15 research outputs found

    A novel optimized neutrosophic k-means using genetic algorithm for skin lesion detection in dermoscopy images

    Get PDF
    This paper implemented a new skin lesion detection method based on the genetic algorithm (GA) for optimizing the neutrosophic set (NS) operation to reduce the indeterminacy on the dermoscopy images. Then, k-means clustering is applied to segment the skin lesion regions

    Region Adjacency Graph Approach for Acral Melanocytic Lesion Segmentation

    Get PDF
    Malignant melanoma is among the fastest increasing malignancies in many countries. Due to its propensity to metastasize and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. In non-Caucasian populations, melanomas are frequently located in acral volar areas and their dermoscopic appearance differs from the non-acral ones. Although lesion segmentation is a natural preliminary step towards its further analysis, so far virtually no acral skin lesion segmentation method has been proposed. Our goal was to develop an effective segmentation algorithm dedicated for acral lesions

    Optimized Adaptive Frangi-based Coronary Artery Segmentation using Genetic Algorithm

    Get PDF
    Diseases of coronary artery are deliberated as one of the most common heart diseases leading to death worldwide. For early detection of such disease, the X-ray angiography is a benchmark imaging modality for diagnosing such illness. The acquired X-ray angiography images usually suffer from low quality and the presence of noise. Therefore, for developing a computer-aided diagnosis (CAD) system, vessel enhancement and segmentation play significant role. In this paper, an optimized adapter filter based on Frangi filter was proposed for superior segmentation of the angiography images using genetic algorithm (GA). The original angiography image is initially preprocessed to enhance its contrast followed by generating the vesselness map using the proposed optimized Frangi filter. Then, a segmentation technique is applied to extract only the artery vessels, where the proposed system for extracting only the main vessel was evaluated. The experimental results on angiography images established the superiority of the vessel regions extraction showing 98.58% accuracy compared to the state-of-the-art

    Performance and Analysis of a U-Net Model for Automated Skin Lesion Segmentation

    Get PDF
    A greater proportion of people are affected by skin cancer, particularly melanoma, which has a higher tendency to metastasize. For Dermatologist, Visual inspections are most challenging & complex task for melanoma detection. To solve this problem, dermoscopic images are analyzed and segmented. Due to the sensitivity involved in surgical operations, existing techniques are unable to achieve higher accuracy. As a result, computer-aided systems are essential to detect & segment dermoscopic images.     In this paper, for segmentation 5000 skin images were taken from the HAM10000 dataset. Prior to segmentation, preprocessing is done by resizing images. A novel U Net structure is a fully convolutional network is presented & implemented using up-sampling and down-sampling technique with Rectified Linear Units (ReLU) for activation functions. The outcomes of proposed methodology shows performance improvement for skin-lesion segmentation with 94.7 % pixel accuracy & 89.2 % dice coefficient compared with existing KNN & SVM techniques

    A Review on Skin Disease Classification and Detection Using Deep Learning Techniques

    Get PDF
    Skin cancer ranks among the most dangerous cancers. Skin cancers are commonly referred to as Melanoma. Melanoma is brought on by genetic faults or mutations on the skin, which are caused by Unrepaired Deoxyribonucleic Acid (DNA) in skin cells. It is essential to detect skin cancer in its infancy phase since it is more curable in its initial phases. Skin cancer typically progresses to other regions of the body. Owing to the disease's increased frequency, high mortality rate, and prohibitively high cost of medical treatments, early diagnosis of skin cancer signs is crucial. Due to the fact that how hazardous these disorders are, scholars have developed a number of early-detection techniques for melanoma. Lesion characteristics such as symmetry, colour, size, shape, and others are often utilised to detect skin cancer and distinguish benign skin cancer from melanoma. An in-depth investigation of deep learning techniques for melanoma's early detection is provided in this study. This study discusses the traditional feature extraction-based machine learning approaches for the segmentation and classification of skin lesions. Comparison-oriented research has been conducted to demonstrate the significance of various deep learning-based segmentation and classification approaches

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    The Encyclopedia of Neutrosophic Researchers - vol. 3

    Get PDF
    This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    Extraction of Blood Vessels Geometric Shape Features with Catheter Localization and Geodesic Distance Transform for Right Coronary Artery Detection.

    Get PDF
    X-ray angiography is considered the standard imaging sensory system for diagnosing coronary artery diseases. For automated, accurate diagnosis of such diseases, coronary vessels’ detection from the captured low quality and noisy angiography images is challenging. It is essential to detect the main branch of the coronary artery, to resolve such limitations along with the problems due to the sudden changes in the lumen diameter, and the abrupt changes in local artery direction. Accordingly, this paper solved these limitations by proposing a computer-aided detection system for the right coronary artery (RCA) extraction, where geometric shape features with catheter localization and geodesic distance transform in the angiography images through two parts. In part 1, the captured image was initially preprocessed for contrast enhancement using singular value decomposition-based contrast adjustment, followed by generating the vesselness map using Jerman filter, and for further segmentation the K-means was introduced. Afterward, in part 2, the geometric shape features of the RCA, as well as the skeleton gradient transform, and the start/end points were determined to extract the main blood vessel of the RCA. The analysis of the skeletonize image was performed using Geodesic distance transform to examine all branches starting from the predetermined start point and cover the branching till the predefined end points. A ranking matrix, and the inverse of skeletonization were finally carried out to get the actual main branch. The performance of the proposed system was then evaluated using different evaluation metrics on the angiography images...
    corecore