driver can drive on any road, the longer, uninteresting, boring highways

are assumed to be roads in which the human prefers autonomy, meaning that control should be

transferred to the vehicle. All costs are proportional to the time spent on the road. The uncertainty

stems from the transfer of control, also decided at road intersections. We first formally define the

problem, then describe the full model of a specific SAS called a semi-autonomous vehicle (SAVE).

6.4.1 Problem Definition

The semi-autonomous vehicle (SAVE) problem begins with a strongly connected weighted

directed graph 〈V,E,w〉. V is a set of vertices forming intersections. E⊆V ×V is a set of pairs

of vertices (intersections) defining edges which form roads. w :E→R+ defines a positive weight for

each edge (road) which captures the time spent on the road. There are initial and goal vertices

denoted v0∈V and vg∈V , respectively.
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Additionally, the system may be driven by the human or the agent (vehicle) itself; however,

given the allotted time between each vertex (intersection), there is uncertainty if control transfer

will be successful. This micro-level behavior is modeled using TOC POMDPs. (These may be

solved offline for different scenarios, as described in the previous section.) We label edges (roads)

Ec⊆E as autonomy-capable, meaning the set of roads in which the vehicle is capable of driving

autonomously. Similarly, Ep⊆Ec are autonomy-preferred roads in which the human prefers

autonomous driving. Thus, at each intersection the agent must decide if control should be maintained

or transferred as well as which road to take next, in order to minimize the sum of traversed weights

(travel time). If control transfer is required, fails to succeed, but the agent aborted, then the system

is assumed to safely pause at the vertex, i.e., the vehicle safely pulls over to the side of the road.

Otherwise, the SAS will enter an unsafe state in which the vehicle is in control but cannot drive on

the road; this should be avoided at all costs.

6.4.2 Semi-Autonomous Vehicle Formulation

A semi-autonomous vehicle (SAVE) is a SAS with 〈I,S,A,T,C,G,L〉. Actors I={λ,ν,σ}

encode the current controlling agent of the vehicle: either the human λ, the vehicle itself ν, or

no active actor as it safely waits on the side of the road σ. S=V ×I have standard states V

corresponding to the vertices (intersections) of the map. A=D×I is the action set with D denoting

the possible directions (roads) to take at a vertex (intersection) (e.g., D={←,↑,→}). This notation

is commonly overloaded such that A(s) returns the set of actions available at state s. Let θ :

V ×D→V map a vertex (intersection) and an action (direction) to the subsequent vertex following

E. Additionally, we assume: (1) the map is expanded to include a ‘failure’ absorbing vertex vf ∈V ,

with θ(vf ,d)=vf for all d∈D, and (2) the goal is also absorbing with θ(vg,d)=vg for all d∈D.

The state transition function T follows Equation 6.1, and introduces the uncertainty from our

TOC POMDP’s transfer of control process given by ρ. First, for the human actor λ, the actor

transition function Tλ simply follows the map; for state v, action d, and successor v′ is:

Tλ(v,d,v′)=

 1, if v′=θ(v,d)

0, otherwise
. (6.9)

Next, for vehicle actor ν, the actor transition function Tν ensures that: (1) autonomy-capable states

follow the path, and (2) non-autonomy-capable states enter the absorbing vertex vf ; for state v,

action d, and successor v′ is:
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Tν(v,d,v′)=


1, if 〈v,v′〉∈Ec∧v′=θ(v,d)

1, if 〈v,θ(v,d)〉/∈Ec∧v′=vf

0, otherwise

. (6.10)

Finally, for the safely parked vehicle σ, the actor transition function Tσ always self-loop since it is

on the side of the road; for state v, action d, and successor v′ is:

Tσ(v,d,v′)=

 1, if v′=v

0, otherwise
. (6.11)

We now define the control transfer function ρ. Formally, for s=〈v, i〉∈S with action 〈d, î〉∈

A(s), the allotted travel time is τ=bw(〈v,θ(v,d)〉)c. We have a particular TOC POMDP given the

intersection v, current controlling actor i, and desired successor actor î from optimal SAVE policy

π∗(s)=〈d, î〉. We assume the TOC POMDP’s T ={1, . . . , τ} has units in seconds without loss of

generality. Given the solved TOC POMDP, we would like to compute the expected result from

transfer of control. Formally, we sample trajectories over the unobserved true state, observations,

and resultant action following the TOC POMDP’s optimal policy. Due to the structure of the

TOC POMDP, this always results in a collapsed belief with a known end result from E . Formally,

let J={s1, . . . ,sk} be a set of k final ‘end result’ states from the TOC POMDP’s E which are

determined by random state-action-observation trajectories following the TOC POMDP.

In the case with i=σ, initially the car is safely on the side of the road. Either (1) the car remains

on the side of the road, (2) the human TOC succeeds, or (3) the human TOC fails:

ρ(s, î, i′)=



1, if î 6=λ∧ i′=σ

1
k

∑k
i=1[si=⊕], if î=λ∧ i′=λ

1
k

∑k
i=1[si 6=⊕], if î=λ∧ i′=σ

0, otherwise

(6.12)

with [·] denoting Iverson brackets.

In the case with i 6=σ, either the human λ or vehicle ν is the controlling entity. Either (1) no

transfer is requested and the actor remains the same, (2) the TOC succeeds to switch actors, (3) the

TOC fails to switch actors, or (4) the TOC is aborted and safely pulls over to the side of the road:

126



ρ(s, î, i′)=



1, if î= i∧ i′= î

1
k

∑k
i=1[si=⊕], if î 6= i∧ i′= î

1
k

∑k
i=1[si=	], if î 6= i∧ i′= i

1
k

∑k
i=1[si=�], if î 6= i∧ i′=σ

0, otherwise

. (6.13)

Trivially, in the limit as the number of sampled trajectories grows k→∞, this converges to the

exact probabilities of obtaining each resulting actor, our desired result. This formulation of the

expected value with number of samples k enables us to sample a finite number of times and obtain

an approximation of ρ in practice.

The cost function C simply measures the time traveling on a road, given its length and speed

limit. We assume ties between actions are broken following the autonomy-preferred roads in Ep. In

other words, if autonomy is preferred and the current actor is the human λ, then the next action

will attempt to transfer to the vehicle ν. For s=〈v, i〉 and a=〈d, î〉:

C(s,a)=

 w(〈v,θ(v,d)〉), if v 6=vg

0, otherwise
. (6.14)

The goal is G={〈vg,λ〉} and the initial state is s0 =〈v0,λ〉. The live states are defined by the

actor capability function ψ. Following the problem definition, the human is capable of acting in all

states, and the vehicle can be safely on the side of the road in any state. Thus, for a vertex v, ψ(v)

is {λ,ν,σ} if the road v is autonomy-capable, and {λ,σ} otherwise. Trivially, the failure state has

no actors (ψ(vf )=∅). This defines L following the live state definition. Formally, we primarily must

consider the set Ec which defines the set of edges (roads) on which the vehicle is capable of driving.

Formally, for any state v∈V \{vf}:

ψ(v)=

 {λ,ν,σ}, if ∃d∈D s.t. 〈v,θ(v,d)〉∈Ec

{λ,σ}, otherwise
(6.15)

and ψ(vf )=∅. Therefore, L={〈v, i〉∈S|i∈ψ(v)}.

127



6.5 Theoretical Analysis

We now integrate all three concepts we have introduced thus far: SAS, TOC POMDP, and SAVE,

in order to show that the transfer of control within our stochastic path planning model provably

maintains live state guarantees.

Proposition 19. SAVE satisfies the live state constraints.

Proof. By definition of the two SAS live state constraints, we must have (1) G⊆L, and (2) for all

s /∈L, a∈A, and s′∈L we need T (s,a,s′)=0. The first constraint is trivially true by definition of G,

since for 〈vg,λ〉 we have λ∈ψ(vg). The second constraint requires us to examine any s /∈L, which

by Equation 6.15 must be a state s=〈v,ν〉 such that ∀d∈D, 〈v,θ(v,d)〉 /∈Ec. Therefore, we examine

the actor transition function Tν in Equation 6.10. Case 2 captures this exact scenario, and states

that v′=vf . By definition θ(vf ,d)=vf for all d∈D, they are absorbing. Additionally, regardless

of any attempt to transfer control, all states 〈vf , i〉 are non-live because ψ(vf )=∅ (Equation 6.15).

Thus, the second constraint holds as well.

Next, we establish Lemma 3 which states that belief within the TOC POMDP only remains

over the human state; the other state factors are known (Corollary 7). This enables us to ensure

that the optimal policy always defines its actions at the true underlying state. To prove this, let

SHtmtm={s∈S|s=〈t,h,m,tm〉,h∈H} be the set of the states which only differ over the human state,

given the rest of the factors t, m, and tm are fixed. Let the true initial state be defined as any

s0=〈t0,h0,m0, t0m〉. Let initial belief be b0∈4n such that for all s /∈SHt0m0t0m
, b0(s)=0 (Equation 6.8).

Lemma 3 and Corollary 7 are defined for all action-observation histories 〈a0,ω1, . . . ,a`−1,ω`〉, and all

realizable histories h̄∈H̄(s0, `). Here, we only consider s` /∈E , since trivially if s`∈E , then b`(s`)=1.

Lemma 3. Belief uncertainty within the TOC POMDP is only over the human state factor H; all

other factors are known.

Proof. We must must show for resulting belief bh∈4n that bh(s)=0 for all s /∈H(th,mh, thm) with

sh=〈th,hh,mh, thm〉. To prove that this holds at some horizon `, we must show that this holds for

the iterative application of Equation 2.13. Proof by induction on i∈{0, . . . , `}.

Base Case: Trivially true by Equation 6.8 for b0.

Induction Step: Assume true for i−1, must show for i. First, if s /∈SH
ti−1mi−1ti−1

m
, then bi−1(s)=0.

Next, by Equation 2.13, if T̄ (s,a,s′)bi−1(s)=0 for all s∈ S̄, then bi(s′)=0. We know the constraint

on s, so by Equations 6.5 and 6.4, we simply check the three valid cases; recall s′ /∈E . All cases

strictly define the next state’s ti, mi, and tim, and all are mutually exclusive in this regard. Thus,
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as each case defines, the non-zero probability (w.r.t. Pc and Ph) is defined over possible hi. Finally,

Ō(a,s′,ω) follows Po. Note that for s′∈E , b(s′)=0 since ω=s∈E is the only scenario this may

occur. This implies that s′∈SHtimitim (following cases in Equations 6.5 and 6.4). Therefore, we have

shown that bi(s′)=0 for all s /∈SHtimitim .

By induction, this is true for b`.

Corollary 7. For resulting belief b`∈4n, true resulting state s`∈{s∈S|b`(s)>0}.

Establishing this property allows us to prove that the TOC POMDP never enters the failure

state 	 in Proposition 20. This is a critical requirement in order to prove that SAVE is a strong

SAS in Proposition 21.

Proposition 20. Following a TOC POMDP’s optimal policy π∗, for any horizon `, the underlying

true state s` 6=	.

Proof. For a TOC POMDP with optimal policy π∗, for all s0∈ S̄ \E , for all horizons h, we must

show that the true state sh∈ S̄ must be sh 6=	. Let π∗ be the optimal policy for the TOC POMDP

following value iteration on the full policy tree’s beliefs for any horizon `. Let s0∈ S̄ \E be any

valid initial state. Of course, if s0∈{⊕,�} then we would immediately have b0(s0)=1 anyway by

Equation 6.8. This case would trivially have s`=s0 6=	 by Equation 6.5. Next, if s0 /∈E , then by

Equations 6.5 and 6.4 there is only one collection of states which transition to state 	 (scenario 1,

case 4). This case requires t=0 and a 6=�. By Lemma 3 and Corollary 7, we only must consider the

i in which si=〈0,h,m,tm〉. Therefore, it is sufficient to show that π∗(bi)=�.

By Equation 2.20, we rewrite V̄ t(b)=maxa∈Āx
a
1 +xa2 with:

xa1 =
∑
s∈S̄

bi(s)R̄(s,a) xa2 =
∑
ω∈Ω

max
α∈Γt−1

∑
s∈S̄

bi(s)V̄ tsaωα

For a=�, by Lemma 3 and Equation 6.7 we have R̄(s,�)=0 since s∈SHtimitim yielding xa=�
1 =0

for each of the t belief updates. Given this constraint on s, by Equation 6.5 T̄ (s,�,s′)=1 only if

s′=� (case 2), and subsequently by Equation 6.6 Ō(�,�,ω)=1 only if ω=�. Thus, V̄ tsaωα equals

γ1·1·α(�) for all α∈Γt−1. We now have:

xa=�
2 = max

α∈Γt−1

∑
s∈S̄

bi(s)γα(�)=γ max
α∈Γt−1

α(�)

For a6=�, by Lemma 3 and Equation 6.7 we have R̄(s,∅)=−ε or R̄(s,a/∈{∅,�})=−C(h,m,t). Both

cases are less than 0 so xa=�
1 >xa 6=�1 . Lastly, we examine xa6=�2 . Again, since s∈SHtimitim there are two
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possible successor states with a6=� following Equation 6.5; either s′=⊕ (case 3) with state transition

T̄ (s,a 6=�,⊕)=Pc(hi,mi, tim), or s′=	 (case 4) with T̄ (s,a 6=�,	)=1−Pc(hi,mi, tim). Subsequently

Equation 6.6 states that Ō(a6=�,s′,ω)=1 only if ω=s′∈{⊕,	}. Thus, V̄ tsaωα=γ(1·Pc(hi,mi, tim)·α(⊕)+

1·(1−Pc(hi,mi, tim))·α(	)) which in turn equals γ(α(⊕)+α(	)). Similarly:

xa6=�2 =γ max
α∈Γt−1

(α(⊕)+α(	))

To compare xa=�
2 and xa 6=�2 , we recognize that for s∈E , the respective α(s)’s are the result of

iteratively computing the maximal action in Γt−1 over each of the t Bellman updates. Similar to

above, T̄ (s,a,s′)=1 and Ō(a,s′,ω)=1 only for s=s′=ω∈E . Upon each Bellman optimality update,

the values for states in E within the optimal α-vector remain the same for any belief point because

the reward is unaffected by the action, and each time it compounds the discount factor γ. These

absorbing states have rewards 0 for s∈{⊕,�} and −C∗ for s=	. With t discounts, we have: α(⊕)=

α(�)=0(1+γ+ · · ·+γt−1)+γt R̄min1−γ as compared with α(	)=−C∗(1+γ+ · · ·+γt−1)+γt R̄min1−γ .

Since −C∗<0, for any number of t Bellman optimality equation updates, we have xa=�
2 ≥xa 6=�2 ,

implying that π∗(bi)=� for all bi. Thus, given any horizon ` and initial state s0 /∈E , the resultant

state s` 6=	 following optimal policy π∗.

Proposition 21. SAVE is a strong SAS.

Proof. Let π∗ be the optimal policy for the SAVE. By definition of a strong SAS, we must show

that there exists a strong optimal policy π∗. By the definition of a strong policy, we must show that

for all s0∈L and `∈N, for all h̄∈H̄π∗(s
0, `) and for all i∈{0, . . . , `}, si∈L. Additionally, for π∗ to

be a optimal policy, we must also show that all live states are proper, i.e., the goal is reachable with

probability 1. If these states are not proper, then they could not yield an optimal policy π∗ in the

first place by live state constraint 2, and non-zero cost in Equation 6.14. First we prove that for all

s0∈L, the there exists a proper policy by showing that there exists at least one state-action history

which reaches the goal with probability 1. This guarantees there exists an optimal policy π∗ by SSP

assumption (Section 2) because we know at least one such policy exists; it is impossible for an SSP

to have an optimal improper policy when there exists a proper policy. By Equation 6.1 of T , we

need to examine Ti and ρ.

First, we consider any 〈v,λ〉∈L. The graph is strongly connected, therefore for any v there exists

a directed path to vg. Tλ deterministically follows the graph via θ; ρ need not be considered if î= i

at every state (Equation 6.1). So for any 〈v,λ〉∈L there exists a proper policy.
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Second, we consider any 〈v,σ〉∈L. This self-loops, so we examine ρ (Equation 6.12) which

transitions to λ with non-zero probability, otherwise it remains with σ in control. As shown above,

there exists a proper policy from any 〈v,λ〉∈L, so for all 〈v,σ〉∈L there exists a proper policy.

Third, we consider any 〈v,ν〉∈L. Since all non-live states (except those with vf ) have controlling

entity ν, we only must consider the live states 〈v,ν〉 which are (directed) neighbors to these non-

live states. We must show the goal can still be reached with probability 1. By definition, a state

is live if ∃d∈D such that 〈v,θ(v,d)〉∈Ec. Thus, there must exist a d∈D for our live state 〈v,ν〉

such that 〈v,θ(v,d)〉∈Ec. By Equation 6.10, case 2 will not trigger for this d. Now examine ρ.

By Equation 6.13, only case 3 would keep ν as the controlling entity. By Proposition 20, this has

probability 0 using our TOC POMDP. Therefore, the action 〈d,λ〉, for example, will always lead to

either 〈θ(v,d),λ〉 or 〈θ(v,d),σ〉. In both cases, we have shown above that these states have a proper

policy. Therefore, for any 〈v,ν〉∈L, there exists a proper policy.

All lives states have been shown to have a proper policy, thus the optimal policy π∗ exists (i.e.,

they are not dead ends). By Proposition 19, live state constraints hold. By live state constraint 1,

G⊆L, and by live state constraint 2, for all s /∈L, for all a∈A, and s′∈L, T (s,a,s′)=0. Thus, for

any policy-realizable history h̄∈H̄π∗(s
0, `) with s0∈L, we have for any i∈{1, . . . , `}, si∈L because

π∗ is proper and all non-live states are dead ends. Therefore, π∗ is a strong optimal policy, and so

SAVE is a strong SAS.

6.5.1 Policy Network Representation of SAS

We now prove in Proposition 22 and Figure 6.1 how SAS is representable as a policy network.

First, we summarize the relevant components of SAS and then prove this fact. SAS is an example of

how policy networks can describe transferring control between models that have differing state and

action spaces. It demonstrates how policy networks can be used to effectively break down a large

problem with completely different model representations of sub-tasks (i.e., POMDP and SSPs) and

maintain a mathematically sound meaning.

Semi-autonomous systems model the transfer of control of a single agent among a group of actors

I that control it, such as transferring control between an AV and a human driver. It is built on a

two-level hierarchy with a SSP [10] reasons about transfer of control success and failure by executing

a POMDP. The SAS state space S=S×I includes the current actor, and the action space A=A×I

includes the desired next actor. The state transition T :S×A×S→ [0,1] follows the current actor’s

state transition Ti :S×A×S→ [0,1]. However, if a transfer is attempted at s=〈s, i〉, we multiply

by ρ :S×I×I→ [0,1] as ρ(s, î, i′)=Pr(i′|s, î) denotes the probability that the next actor is i′ given
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an attempt to transfer from i to î. For each state-action pair, ρ is computed by a POMDP in a

completely different state and action space that considers communication messages and belief about

the state of the actor’s preparedness to take control. Its execution ends in a collapsed absorbing

belief state: success bs, failure bf , or abort ba. A mapping f :{bs, bf , ba}→I must be provided from

these POMDP result states to the next SSP actor. Given its policy, the probability of reaching these

three absorbing states is computed as ρ for use by the SSP.

v

wj

TjvTvj

j∈K

v∼SSP(S,A,T,C,s0,sg)
wj∼POMDP(Sj ,Aj ,Ωj ,Tj ,Oj ,Rj)

Figure 6.1: SAS represented as a policy network.

Proposition 22. Policy networks generalize SAS.

Proof. For any SAS, we must construct an equivalent policy network. See Figure 6.1. Let V =

{v}∪{wj} with v∼SSP(·) and wj∼POMDP(·) as in the figure with distinct state and action.

Without loss of generality and to remain inline with SAS, an SSP is used, which is akin to an

MDP with discount γ=1, initial state s0, and goal state sg. For each SSP state-action pair there is

a distinct POMDP wj , with K={j∈S×A|j=〈s,a〉∧ i 6= î}. Let {〈v,wj〉}∪{〈wj ,v〉}⊂E. For Tvj

and Tjv, we have the notation j=〈s,a〉, s=〈s, i〉, a=〈a, î〉, and s′=〈s′, i′〉. First, let Tvj(s,a, b
0
j )=1

be defined for any i 6= î, always executing the corresponding POMDP starting at its b0j . Second, Tjv

has three cases: for each b∈{bsj , b
f
j , b

a
j } we have Tjv(b,aj ,s

′)=Ti(s,a,s
′)[f(b)= i′]. Since the action

spaces are different (A 6=Aj), v’s CSMDP summarizes the state transitions of each wj within λ.

This is identical to using ρ in Equation 6.1’s state transition Ti(s,a,s
′)ρ(s, î, i′) which summarizes

the success and failure, and resulting state, for each wj . Thus, this policy network produces the

same Bellman equations for the SAS’s SSP and POMDPs.

6.6 Evaluation

We present a series of trials with subsets of 10 cities’ road data from OpenStreetMap (OSM).

Distant start and goal addresses are selected as one would do using a global positioning system (GPS)
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Figure 6.2: Example SAVE policy with TOC in Boston (left) and a TOC POMDP in SAVE simulator
(right).

device. All main roads with a speed limit of 30 or greater are marked as autonomy-preferred. We

compare our approach with a human driver following the GPS (λ), only the autonomous car (ν), and

the collaboration between human and vehicle (λ & ν). We use three metrics for comparison. First,

we check if the goal was reachable from the initial road (G). Second, we determine the percentage of

time the vehicle drives autonomously, provided it could do so, for roads along its route (%). Third,

we record the average travel time to compare efficiency along each of the routes (T).

Our experiments solve the TOC POMDP with PBVI [90] and the SAVE SAS using LAO* [52].

Table 6.1 shows our results for 100 trials for each city. Figure 6.2 depicts a sample collaborative

policy in which the human and vehicle gracefully transfer control along the route. The driver is

always able to reach the goal, but never drives autonomously, even when the car is capable of

doing so. The autonomous vehicle always succeeds in autonomously driving, but is only able to

reach the goal in 3 of the 10 scenarios. When it does drive autonomously, it has to take long main

roads, causing travel time to be greatly increased. Interestingly, the human and autonomous vehicle

collaboration always reaches the goal, and drives autonomously for large portions of the route. Also,

the average travel times are relatively similar between the human and collaborative scenarios. This

collaborative approach selects routes that properly balance main road autonomous driving and back

road human driving.

We also implement our TOC POMDP as depicted in Figure 6.2. It shows a person receiving a

request to transfer control while they are engaged in a reading task. Interaction with the POMDP

occurs in real-time. Control is transferred from autonomous vehicle to human in the simulated

environment in the manner shown. The simulator consists of three large projectors and a real car

that is wired into the three computers controlling the experiments.
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Domain Human (λ) Vehicle (ν) Team (λ & ν)

City Name |S| |A| G % T G % T G % T

Austin 303 12 Y 0 128 N 100 — Y 13 128

Baltimore 315 12 Y 0 146 Y 100 232 Y 46 154

Boston 912 18 Y 0 136 N 100 — Y 95 140

Chicago 258 12 Y 0 99 N 100 — Y 85 142

Denver 348 15 Y 0 128 N 100 — Y 81 132

Los Angeles 291 12 Y 0 120 N 100 — Y 42 120

New York City 960 15 Y 0 294 N 100 — Y 54 313

Pittsburgh 198 12 Y 0 81 N 100 — Y 8 89

San Francisco 504 18 Y 0 151 Y 100 183 Y 80 174

Seattle 366 12 Y 0 111 Y 100 138 Y 0 111

Table 6.1: Results for SAVE experiments on 10 cities for human driver λ, autonomous vehicle ν,
and the human semi-autonomous vehicle collaboration λ & ν drivers. Metrics: goal reachability ‘G’,
autonomous driving percentage ‘%’, and travel time ‘T’ (seconds).

6.7 Conclusion

We present a hierarchical approach to the transfer of control in semi-autonomous systems, which

facilitates efficient planning for a human-agent collaboration. The hierarchical model captures ex-

plicitly and optimizes the critical transfer of control process using a POMDP. We show how to apply

the general framework to SAS for semi-autonomous vehicles and demonstrate its benefits. Further-

more, we analyze the SAS with TOC model, showing that it maintains live state and thus is a strong

SAS. The experiments show that the hierarchical approach is able to leverage the capabilities of the

human and agent as it optimizes the desired objective.

Future work will include experiments with humans in a full-scale driving simulator. We will

also explore other SAS domains such as assistive technologies (e.g., physical therapy) and disaster

response (e.g., search-and-rescue). Finally, we will provide our source code to facilitate the creation

of a wide variety of strong semi-autonomous systems.
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CHAPTER 7

SCALABLE ONLINE DECISION-MAKING

In this chapter, we present a scalable solution for decision-making that embraces multiple models

acting simultaneously as part of an agent. We show how multiple models can each recommend

an action and a executive decision-making function decides on the final action to perform. To

demonstrate this model, we provide a complete solution for the second-to-second decision-making

system within autonomous vehicles, namely for any form of intersections and pedestrians. We

implement this solution on a fully-operational autonomous vehicle prototype acting in the real world

on public roads and discuss the results.

This model describes how multiple models can simultaneously interact through constraining the

available actions. This is a demonstration of policy constraints in a policy network, with each model

differing in their state spaces but sharing an action space. This mapping to a policy network is

formally defined and discussed in this chapter as well. In general, the proposed scalable online

decision-making model is most useful for domains in which multiple problems can be encountered

simultaneously and producing a tractable solution requires managing these multiple models in a

clean scalable manner.

7.1 Introduction

There has been substantial progress with planning under uncertainty in partially observable,

but fully modeled worlds. However, few effective formalisms have been proposed for planning in

open worlds with an unspecified, large number of objects. This remains a key challenge for au-

tonomous systems, particularly for autonomous vehicles (AVs). AV research has advanced rapidly

since the DARPA Grand Challenge [127], which acted as a catalyst for subsequent work on low-level

sensing [120, 111] and control [74, 35], as well as high-level route planning [132].

A critical missing component to enable autonomy in long-term urban deployments is the mid-level

intersection decision-making (e.g., the second-to-second stop, yield, edge, or go decisions). As in

many robotic domains, the primary challenges include the sheer complexity of real-world problems,

wide variety of possible scenarios that can arise, and unbounded number of multi-step problems that
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will be actually encountered, perhaps simultaneously. These factors have limited the deployment

of existing methods for mid-level decision-making [128, 20, 5, 60]. We present a scalable, realistic

solution, with strong mathematical foundations, via decomposition into problem-specific decision-

components.

Our primary motivation is to provide a general solution for AV decision-making at any intersec-

tion, including n-way stops, yields, left turns at green traffic lights, right turns at red traffic lights,

etc. In this domain, the AV approaches the intersection knowing only the static features from the

map, such as road, crosswalk, and traffic controller information. Any number of vehicles and pedes-

trians can arrive and interact around the intersection, all potentially relevant to decision-making and

unknown a priori. The AV must make mid-level decisions, using very limited hardware resources,

including when to stop, yield, edge forward, or go, based on all possible interactions among all ve-

hicles including the AV itself. Vehicles can be occluded, requiring the use of information gathering

actions based on belief over partial observability. Pedestrians can jaywalk, necessitating that motion

forward is taken only under strong confidence they will not cross. Uncertainty regarding priority

and right-of-way exists, and must be handled under stochastic changes. Vehicles and pedestrians

can block one another’s motion, and AV-related blocking conflicts must be discovered and resolved

via motion-based negotiation.

We provide a general solution for domains concerning multiple online decision-components with

interacting actions (MODIA). For the particularly difficult AV intersection decision domain, MODIA

considers all vehicles and pedestrians as separate individual decision-components. Each component

is a partially observable Markov decision process (POMDP) that maintains its own belief for that

particular component problem and proposes an action to take at each time step. MODIA then

employs an executor function to act as an action aggregator to determine the actual action taken

by the AV. This decomposition enables a tractable POMDP solution, benefiting from powerful

belief-based reasoning while only growing linearly in the number of encountered problems.

Previous work on an general models related to MODIA include architectures for mobile robots [22,

105] or other systems [33], and contain decision-components that produce actions, aggregated to a

system action. They do not, however, naturally model uncertainty or have a general theoretical

grounding. Forms of hierarchicies include action-based execution of child problems with multiple

options [7] and abstract machines [88]. Action-space partitioning that execute smaller MDPs [53]

and POMDPs [89] also exists. These do not model the online execution of an unknown number of

decision-components for use in robotics. More application-focused work on action voting for simple

POMDPs to solve intractable POMDPs have been used successfully [143]. Robotic applications of
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hierarchical POMDPs for an intelligent wheelchair decompose the problem into components [124]

or with two POMDP levels for vision-based robots—selecting regions of interest and performing

sequential vision operations to predict contents [119]. These practical methods work well but lack

generalized mathematical foundations. Also, none of these present AV-specific solutions.

Previous work specific to AV decision-making includes simple rule-based or finite-state controller

systems [60], which are simple to implement but are brittle, difficult to maintain, and were unable

to handle the abundant uncertainty in AV decision-making. Initial attempts using deep neural net-

works map raw images to control [25] are slow to train and tend to fail rapidly when presented

with novel situations. Mixed-observability MDPs for pedestrian avoidance also successfully use a

decision-component approach (AV-pedestrian pairs) but provide limited theoretical work and do

not extend to intersections [6]. Using a single POMDP for all decision-making has been explored,

including continuous POMDPs using raw spacial coordinates for mid-level decision-making [20], on-

line intention-aware POMDPs for pedestrian navigation [5], and POMDPs for lane changes that use

online approximate lookahead algorithms [128]. These approaches do not address the exponential

complexity concerns (scalability), provide generalizable theoretical foundations, or enable simulta-

neous seamless integration of multiple different decision-making scenarios on a real AV, all of which

are provided by MODIA.

Our primary contributions are: (1) a formal definition of MODIA (Section 7.2); (2) an application

of MODIA to AV intersection decision-making (Section 7.3); (3) a rigorous analysis of the complexity

and regret-minimization properties (Section 7.4); (4) a formal representation of MODIA as a policy

network (Section 7.4.1); and (5) an evaluation of the approach in both simulation and experiments

that integrate MODIA within a real AV (Section 7.5).

7.2 Multiple Online Decision-Components with Interacting Actions

We begin with a general problem description that considers a single autonomous agent that

encounters any number of decision problems online during execution. This chapter focuses on col-

lections of POMDPs primarily for their general form, self-consistency, and space limitations. It can

be generalized to other decision-making models in the natural way. Finally, Figure 7.1 depicts a

complete MODIA example for AVs, and is referenced throughout this section for each concept.

7.2.1 Decision-Making with MODIA

The multiple online decision-components with interacting actions (MODIA) model

describes a realistic single-agent online decision-making scenario defined by the tuple 〈P,A〉. P=
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Executor: ε(ā)
ε(ā)=stopTake stop

action

Update regret: Rtε=Rt−1
ε +0+(Q2(bt22 ,go)−Q2(bt22 ,stop))+0

DCs: 〈C,φ,τ〉

Update each DC Ci with 〈ε–1
i (stop),ωi〉

C1 C2 C3

φ(C1)=P1 φ(C2)=P1 φ(C3)=P2
τs(C1)=1 τs(C2)=1 τs(C3)=1

ā1=stop ā2=go ā3=stop

Figure 7.1: Example visualization of MODIA for AVs. Offline, the DPs (left) are solved: vehicles
(P1) and pedestrians (P2). Online, the AV approaches an intersection in the environment (center).
DCs (right) are instantiated from DPs based on 3 new observations: 2 vehicles (C1 and C2) and 1
pedestrian (C3). Each DC recommends an action (ā): 2 stops and 1 go. The executor decides: stop.
The agent takes the action, resulting in regret for C2’s action in Rtε. New observations induce DC
updates.

{P1, . . . ,Pk} are decision-problems (DPs) that could be encountered during execution. For this

chapter, each Pi∈P is a POMDP with Pi=〈Si,Ai,Ωi,Ti,Oi,Ri〉 starting from an initial belief

b0i ∈4|Si|. We consider discrete time steps t∈N over the agent’s entire lifetime. A={a1, . . . ,az} are

z primary actions that are the true actions taken by the agent that affect the state of the external

system environment. Importantly, only P and A are known offline a priori.

AV Example Figure 7.1 has two pre-solved intersection decision-components: single vehicle (P1)

or pedestrian (P2). Each are POMDPs with actions (recommendations) ‘stop’ or ‘go’. Primary

actions A for the AV are also ‘stop’ or ‘go’.

Online, the DPs are instantiated based on what the agent experiences in the external system envi-

ronment. Due to the nature of actually executing multiple decision-making models (e.g., POMDPs)

in real applications, there is no complete model for which, when, or how many DPs are instantiated,

or even how long they are relevant.

Formally, the online instantiations in MODIA are defined by the tuple 〈C,φ,τ〉. Over the

agent’s lifetime, there are n DP instantiations called decision-components (DCs) denoted as C=

{C1, . . . ,Cn}, with both C and n unknown a priori. Let φ :C→P denote the DP for each instantiation.

Let τ :C→N×N be the two time steps that each DC is instantiated and terminated. For notational

convenience, for all Ci∈C, let τs(Ci) and τe(Ci) be the start and end times; we have τs(Ci)<τe(Ci).

Without loss of generality, we also assume for i<j, τs(Ci)≤τs(Cj). We call a DC Ci∈C instantiated
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at time step t∈N if t∈ [τs(Ci), τe(Ci)]. Any instantiated Ci∈C includes POMDP φ(Ci), its policy

πi :4|Si|→Ai, and its current belief state btii ∈4|Si| with local POMDP time step ti= t−τs(Ci).

AV Example (Continued) Online, the AV encounters an intersection and immediately (at time

step 1) observes two vehicles and one pedestrian. Three DCs are instantiated; C1 and C2 are for each

vehicle (φ(C1)=φ(C2)=P1), and C3 is for the pedestrian (φ(C3)=P2). The start times for all Ci are

τs(Ci)=1; the end times τe(Ci) are still unknown. Each POMDP Ci, with φ(Ci)=Pj : b0i =b0j , ti=1,

and πi=πj .

7.2.2 The MODIA Executor

With DPs and primary actions 〈P,A〉 (known a priori), and online execution of DCs 〈C,φ,τ〉

(unknown a priori), the primary actions taken fromA are determined by an action executor function

ε :Ā→A with Ā=(
⋃
iAi)

∗. (Note: X∗ is a Kleene operator on a set X, and Ai is the set of actions

for the POMDP from DP Pi.) The executor takes DC action recommendations and converts them to

a primary action taken by the agent in the external system environment. It also converts a primary

action back to what that decision meant to individual DCs via their action sets. In this chapter, we

use the notation ε–1 :A→Ā with ε–1
i (a) referring to an individual Ci’s action from POMDP φ(Ci) for

some a∈A.

It is important to note the requirement that the executor function ε must be able to map any

tuple of actions taken from any combination of DPs, with any number of possible duplicates, to a

primary action. MODIA is a class of problems that operates without any knowledge about which

(or how many) DPs will be instantiated online.

AV Example (Continued) In Figure 7.1, all three DCs produce an action 〈ā1, ā2, ā3〉= ā∈Ā at

each time step. The example states ā1 = ā3 =stop and ā2 =go. The executor ε decides from ā that

stop∈A will be the primary action. It informs each DC Ci what the primary action means to Ci

individually, simply ε–1
i (stop)=stop, for belief updates.

7.2.3 The MODIA Objective

The goal of the class of problems captured by MODIA is to design the DPs, primary action

set, and executor so that it solves the online real-world problem (e.g., AVs). Prior work on single-

POMDP online algorithms experimentally analyze their performance with simpler metrics such as

average discounted reward (ADR) or run time [73, 144], and richer metrics such as error bound

reduction (EBR) or lower bound improvement (LBI) [106]. MODIA is an online multi -POMDP
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model that differs from these previous online single-POMDP solvers. We instead provide a concrete

objective function to enable the analysis of this complex online problem within a theoretical context.

Our problem domain does not contain a model for how DPs are instantiated as DCs, nor how long

DCs remain active. Thus, the objective is to minimize regret experienced at each step for any given

DC instantiations.

Formally, for 〈P,A,C,φ,τ,ε〉, let h≤τe(Cn) be a horizon, let It={i∈{1, . . . ,n}|τs(Ci)≤ t≤τe(Ci)}

denote the set of indexes for instantiated DCs, and let executor decision ε(ā)=at at time t∈{1, . . . ,h}

with primary action at∈A and the tuple of all instantiated DC’s actions ā∈Ā, so for all i∈It,

āi=πi(b
ti
i ) with πi, ti, and btii from instantiated DC Ci∈C. The one-step regret at time t for all

instantiated DCs in It is:

rtε=
∑
i∈It

Qi(b
ti
i ,πi(b

ti
i ))−Qi(btii , ε

–1
i (at)). (7.1)

Informally, a DC’s regret in MODIA is the expected reward following the DC’s desired policy’s

action, minus the realized expected reward following the executor’s action.

Given this one-step regret, we can consider the total accumulated regret the agent experiences.

Ideally, we would minimize this, however, it is not possible to know in most real-world scenarios.

The total regret over all time is:

Rhε =

h∑
t=1

rtε. (7.2)

AV Example (Continued) Executor ε selected stop∈A, which has ε–1
i (stop)=stop for all Ci∈

C. Following each DC’s desired action, only C2 chose go instead. This induces regret equal to

Q2(bt22 ,go)−Q2(bt22 ,stop)≥0; C1 and C3 have 0 regret. Rtε is updated accordingly.

7.2.4 LEAF for MODIA

So far we have described the general form of MODIA using a general executor. Now we examine

a particular kind of executor with desirable regret-minimizing properties (shown in Section 7.4).

Specifically, we can define a lexicographic preference over the individual actions suggested by each

DC. Thus, each DC suggests an action, stored collectively as a tuple of action recommendations,

and the executor only executes the best (in terms of preference) action from this set.

A lexicographic executor action function (LEAF) has two requirements regarding MODIA’s

structure in 〈P,A〉. First, let the primary actions A be factored with the unique action sets from

among the DPs; formally, A=×iΛi with Λ=
⋃
j{Aj}. Second, let �i be a lexicographic ordering
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over actions in these unique action sets Λi∈Λ. If a MODIA satisfies these two requirements, then

for all ā=〈ā1, . . . , āx〉∈Ā and a=〈a1, . . . ,ay〉∈A, LEAF ε(ā)=a is defined by:

ai�ia, ∀a∈{a′∈Λi|∃j s.t. āj=a′} (7.3)

for all Λi∈Λ, and ε(∅)=a for some fixed a∈A. Informally, ā are the current desired actions from

DCs, Λi is the unique action set, a are the resulting actions, and each ai (from matching unique action

set Λi) has the highest preference following �i from the available voted-upon actions. Similarly, the

inverse executor extracts the relevant action factor taken by the system and distributes it to all DCs

who have that action set; formally, for all Ci∈C, with φ(Ci)=P`, there exists an action āj ∈Λj=A`

such that for the primary action taken a∈A, ε–1
i (a)= āj . In summary, LEAF simply takes the most

preferred action among those available.

AV Example (Continued) In the AV example, we have action sets {stop,go}=A1 =A2 =A=Λ1.

Thus, it satisfies the first requirement: primary actions are composed of DP actions. For the second,

we define a lexicographic preference �1 (encouraging safety) over Λ1 with stop�go. Now ε in

Figure 7.1 is actually LEAF. Namely, the action stop is the most preferred action desired among

only the actions selected by the DCs. Thus, stop is the result of the executor.

7.2.5 Risk-Sensitive MODIA

Now we also consider a specific kind of MODIA, with a form of monotonicity in an ordered

relationship over actions and Q-values. Informally, we require DP’s Q-values to be monotonic over

actions with a penalty for selecting policy-violating high-risk actions. Formally, a MODIA is risk-

sensitive with respect to a preference �i, if for all j, b, a, and a′: (1) if a�i a′�iπj(b) then

Qj(b,a)≤Qj(b,a′), (2) if πj(b)�i a then Qj(b,a)≤Q for sufficient penalty Q.

AV Example (Continued) Action stop makes no progress towards the goal while go does, so

long as go is optimal, resulting in (1). Conversely, performing go when stop is optimal produces a

severe expected cost, resulting in (2).

7.3 Application to Autonomous Vehicles

We apply MODIA and LEAF to this concrete problem of AV decision-making at intersections.

The formulation expands on the numerous AV examples described in Section 7.2. Due to space

considerations, we focus our attention strictly on defining vehicle-related DP (POMDP); however,
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pedestrian and other DPs follow in a similar manner. Overall, this AV robotic application serves

to both ground our theoretical work and simultaneously present an actual solution to intersection

decision-making in the real world.

The MODIA AV 〈P,A〉 defines P by converting intersection types (and pedestrian types) into

POMDP DP. These types capture the static abstracted information. For example, intersection types

contain features such as the number of road segments, lane information (incoming and outgoing),

crosswalk locations, and traffic controller information. A DP is created for all lanes within all inter-

section types (and pedestrian types). Formally, for each such vehicle and intersection type, we de-

fine the DP POMDP 〈Si,Ai,Ωi,Ti,Oi,Ri〉=Pi∈P. Si=S`av×Stav×S`ov×Stov×Sbov×Spov describes

the AV’s location (approaching/at/edged/inside/goal) and time spent at location (short/long), as

well as the other vehicle’s location (approaching/at/edged/inside/empty), time spent at location

(short/long), blocking (yes/no), and priority at intersection in relation to AV (ahead/behind), re-

spectively. Actions are simply Ai={stop,edge,go}, and encode movement by assigning desired

velocity and goal points along the AV’s trajectory within the intersection. Lower-level nuances in

path planning [133] are optimized by other methods. Ωi=Ωtav×Ωbav×Ωtov×Ωbov primarily encode

the noisy sensor updates in blocking detection (yes/no) but also if the time spent was updated

(yes/no) for both the AV and other vehicle. Ti :Si×Ai×Si→ [0,1] multiply the probabilities of a

wide range of situations quantifiable and definable in the state-action space described. This in-

cludes multiplying probabilities for: (1) vehicle kindly lets AV have priority, (2) vehicle cuts AV off,

(3) AV’s success or failure of motion to an abstracted state based on its physical size, (4) a new

vehicle arrives at an intersection lane, (6) time increments, (7) vehicle actually stops at stop sign

or does a rolling stop, (8) vehicle is blocking the AV’s path following the static intersection type’s

road structure, etc. Additionally, a dead end state (an absorbing non-goal self-loop) is reached

when the AV and other vehicle both have state factor “inside” while also “blocking” each other.

Oi :Ai×Si×Ωi→ [0,1] captures the sensor noise (e.g., determined via calibration and testing of the

AV’s sensors). This includes successful detections of: (1) other vehicle’s crossing of physical locations

mapped to abstracted states, (2) determining the blocking probability based on the location of the

other vehicle, etc. Ri :Si×Ai→R is defined as unit cost for all states, except the goal state.

The primary actions are A={stop,edge,go} and simply describe the AV’s movement along the

desired trajectory. We define a lexicographic preference �1 over this action set stop�1 edge�1 go.

This preference formalizes the notion that if even one DC said to stop, then the AV should stop.

Similarly, if at least one DC said to edge but none said stop, then the AV should cautiously edge

forward. Otherwise, the AV should go. This enables us to apply LEAF because Ai=A for all Ai
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(even the pedestrian DPs) and we have lexicographic preference �1. Lastly, the defined MODIA

produces Q-values that satisfy risk-sensitivity.

7.4 Theoretical Analysis

Given DPs and primary actions 〈P,A〉, MODIA requires the selection of an executor to minimize

regret accumulated over time, in addition to solving the DPs themselves. With n unknown a priori,

as well as which and when DPs are instantiated as DCs, it is impossible to perform tractable plan-

ning techniques entirely offline; again, MODIA is an category of online decision-making scenarios.

Assume, however, that a prescient oracle provided 〈C,φ,τ〉 a priori. While this is an impossible

scenario, it is useful to understand the worst-case complexity of exploiting this information in the

underlying problem of selecting a regret-minimizing executor given this normally unobtainable in-

formation. Proposition 23 formally proves this complexity.

Proposition 23. If 〈C,φ,τ〉 is known a priori, then the complexity to compute the optimal executor

ε∗ is O(n2zmh) with z= |A|, m=maxi |Ai|, and h=maxi τe(Ci).

Proof. Must determine the worst-case complexity to fully define executor ε∗ :Ā→A to minimize

regret Equation 7.2. In the worst-case, we must explore all relevant executors, and compute the

regret for each, resulting in the optimal solution.

By the definition of an executor, Ā=(
⋃
iAi)

∗ and z= |A|. Given n= |C|, the maximum realizable

set size of Ā is all unique potential actions, multiplied by the maximal number of unique DCs

instantiated simultaneously. In the worst-case, Ai 6=Aj for all i 6=j, so all possible actions must be

considered for each; this order bound is m=maxi |Ai|. Also, all combinations of instantiated DCs

must be realized, so all τ(Ci) 6=τ(Cj) for all i 6=j. In any order, n births, n deaths, and time no DCs

instantiated; thus there are 2n+1 in total. Hence, the number of potential executors is O(znm).

In the worst-case scenario, Ri(b
ti
i ,πi(b

ti
i )) differs for every time step for all Ci∈C. Equation 7.2

requires O(hmaxt I
t) operations. Given C, h=maxi τe(Ci). By definition of It, maxt I

t≤n. Thus,

the worst-case complexity to compute an optimal ε∗ is O(znm) ·O(hn)=O(n2zmh).

With Proposition 23, we know this impossible oracular scenario’s complexity is relatively high,

but not exponential. This suggests a method for computing an optimal executor, under more

realistic assumptions. Thus, let ρ̂ be a given model for the hardest feature of MODIA: online

instantiation. Let ρ̂ :N̂n× T̂n× Ên×N̂n× T̂n→ [0,1] define the probability that a particular set

of instantiated DCs 〈n̂, τ̂〉∈N̂n× T̂n, and executor selection ε̂∈ Ên, results in a successor DC in-

stantiation state 〈n̂′, τ̂ ′〉∈N̂n× T̂n. Here, N̂n={1, . . . ,k}n are instantiation indexes (defining φ),
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T̂n={τ̂ ∈{α,{1, . . . ,h}2,ω}n|∀i∈N, τ̂is<τ̂ie} are the instantiation start and end times (defining τ)

including non-instantiated α and completed ω demarcations, and Ên={ε :Ā→A||Ā|≤n} are all

valid executors (defining ε). Additionally, we must assume knowledge of a maximum number of

DCs n and horizon h for decidability. Given this model, Proposition 24 proves the resulting MDP’s

optimal policy minimizes expected regret, and that the problem is unfortunately computationally

intractable in practice.

Proposition 24. If n, h, and model ρ̂ are known a priori, then: (1) the resulting MDP’s optimal

policy π∗ minimizes expected regret, and (2) its state space is exponential in n and k.

Proof. We must show the construction of an MDP whose optimal policy minimizes expected regret

and show its complexity in the necessity of an exponential state space.

Let 〈Ŝ, Â, T̂ , R̂〉 be a finite horizon MDP with horizon ĥ=h+1. States are Ŝ={ŝ0}∪ Ên×B̂n× T̂n

with ŝ0 denoting the initial executor selection state and B̂n={B̂∈(
⋃
i B̂

h
i )∗||B̂|=n} be all possible

reachable beliefs for Pi in horizon h (denoted B̂hi ) for all possible instantiations. For notation,

we use ŝ=〈ε̂, b̂, τ̂〉, each containing instantiated values ε̂i, b̂i, τ̂si, and τ̂ei, as well as θ̂ :B̂n→N̂n

mapping beliefs to their original POMDPs’ indices. Actions are executor selection Â= Ên. State

transitions T̂ : Ŝ×Â× Ŝ→ [0,1] have two cases. First, T̂ (ŝ0, â, ŝ′)=[ŝ′=〈â,∅,∅〉] captures executor

selection. Second, for ŝ 6= ŝ0 we have:

T̂ (ŝ, â, ŝ′)=[(ŝ= ŝ0∧ ε̂′= â)∨(ŝ 6= ŝ0∧ ε̂′= ε̂)]

· ρ̂(θ̂(b̂), τ̂ , ε̂, θ̂(b̂′), τ̂ ′)

n∏
i=1

[b̂′i=b0j ∧ τ̂i=α∧ τ̂ ′i =1]

·
n∏
i=1

Pr(b̂′i|b̂i,πj(b̂i))[τ̂i∈N∧ τ̂ ′i = τ̂i+1]

n∏
i=1

[τ̂ ′i =ω∧ b̂′i= b̂i]

with j= θ̂i(b̂). This captures executor state assignment, the instantiation model ρ̂, the proper

initialization of belief, the belief update for active DCs, and the termination of a DC. Rewards R̂ : Ŝ×

Â→R describe the negative regret, R̂(ŝ, â)=
∑
iQj(b̂i, ε̂

–1
i (at))−Qj(b̂i,πj(b̂i))[τ̂i∈N] with R(ŝ0, â)=

0. By construction, this is MODIA, assuming ρ̂, n, and h were provided. By assigning ε∗=π∗(ŝ0),

we minimize expected regret. In the worst-case, it necessitates modeling all n DC instantiation

permutations (with replacement) of the k DPs, which is O(kn).

This illustrates the importance of the original MODIA formulation. Even with the instantiation

model of Proposition 24, the problem is still unscalable. And the knowledge needed to bound

the number of active DCs (e.g., n and h) is generally unavailable a priori. This intrinsic lack
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of information motivated our formulation that minimizes the regret at each time step. Hence, the

agent is guided by the optimal DC policies from each instantiated DP, selecting the regret-minimizing

action at each time step. Proposition 25 proves that LEAF minimizes the regret in risk-sensitive

MODIA at each time step, enabling a tractable solution to MODIA.

Proposition 25. If a MODIA is risk-sensitive, then LEAF minimizes regret rtε for all t.

Proof. By definition of regret rtε for LEAF ε at time step t: rtε=
∑
iQj(b

ti
i ,πj(b

ti
i ))−Qj(btii , ε–1

i (at))

with φ(Ci)=Pj . We must show for all ε̃, rtε≤ r̃tε̃. For readability, hereafter, let ai=ε–1
i (at), ãi=

ε̃–1
i (ãt), a∗j =πj(b

ti
i ), and bi=btii . By definition of risk-sensitive, there always exists action a∗j such

that Qj(bi,a
∗
j )≥Q. Thus, it is sufficient to show that for all i∈It, Qj(bi,ai)≥Qj(bi, ãi), or there

exists a Ci∈C with φ(Ci)=Pj such that Qj(bi, ãi)≤Q. By risk-sensitivity and LEAF, consider 3

cases for ε and ε̃.

Case 1: ai=x ãi for ai, ãi∈Λx=Aj . Trivially, we have Qj(bi,ai)=Qj(bi, ãi).

Case 2: ai�x ãi has two cases. Case 2.a: If ai=a∗j , then by definition πj ’s optimality, for

any ãi∈Aj , Qj(bi,ai)=Qj(bi,a
∗
j )≥Qj(bi, ãi). Case 2.b: If ai 6=a∗j , then by LEAF Equation 7.3,

ai∈{a∈Λx|∃u s.t. āu=a}. Thus, by definition of ā∈Ā, there exists this u 6= i such that ai=au=a∗v

with φ(Cu)=Pv. By risk-sensitivity, a∗v=au=ai�x ãi that implies Qv(bu, ãi)≤Q.

Case 3: ai≺x ãi. By definition of risk-sensitivity, we have ãi�x ai�x a∗j and consequentlyQj(bi, ãi)≤

Qj(bi,ai).

All cases proven. LEAF minimizes regret rtε for any t.

7.4.1 Policy Network Representation of MODIA

We now prove in Proposition 26 and Figure 7.2 how MODIA is representable as a policy network.

First, we summarize the relevant components of MODIA and then prove this fact. MODIA is an

example of how policy networks can describe non-stationary policy sets, as well as how models with

different state spaces and a shared action space can interact. It demonstrates how policy networks

can be used to effectively solve a very large problem by decomposition into smaller components.

MODIA, as described above, is for autonomous vehicle decision-making about other entities:

vehicles Kv and pedestrians Kp, analyzed a posteriori. Multiple POMDP models (i.e., vi and pj)

describe each AV-entity pairwise interaction; each model is solved offline in isolate, resulting in

stationary polices πvi and πpj . An executor ε :A∗→A maps any tuple of action recommendations to

a final action performed by the executor. This action updates the other models resulting in regret;

e.g., for i∈Kv regret is ri=V ∗i (bi)−Q∗i (bi, ε(a)). Following Wray et al. (2017), we consider risk-
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sensitive MODIA with LEAF, which assumes an ordering exists over actions � in terms of safety.

If a riskier action is performed πi(bi)�ε(a) then the model i experiences a regret lower bounded by

ri≥Q∗i (bi)−Q. A LEAF executor that selects the safest action among the recommendations (i.e.,

∀i, ε(a)�πi(bi) and ∃j s.t. ε(a)=πj(bj)) minimizes the sum of one step regrets.

ε

vi pj

δvi δpj
Te,Πe

i∈Kv j∈Kp

vi∼POMDP(Svi ,A,Ω
v
i ,T

v
i ,O

v
i ,R

v
i )

pj∼POMDP(Spj ,A,Ω
p
j ,T

p
j ,O

p
j ,R

p
j )

ε∼〈{πε :{sε}→A},Rε〉

Figure 7.2: MODIA represented as a policy network.

Proposition 26. Policy networks generalize MODIA.

Proof. For any MODIA, we must construct an equivalent policy network. See Figure 7.2. Let

V ={ε}∪{vi}∪{pj} with v0 =ε. Let each vi∼POMDP(·) and pj∼POMDP(·) as in the figure with

shared A. Let ε∼〈Πε,Rε〉 for policies πε :Sε→A with trivial state space Sε={sε}. Let Rε(sε,a) equal

the index of a in the reverse of ordering � over A. Let {〈ε,ε〉}∪{〈vi, ε〉,〈ε,vi〉}∪{〈pj , ε〉,〈ε,pj〉}⊂

E. Let Tεε(sε, ·,sε)=1 be a self-loop transition and let Πεε={π|V ∗ε (sε)=V πε (sε)} select optimal

executor policies. Let Πε be a non-stationary policy set that is defined by its parents’ constraint

edges Πt
iε={π :{sε}→A}|V ∗i (bti)−Q∗i (bti,π(sε))<δ

v
i }, with a similarly defined Πjε, that only allow

executor actions with regret no greater than δvi =V ∗i (bti)−Q. By construction, the executor vertex

ε’s selected policy π∗ε ∈Πt
ε at time t maps its state sε to the safest action among recommendations.

This is identical to LEAF’s definition, and thus minimizes the sum of one step regrets implicitly

through constraints.

7.5 Evaluation

We present experiments with an implementation of the proposed MODIA AV formulation. First,

we describe experiments on six different intersections in an industry-standard vehicle simulation.

Next, we describe four real-world experiments using MODIA on our fully-operational AV prototype

vehicle. Finally, we discuss the evaluation’s experiments, implementation, and overall conclusions.
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Intersection Scenarios MODIA Baselines

Scenario Name RS V P PI |C| M I N

Crosswalk Pedestrian 4 0 1 1 4 21.1 16.7 30.1

Vehicle & Pedestrian 3 1 1 1 3 16.8 13.6 37.1

Walk & Run Pedestrians 3 1 2 2 6 19.1 13.3 23.3

Multi-Vehicle Interaction 4 2 0 2 5 19.0 13.2 20.9

Bike Crossing 3 0 1 1 3 16.4 13.8 19.8

Jay Walker 4 0 1 1 4 17.7 14.4 24.3

Table 7.1: Results for 6 intersection problems described by the number of road segments (RS),
vehicles (V), pedestrians (P), and potential incidents (PI). Metrics: time to complete intersection
(seconds) for MODIA AVM (including the number of DCs |C|), ignorant baseline algorithm I, and
naive baseline algorithm N .

7.5.1 Experiments in an Industry-Standard Simulation Environment

We begin with experiments on six different intersections in an industry-standard vehicle simu-

lation developed by Realtime Technologies, Inc. that accurately simulates vehicle dynamics with

support for ambient traffic and pedestrians. We evaluated MODIA on real map data at six different

intersections, each highlighting a commonly encountered real-world scenario. Table 7.1 describes

each scenario by name and provides details regarding the road segments, vehicles, and pedestri-

ans that exist. The number of potential incidents describes how many risks exist, which MODIA

perfectly obviates.

We compare a MODIA AV with ignorant and naive AV baseline algorithms. The ignorant AV

follows the law but ignores the existence of all vehicles and pedestrians, acting as if the intersections

are empty. The naive AV follows the law and cautiously waits until all others have cleared the

intersection beyond 15 meters before attempting to go. These two baselines implement extremes

of rule-based AVs [60] and serve as a form of bound for AV behavior to understand MODIA AV’s

performance.

We evaluate each by their time to complete an intersection, which includes the observations

while approaching, decisions at the intersection, and travel within the intersection. In Table 7.1,

we observe the MODIA AV successfully completes intersections faster than the cautious naive AV.

While the MODIA AV takes longer than the ignorant AV, the ignorant AV encounters each potential

incident and the MODIA AV safely avoids them.
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7.5.2 Experiments on a Fully Operational AV Prototype

We will now present real experiments with our fully-operational AV prototype which took place

in Mountain View and Sunnyvale in California during 2017. These robot experiments illustrate the

diverse array of situations that MODIA can handle. Given the complexity of each scenario, and

the variety of each sub-problem within each scenario, it also demonstrates the necessity of MODIA

and, more generally, policy networks. Specifically, it is simply intractable to attempt to model all

scenarios that a long-term autonomous agent can encounter; there are simply too many scenarios

each with a distinct state-action space and objective. Instead, breaking the problem into tractable

pieces and integrating them seamlessly together results in a truly scalable solution that enables

reasoning under uncertainty for long-term autonomy.

3-Way Stop Figures 7.4 and 7.5 depict an interaction with 3 vehicles at a 3-way stop sign in-

tersection on a real public road. The figures show both a high-level route as well as the mid-level

MODIA decision-making in two visualizations. In Figure 7.4 (a), the AV begins travelling towards

a 3-way stop, initially not detecting any other vehicles, having a low belief over their existence.

Figure 7.4 (b), the AV approaches and detects two new vehicles. It determines that at least one is

likely to block its desired path. Next, Figure 7.4 (c) shows that the left vehicle decides to traverse

the intersection first. Since the AV is only at the stop line, its location state factor enables it to

know it can move forward safely. However, in Figure 7.4 (d), we see that the AV has successfully

claimed priority in the intersection, but must slow down and edge forward now that it is inside the

intersection. Figures 7.4 (e) and (f) show the AV successfully completing the intersection once the

path is clear and safe.

4-Way Stop Figure 7.6 depicts an interesting negotiation with 3 vehicles at a 4-way stop sign

intersection. It begins as the AV approaches the intersection in Figure 7.6 (a). When it arrives

in Figure 7.6 (b), it observes two other vehicles (left and center) which both arrived at the same

time as the AV. Uncertain, the AV edges forward slightly, before yielding to the center vehicle as

shown in Figure 7.6 (c). Once the center vehicle clears the intersection, Figure 7.6 (d) shows the AV

edge forward again to claim priority in the intersection, only to have the left vehicle commit before

the AV. This forces the AV to yield again, until this left vehicle has also cleared the intersection.

Figures 7.6 (e) and (f) show that once the AV detects the clear intersection, with priority over the

new vehicle on the left, it commits to go through the intersection. It safely completes the intersection

after this nuanced sequential decision-making and negotiation process.
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Partially Observable T-Intersection Figures 7.7 and 7.8 depict an interaction with a partially

observable vehicle a T-intersection. Figure 7.7 (a) begins arriving at a T-intersection where the

AV slows to a stop in Figure 7.7 (b). The POMDP DCs here have a belief over the existence of

vehicles based on observing occlusions or not. In this case, the left road is fully occluded by foliage

and a hill. In Figure 7.7 (c) we observe the POMDP DC’s uncertain belief about the existence of

another vehicle results in the edge action being performed to slowly gain visibility. As it slowly edges

forward, the AV’s belief shifts after observing an actual vehicle behind the occlusion, as shown in

Figure 7.7 (d). Figures 7.7 (e) and (f) show the AV yielding to the vehicle until eventually the road

is clear. The AV has enough visibility at this point to have a strong belief that the road is clear, so

it moves onto the main road in Figure 7.7 (g).

4-Way Stop With Pedestrian Figure 7.9 depicts an interaction with a vehicle and a pedestrian

at a 4-way stop sign intersection. As the AV arrives at the intersection in Figures 7.9 (a) and (b), it

detects a vehicle ahead of it and a stationary pedestrian on the opposite crosswalk. It instantiates

a vehicle and pedestrian DC accordingly. After a brief wait for the other vehicle to take initiative,

the AV believes it has priority and enters the intersection via the go action, as shown in Figure 7.9

(c). Just as the AV advances, however, it detects the pedestrian moving with a high belief that it

is blocking the AV’s path, as shown in Figure 7.9 (d). Figure 7.9 (e) then depicts the AV’s stop

action, which slows the AV to stop safely in front of the crosswalk on the other side. This entire

time, the other vehicle is yielding to the AV. Once the pedestrian crosses the crosswalk, as shown in

Figure 7.9 (f), the AV completes the intersection and allows the other vehicle to also complete the

intersection.

7.5.3 Discussion

MODIA is shown to provide a scalable solution. To concretely illustrate this, consider Figure 7.3,

which depicts a common 4-way intersection with our fully-operational AV prototype that operates on

real public roads and contains an implementation of MODIA and LEAF. This real-world scenario

illustrates MODIA’s success in addressing scalability concerns while simultaneously handling the

nuanced aspects of online decision-making. Each described vehicle DP POMDP has 400 states (265

with additional pruning), with a rich well-structured belief space. In MODIA AVs, the POMDP’s size

is constant and applies to any intersection. In comparison, a single all-encompassing POMDP with

these state factors quickly becomes utterly infeasible, and will vary greatly among intersections.

For example, the 4-way stop from Figure 7.3 that only considers the AV and 3 other vehicles
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Figure 7.3: Our fully-operational AV prototype at a 4-way stop intersection that implements AV
MODIA and LEAF.

(no pedestrians) would the state space S=S`av×Stav×3

i=1(S`ovi×Stovi×Sbovi×S
p
ovi). This has |S|=

640,000 states, exemplifying notions from Proposition 24. Conversely, MODIA AVs scale linearly

with the number of vehicles, and would only be 795 states evenly distributed over three POMDPs.

On modest hardware, a DP can take <1 minute to solve using nova [136]. Monolithic POMDPs,

like the one described, are unequivocally intractable; however, MODIA enables the now realized

POMDP solution for AV decision-making.

7.6 Conclusion

MODIA is a principled theoretical model designed for direct practical use in online decision-

making for autonomous robots. It has a number advantages over the direct use of a massive mono-

lithic POMDP for planning and learning. Namely, it remains tractable by growing linearly in the

number of decision-making problems encountered. Its component-based form simplifies the design

and analysis, and enables provable theoretical results for this class of problems. MODIA is shown

to successfully solve a challenging AV interaction problem. Future work will explore more executors

and models beyond LEAF and risk-sensitive MODIA, develop additional AV-related DPs, and tackle

other intractable robotic domains such as humanoid service robots using MODIA as a scalable online

decision-making solution.
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Figure 7.4: Experiment 3-Way Stop (Part 1 of 2) in Sunnyvale, California during 2017. This is
MODIA, as part of a policy network, interacting with real traffic on a public road. The left corner
shows a visual of the high-level route plan. The right corner shows a visual of the mid-level MODIA
decision-making; each row represents one DC. Images provided courtesy of Nissan Research Center
- Silicon Valley.
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Figure 7.5: Experiment 3-Way Stop (Part 2 of 2) in Sunnyvale, California during 2017. This is
MODIA, as part of a policy network, interacting with real traffic on a public road. The left corner
shows a visual of the high-level route plan. The right corner shows a visual of the mid-level MODIA
decision-making; each row represents one DC. Images provided courtesy of Nissan Research Center
- Silicon Valley.
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Figure 7.6: Experiment 4-Way Stop in Mountain View, California during 2017. This is MODIA, as
part of a policy network, interacting with real traffic (left vehicles) and one staged researcher (center
vehicle). Images provided courtesy of Nissan Research Center - Silicon Valley.
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Figure 7.7: Experiment Partially Observable T-Intersection (Part 1 of 2) in Sunnyvale, California
during 2017. This is MODIA, as part of a policy network, acting on real public roads with one
staged researcher (partially observable left vehicle). The left column shows the front view and the
right column shows the side view. Images provided courtesy of Nissan Research Center - Silicon
Valley.
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Figure 7.8: Experiment Partially Observable T-Intersection (Part 2 of 2) in Sunnyvale, California
during 2017. This is MODIA, as part of a policy network, acting on real public roads with one
staged researcher (partially observable left vehicle). The left column shows the front view and the
right column shows the side view. Images provided courtesy of Nissan Research Center - Silicon
Valley.
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Figure 7.9: Experiment 4-Way Stop With Pedestrian in Mountain View, California during 2017.
This is MODIA, as part of a policy network, interacting with two staged researchers (vehicle and
pedestrian). Images provided courtesy of Nissan Research Center - Silicon Valley.
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CHAPTER 8

CONCLUSION

The goal of this thesis was to provide scalable mathematical foundations for integrating multiple

decision-making components for hierarchical and multi-objective reasoning. In pursuit of this goal,

policy networks were proposed as a framework to generalize previously established models such as

CMDPs and options, as well as novel models such as TMDPs, SAS, and MODIA presented in this

thesis. TMDPs enable the construction of preference orderings across multiple objectives. SAS

augments an autonomous agent with the means to transfer control to a human or other agents in

order to improve its ability to safely complete its objectives. MODIA allows an unbounded number

of decision-making components to be seamlessly integrated online for efficient scalability.

Throughout the thesis, autonomous vehicles (AVs) were used as a common application domain.

TMDPs were used to enable the AV to reason about minimizing time and maximizing autonomy

in high-level route planning. SAS was used to augment the AV with a human driver reasoning

in its high-level route planning, with a mid-level capability to safely transfer control between both.

MODIA was used to allow the AV to reason about an unbounded number of vehicles at intersections,

lane changes, merges, passing obstacles, and pedestrians for its mid-level decision-making. Formal

models were presented for each of the distinct problems. These solutions were evaluated using real-

world map data in simulation and/or demonstrated on a fully operational AV prototype driving on

real public roads. Policy networks served as a shared underlying framework for all three, enabling

their seamless integration as parts of an overall solution for rich, real-world, scalable decision-making

in agents with long-term autonomy.

8.1 Future Work

Many promising avenues exist for expanding the models presented in this thesis. Policy networks

allow for many interesting interactions among multiple models, both in terms of hierarchies and

multiple objectives and in terms of shared and different state-action spaces. The three example

models discussed in the chapters provide a template for how to not only build such policy networks.

More importantly, they teach how to embrace the thought process required to solve large problems
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by integrating multiple tractable models together, continuing the traditions set by techniques like

options [122] and constrained MDPs [2]. In this way, one could define a general version of the SSP-

POMDP hierarchy used in SAS that analyzes integrating SSPs, MDPs, and POMDPs at varying

levels of abstraction. Similarly, MODIA could be adjusted to include same and different state-action

space DPs, exploring the effect of both. Lastly, all of these approaches can be combined to provide

template structures for policy networks that can be combined to enable rapid development.

A multi-agent version of policy networks, and even TMDPs [131], is a natural extension that

should be explored. Intuitively, it is quite simple to devise; however, we will leave the details to

future work. In brief, first define one controller for each agent. Second, define actions as joint

actions, mapping each agent to one of the action factors. Third, require that all agents perform an

action at the same time step in order to perform a state transition. Fourth, enforce any such actions

performed in a joint action space to be held until all agents perform an action. In the mean time,

these held agents are not performing action and so do not induce a state transition or experience

rewards. Ideally, this should generalize the Dec-POMDP and partially observable stochastic game

(POSG). Initial formalizations of this solution are devised and will be explored in detail once policy

networks are established.

Many new application domains can be explored beyond the discussed home healthcare robots

and autonomous vehicles solutions. For example, a robot assistant in a work environment that

completes a variety of tasks such as delivering packages, giving tours, and generally aiding employ-

ees [11]. Another example, warehouse robots must plan and learn in local pick-and-place tasks, local

navigation, and long-term navigation [31]. In other words, these domains must seamlessly integrate

task, motion, and route planning to facilitate long-term deployments in a real-world setting.

Another important line of future research broadly in long-term autonomy is to devise generalized

metrics to evaluate the agent’s long-term deployments [54]. Policy networks can begin to provide

a natural approach to metrics. Namely, for any given LTA agent using a policy network, we can

record the performance of the various component models individually. From this we can measure:

(1) the number of times certain components were used or had an impact on policies executed; (2)

how did this number change over time if learning occurred; (3) how many times did any transfer

of control succeed or fail; (4) how many times did a constraint; (5) did constraints produce their

intended result; and (6) what was the effect on components usage and impact after a new model

vertex was added or removed? These types of metrics help evaluate an LTA agent over the weeks,

months, or even years of its long-term deployment. A formal definition of generalizable metrics in

LTA, perhaps levering policy networks in this manner, is a useful contribution to explore.
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8.2 Final Thoughts

Autonomous agents are increasingly deployed in the real-world with the potential for great soci-

etal impact. Autonomous vehicles represent one of the most impactful domains currently in devel-

opment, as well as the burgeoning area of home robotics. However, there are still many challenges

in low-level control, mid-level decision-making, and high-level route planning that still must be

overcome to achieve the goal of their long-term autonomous deployments. Unfortunately, the com-

munity’s focus recently has been too heavily skewed on the potential of yet-unproven technologies

and methods, rather than the grounded perspective needed for designing the actual mathematical

models of reasoning and learning that will realistically enable success in our endeavors.

This thesis represents a small contribution to these areas of reasoning in long-term autonomy,

in particular for autonomous vehicles. Throughout these chapters, we have covered the challenges

in scalably integrating the many decision-making models necessary to build these agents. Solutions

were provided for properly describing multi-objective reasoning, designing safe proactive transfer

of control in semi-autonomy, and seamlessly fusing models online in a real deployed robot. Many

decades of work still remain to formally define, prove, build, and deploy agents with these kinds

of integrated models. It is merely a hope that other researchers find value, however small, in the

ideas presented in this thesis, as we work in modest but determined steps towards the goal building

intelligent agents that fully actualize true long-term autonomy.
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tional Science and Engineering 5, 3 (July 1998), 68–75.

[33] Decker, Keith. TAEMS: A framework for environment centered analysis & design of coordi-
nation mechanisms. Foundations of Distributed Artificial Intelligence (1996), 429–448.

[34] Dietterich, Thomas G. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research 13 (2000), 227–303.

[35] Dolgov, Dmitri, Thrun, Sebastian, Montemerlo, Michael, and Diebel, James. Path planning
for autonomous vehicles in unknown semi-structured environments. International Journal of
Robotics Research 29, 5 (2010), 485–501.

[36] Drake, Alvin W. Observation of a Markov Process Through a Noisy Channel. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1962.

[37] Erol, Kutluhan. Hierarchical Task Network Planning: Formalization, Analysis, and Imple-
mentation. PhD thesis, University of Maryland, College Park, MD, 1996.

[38] Erol, Kutluhan, Hendler, James, and Nau, Dana S. HTN planning: Complexity and ex-
pressivity. In Proceedings of the 12th National Conference on Artificial Intelligence (1994),
pp. 1123–1128.

[39] Feinberg, Eugene A., and Shwartz, Adam. Constrained Markov decision models with weighted
discounted rewards. Mathematics of Operations Research 20, 2 (1995), 302–320.

[40] Feyzabadi, Seyedshams, and Carpin, Stefano. Planning using hierarchical constrained Markov
decision processes. Autonomous Robots 41, 8 (2017), 1589–1607.

[41] Fikes, Richard E., and Nilsson, Nils J. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 3/4 (1971), 189–208.

[42] Fong, Terrence, Nourbakhsh, Illah, and Dautenhahn, Kerstin. A survey of socially interactive
robots. Robotics and Autonomous Systems 42, 3-4 (2003), 143–166.

[43] Gábor, Zoltán, and Szepesvári, Zsolt Kalmárand Csaba. Multi-criteria reinforcement learning.
In Proceedings of the 15th International Conference on Machine Learning (1998), pp. 197–205.

[44] Gill, Philip E., Murray, Walter, and Saunders, Michael A. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Review 47, 1 (2005), 99–131.

[45] Givan, Robert, Dean, Thomas, and Greig, Matthew. Equivalence notions and model mini-
mization in Markov decision processes. Artificial Intelligence 147, 1 (2003), 163–223.

[46] Gonzales, Christophe, Perny, Patrice, and Dubus, Jean-Philippe. Decision making with mul-
tiple objectives using GAI networks. Artificial Intelligence 175, 7-8 (2011), 1153–1179.

[47] Gopalan, Nakul, desJardins, Marie, Littman, Michael L., MacGlashan, James, Squire, Shawn,
Tellex, Stefanie, Winder, John, and Wong, Lawson L.S. Planning with abstract Markov
decision processes. In Proceedings of the International Conference on Automated Planning
and Scheduling (2017), pp. 480–488.

[48] Gordon, Geoffrey J. Stable function approximation in dynamic programming. In Proceedings
of the 12th International Conference on Machine Learning (1995), pp. 261–268.

[49] Graf, Birgit, Hans, Matthias, and Schraft, Rolf D. Care-o-bot ii—development of a next
generation robotic home assistant. Autonomous Robots 16, 2 (March 2004), 193–205.

[50] Grosz, Barbara J., and Kraus, Sarit. Collaborative plans for complex group action. Artificial
Intelligence 86, 2 (1996), 269–357.

162



[51] Hansen, Eric A. Solving POMDPs by searching in policy space. In Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (1998), pp. 211–219.

[52] Hansen, Eric A., and Zilberstein, Shlomo. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence 129, 1 (2001), 35–62.

[53] Hauskrecht, Milos, Meuleau, Nicolas, Kaelbling, Leslie Pack, Dean, Thomas, and Boutilier,
Craig. Hierarchical solution of Markov decision processes using macro-actions. In Proceedings
of the 14th Conference on Uncertainty in Artificial Intelligence (1998), pp. 220–229.

[54] Hawes, Nick, Burbridge, Chris, Jovan, Ferdian, Kunze, Lars, Lacerda, Bruno, Mudrová, Lenka,
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