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Abstract: X-ray angiography is considered the standard 

imaging sensory system for diagnosing coronary artery diseases. 

For automated, accurate diagnosis of such diseases, coronary 

vessels’ detection from the captured low quality and noisy 

angiography images is challenging. It is essential to detect the 

main branch of the coronary artery, to resolve such limitations 

along with the problems due to the sudden changes in the lumen 

diameter, and the abrupt changes in local artery direction. 

Accordingly, this paper solved these limitations by proposing a 

computer-aided detection system for the right coronary artery 

(RCA) extraction, where geometric shape features with catheter 

localization and geodesic distance transform in the angiography 

images through two parts. In part 1, the captured image was 

initially preprocessed for contrast enhancement using singular 

value decomposition-based contrast adjustment, followed by 

generating the vesselness map using Jerman filter, and for 

further segmentation the K-means was introduced. Afterward, in 

part 2, the geometric shape features of the RCA, as well as the 

skeleton gradient transform, and the start/end points were 

determined to extract the main blood vessel of the RCA. The 

analysis of the skeletonize image was performed using Geodesic 

distance transform to examine all branches starting from the 

predetermined start point and cover the branching till the 

predefined end points. A ranking matrix, and the inverse of 

skeletonization were finally carried out to get the actual main 

branch. The performance of the proposed system was then 

evaluated using different evaluation metrics on the angiography 

images. The results validated the dominance of the suggested 

system for extracting the main vessel achieving Dice values 

improvements within the range 2% - 30% compared to using the 

traditional methods. 

Keywords: Angiography, right coronary artery, vessel 

segmentation, geometric shape features extraction, skeleton 

gradient transform, Geodesic distance transform 

I. INTRODUCTION 

In cardiovascular analysis, fast and accurate allocation of 

the arterial main branch is considered an essential prerequisite 

for further diagnostic procedures, including feature-based 

classification or registration as well as for the three-

dimensional reconstruction of the coronary artery (CA). 

Automated computer-aided diagnosis system in cardiovascular 

analysis-based cardiovascular examinations has a valuable 

impact on the speed and precision of diagnosing CA diseases. 

Segmentation, detection, and visualization of the vessels in the 

coronary artery angiography (CAA) images assist the 

physicians to diagnose cerebrovascular/cardiovascular 

diseases. In practice, treatment requires diagnosis which in 

turn needs analysis and judgement on the CAA images by 

extracting initially the central-line and the main branch of CA 

[1]. 

For detecting the main branch, direct investigative 

center/main-line detection or pixel-based segmentation can be 

applied to yield an independent representation of the 

background and the foreground. Several vessel’s feature 

extraction techniques, including pixel classification 

techniques, hysteresis thresholding, and eigenvalues of 

Hessian matrix (HM) have been implemented [2, 3]. However, 

in the existence of non-uniform illumination, such techniques 

provide disparate pixels’ clusters rather than single connected 

arterial branch for further tracing the main branch by direct 

extraction of the features of interest using sequential search 

through exploring the pixels located close to the vasculature of 

the arterial segments. Typically, CA vascular extraction can be 

performed using edge-/region-based segmentation procedures. 

Various studies have been conducted for center-line 

extraction of the CA based on dynamic search, nevertheless, 

such techniques take long time, which does not meet the 

clinical real-time requirements. Other limitations include the 

complex structure of the CA, and the uneven gray-scale 

distribution of CAA images that complicate the center-line 

extraction of the CA vessels [4]. Generally, the centerline of 

the CA vessel looks like a ridge-line collecting series of ridge 

points representing the local extrema points of the pixels’ 

brightness in an image at a certain direction. In the CAA 

images, such centerline exists like gray extreme values of the 

perpendicular vessel’s direction. To detect such ridge points, 

the image’s gradient and the HM can be calculated [5]. Also, 

HM has been used to evaluate the blood vessels’ 

characteristics with a multiscale vessel enhancement filtering 

for CA extraction [6]. In addition, tracing the ridge-points in 

the multi-scale space of the CAA images has been conducted 

for extracting the center-line of the CA by identifying the 

primary seed points by applying the gradient vector flow field 

with fast marching schemes [7]. Besides, there are some 

techniques introduce a new post processing stage for HM’s 

response for better and accurate results while identifying the 

vessel tree like connectivity filter [8]. However, other 

techniques depend on fine tuning parameters for vesselness 

filter [9, 10]. 
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II. RELATED WORK 

 The preceding reported techniques in the Introduction 

section concluded that no methods can be conducted to 

compute accurately the distal regions of the CA centerlines 

owing to the calcification and narrowing of the blood vessels 

in the CA. The performance of such detection methods varies 

in consistent with their parameters’ values. Furthermore, 

several existing schemes ignore the effect of the vessels’ 

shape, which provides significant information for medical 

diagnosis.  

Several studies have been caried out for vessels 

segmentation in angiograms. For example, Dehkordi et al. [11] 

implemented a local feature fitting energy with active contour 

(AC) in [11] based on the HM enriched with information about 

pixel energy level while choosing the domain  subset for AC 

processing to extract the whole vessel tree. The findings 

indicated the robustness of this model to various initial 

contours, however, it suffers from the limitations of the AC. 

In contrast, low contrast X-ray angiogram images have been 

segmented by combining HM with flux flow measuring to 

identify vessel pixels as designed in [12] with accuracy of 96% 

for major vessels segmentation. Other study by Hernandez-

Vela et al. [13] has been realized using the main shape features 

for CA to identify the vesselness tree. It identified the main 

seed points which have the maximum vesselness response and 

start to search for the paths between the seed points to format 

the vessel tree. However, this method suffers from the high 

computational time requirements.  

To overwhelm these shortcomings, the proposed system 

develops a fast and accurate center-line extraction based on the 

catheter localization with vessel geometric shape features 

extraction for right coronary artery (RCA) detection. This 

paper targets solving the problem of main branch extraction by 

proposing a novel automatic tracking system-based vessel 

extraction method that detects the RCA using vessel geometric 

shape features. In this proposed system, a searching method is 

applied to calculate geometric shape features for each vessel 

starting from predefined point. In addition, a skeleton method 

is used with the segmented image to determine the existing 

branches based on their characteristics for final determination 

of the main artery branch.  

The organization of the coming sections includes the 

procedure of the proposed system, followed by the 

experimental results with discussion. Then, finally, the 

conclusion of the conducted work is summarized in the 

conclusion section.   

III. METHODOLOGY  

In this paper, a new automated tracking system was 

proposed for detecting the RCA blood vessel based on vessel 

geometric shape features. In the proposed system, each 

vessel’s profile was determined followed by a searching 

algorithm to find the fitted branch that has the matched 

geometric shape features with the blood vessel features. 

Initially, a starting point was defined by searching for the 

catheter location on the original CAA image, which 

automatically leads to the vessel start point. The skeletonized 

image version was also computed from the segmented image 

which is analyzed to examine all branches starting from pre-

determined start point till all available ends and branching 

points. During the branching scan process, branch 

characteristics are being determined, including branch length, 

diameter, and distance from a reference point. Finally, a 

decision making was evaluated using the ranking of these 

characteristics leading to the main artery branch of interested.  

In the proposed system, before extracting the main RCA, 

which is the main objective of this paper, other stages were 

applied as in [10], namely (Part 1): i) preprocessing using 

singular value decomposition- based contrast adjustment 

(SVD), ii) generating the vesselness map using Jerman filter 

[14], and iii) segmentation using K-means to extract artery 

vessels from the enhanced low contrast CAA images (refer to 

[10, 14] for the mathematical details on theses sequential 

stages). These stages were then followed by the main stages of 

the proposed system to extract the main RCA branch using the 

geometric shape features, which are (Part 2): a) skeletonization, 

b) start points determination, c) geometric shape features 

extraction, and d) main branch selection. Figure 1 illustrates 

the general stages of the overall proposed system. 

Figure 1 demonstrates that the overall proposed system 

includes two parts. In Part 1, a preprocessing stage to separate 

the vessels and the background was applied as the angiography 

images have low contrast value using contrast adjustment 

using SVD, and equalization using contrast-limited adaptive 

histogram equalization (CLAHE), followed by smoothing 

using guided filter that preserve the sharp boundaries, and 

histogram stretching. Afterward, the vesselness map was 

generated based on multiscale analysis by convolving the 

original image with a Gaussian filter, then the HM was 

measured at each point [10]. The HM provides information of 

the direction of vessels to ensure the continuity of main pixels 

on the blood vessels and their neighbors. Jerman [14] filter is 

based on HM that offered a robust vesselness to bifurcations. 

After generating the vesselness map, the K-means was 

conducted for segmentation. The segmented image contains all 

segmented vessels, while the X-ray angiography examination 

is only interested on the stenosis at main arteries with ignoring 

all other branches, so the proposed stages in “Part 2” are 

introduced to select main artery from all segmented vessels as 

described in detail as follows. 

A. Main artery extraction 

1) Geometric Shape Features 

By visual inspection of the RCA images in the used dataset 

and compare the characteristics of the main artery “RCA” to 

surrounding vessels, it is found that the RCA has two main 

characteristics, namely the longest length, and the largest 

diameter (width). 

 
Figure 1. Stages of the overall proposed system. 
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Moreover, its end point is the closest point to the lower-

right corner as well-known clinically, where the stent is 

attached only to main arteries. Thus, any used segmentation 

method of the angiography images must have capabilities to 

extract the main vessel and ignore other vessels. The proposed 

system provides a generic way to extract main artery from any 

image based on its main features using the following stages. 

2) Skeletonization 

Since it is inexpedient to deal with the segmented image 

directly for detecting and objects having specific 

characteristics, conversion must be taken place to facilitate a 

searching stage based on these specific geometric shape 

features in terms of the computational and complexity 

prospective. As the geometric shape features of the RCA 

includes its longest length, and largest diameter (width) 

compared to its surrounding vessels, the skeletonization is 

applied in the proposed system. Generally, the skeletonization 

is used for limiting the foreground regions to a skeletal trace 

which mainly conserves the extent/connectivity of the original 

region with discarding most of the original foreground pixels. 

The most reliable skeletonization technique, the most 

consistent and precise results can provide. 

In the proposed system, a skeleton gradient transform (SGT) 

was applied before using the standard skeletonization for better 

skeletonization results. The SGT provides a transient image 

based on the intensity of each pixel/point on the vessel that is 

proportional to the degree of evidence being a point on the 

skeleton. The first step to calculate SGT image is to define the 

junction points in the image. Each point of the image is 

examined using weighted matrix P and calculate the 

neighborhood joint W which is given by: 

𝑊(𝑥,𝑦) = (
𝑖(𝑥−1,𝑦−1)

𝑖(𝑥,𝑦−1)

𝑖(𝑥−1,𝑦)

𝑖(𝑥,𝑦)
) .∗ 𝑃 (1) 

where 𝑃 = (
1    8
2    4

) as the values of the weighted matrix 𝑃 is 

chosen to describe the number and position of neighbors for a 

specific pixel point 𝑖(𝑥,𝑦), i.e., if the  𝑊(𝑥,𝑦) equal to 15, this 

means pixel value  𝑖(𝑥,𝑦) is 1 and has three neighbors and if the 

𝑊(𝑥,𝑦) equal to 10, this means pixel value 𝑖(𝑥,𝑦) is zero and has 

two neighbors.  Any pixel 𝑖(𝑥,𝑦) has 𝑊(𝑥,𝑦) not equal to zero 

(has no neighbor and its value is zero) or 15 (by considering 

three neighbors and its value is 1) is considered as a junction 

point 𝐽(𝑥,𝑦). Junction points are scanned based on clockwise 

direction and label each junction point with its rank across 

edge 𝐽𝑅(𝑥,𝑦)  where the first junction point will have rank 

equal 1 then second one will have rank equal 2 and so on till 

scan all junction points. Total count of junction points presents 

the perimeter of the edge 𝐸𝑑𝑔𝐿𝑒𝑛, which is expressed as 

follows: 

𝐸𝑑𝑔𝐿𝑒𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐽𝑖) (2) 

The second stage before generating the SGT version is to 

find the minimum distance 𝑑𝑚𝑖𝑛  for each true pixel point 

(𝐼(𝑥,𝑦) = 1) and any junction points for 4 directions, namely 

North-EAST "𝑁𝐸", North-West "𝑁𝑊", South-East"𝑆𝐸", and 

South-West "𝑆𝑊". Therefore, the minimum distance can be 

formulated as follows: 

𝑑𝑚𝑖𝑛 = min (∀𝑗𝑛𝑥,𝑗𝑛𝑦𝑑𝑖𝑠𝑡𝐷𝑖𝑟((𝑥, 𝑦), (𝑗𝑥`, 𝑗𝑦`))) (3) 

where the distance at the different directions can be 

calculated as follows:   

𝑑𝑖𝑠𝑡𝐷𝑖𝑟 = (𝑥 − 𝑗𝑥`)2 + (𝑦 − 𝑗𝑦`)2 

𝑓𝑜𝑟𝐷𝑖𝑟 = 𝑁𝐸 → 𝑗𝑥` = 𝑗𝑥𝑎𝑛𝑑𝑗𝑦` = 𝑗𝑦 

𝑓𝑜𝑟𝐷𝑖𝑟 = 𝑁𝑊 → 𝑗𝑥` = 𝑗𝑥𝑎𝑛𝑑𝑗𝑦` = 𝑗𝑦 + 1 

𝑓𝑜𝑟𝐷𝑖𝑟 = 𝑆𝐸 → 𝑗𝑥` = 𝑗𝑥 + 1𝑎𝑛𝑑𝑗𝑦` = 𝑗𝑦 

𝑓𝑜𝑟𝐷𝑖𝑟 = 𝑆𝑊 → 𝑗𝑥` = 𝑗𝑥 + 1𝑎𝑛𝑑𝑗𝑦` = 𝑗𝑦 + 1 

(4) 

The rank for each junction points that presenting the 

minimum distance at a specific direction 

𝐽𝑅(𝑥,𝑦)(𝑁𝐸, 𝑁𝑊, 𝑆𝐸, 𝑆𝑊)  is calculated. From these ranks, the 

largest perimeter span 𝐿𝑃𝑆(𝑥,𝑦)can be easily premeditated by 

ordering these ranks and subtract the first and last one. For 

each true pixel point, the final SGT can be determined by 

subtracting the edge perimeter 𝐸𝑑𝑔𝐿𝑒𝑛 from its largest 

perimeter span using the following formula: 

𝑆𝐺𝑇(𝑥, 𝑦) = 𝐸𝑑𝑔𝐿𝑒𝑛 − 𝐿𝑃𝑆(𝑥, 𝑦) (5) 

The final stage to generate the accurate skeleton version is to 

apply a standard skeletonization method [15] on the generated SGT 

version. From the skeleton version, it is very easy to determine the 

branching and end point for future searching steps. 

3) Vessel start-point determination 

To facilities the searching process of the main RCA with 

reducing the computational time, the proposed system applied 

a strategy to determine one of the start or end point of the 

detected vessel that matches the geometric shape features. 

Since the catheter is always sited at the upper-center section of 

the angiography image, it is used to represent the starting point 

of the main artery as it is responsible for the pushing agent 

while recording the images. Accordingly, determining the 

location of the catheter can figure out the location of the 

starting point of the main RCA. The proposed system uses the 

cross-correlation [16] between the segmented image and a 

template image that shows a sample version of catheter. The 

template image of the catheter can be easily constructed by 

cropping it from any ground truth image. The location of the 

catheter can be located by looking for the region having the 

highest correlation value compared to the template, where the 

correlation coefficient is calculated using the following 

expression [16]: 

𝐶𝐶(𝑢, 𝑣) =
∑ [𝑥,𝑦 𝑖𝑚(𝑥, 𝑦) − 𝑖𝑚

−

𝑢,𝑣][𝑇𝑀(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑇𝑀
−

]

{ ∑ [𝑥,𝑦 𝑖𝑚(𝑥, 𝑦) − 𝑖𝑚
−

𝑢,𝑣]2 ∑ [𝑥,𝑦 𝑇𝑀(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑇𝑀
−

]2}0.5 }
 (6) 

where, im  and 𝑇𝑀 are the original and template images, 

respectively, 𝑇𝑀
−

 is the mean of the template and 𝑖𝑚𝑢,𝑣

−

 is the 

mean of 𝑖𝑚(𝑥,𝑦)  in the region under the template. 

To provide the accurate position of the catheter at the upper 

part of the image, the normalized two-dimensional cross-

3

Hawas: Extraction of Blood Vessels Geometric Shape Features with Cathete

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/


Journal of Engineering Research (ERJ) 

Vol. 7 – No. 1, 2023 

©Tanta University, Faculty of Engineering 

ISSN: 2356-9441                                                                 https://erjeng.journals.ekb.eg/                                                                      e ISSN: 2735-4873 

 

 
DOI: 10.21608/ERJENG.2023.195817.1157 

   165 

correlation that was calculated [16], is leading to the region 

that has the starting point of the main artery. Then, the 

Euclidean distance is calculated for each branching and end 

points. The closest point is considered the starting point. 

4) Geodesic distance transform and inverse skeletonization 

From the above stages, the skeletonized image version is 

computed from the segmented image and determined the 

starting point of the main branch. The final stage is to 

determine the end point based on the main branch geometric 

features (the longest, and largest branch). Then, an evaluation 

analysis is taken placed to evaluate all branches starting from 

predetermined start point to all end and branching points to 

conclude the main branch as follows. 

To enhance the performance and accuracy of the search 

procedure, a reference matrix "𝑅𝐸𝐹"  is created having the 

same size of the image and filled by zeros except the interested 

end point set to 1. Then, the geodesic distance transform [17] 

is computed from the segmented image (SI), and the seed 

positions specified by "𝑅𝐸𝐹", where the regions in SI having 

true values signify valid regions which could be traversed in 

the calculation of the distance transform. However, the regions 

in SI having false values characterize the constrained regions 

which could not be traversed. Every pixel has true value in SI, 

the geodesic distance transform [17] assigns a number 

referring to the constrained distance amongst that pixel and the 

nearest true pixel in "𝑅𝐸𝐹". Accordingly, the output matrix D 

containing geodesic distances can be represented as follows 

[17]: 

𝐷 = {
|𝑥1 − 𝑥2| + (√2 − 1)|𝑦1 − 𝑦2|,  |𝑥1 − 𝑥2| > |𝑦1 − 𝑦2|

(√2 − 1)|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
} (7) 

where 𝐷 is the distance between (𝑥1, 𝑦1)   and (𝑥2, 𝑦2). 

Then, the maximum distance of 𝐷 represents the longest 

path in the SI, so an automatic tracking is starting from start 

point towards the end point under the condition that the next 

point must have geodesic distance less than the current one till 

it reaches another endpoint. At this stage, the proposed system 

knows two important information regarding the CAA image, 

namely i) the number of branches, and ii) the exact skeleton 

points for each branch. Based on the number of points 

representing the branch’s skeleton, the proposed system can 

detect the longest branch which is one of RCA geometric shape 

features. 

To guarantee that the previous detected branch using the 

length as a geometric shape feature is the final main RCA, 

other remaining decision making based on the second 

geometric feature (i.e., the average diameter of a vessel) is 

required. Hence, to determine the vessel diameter at any point 

of the skeleton, initially the orientation of the object is 

determined under specific mask size [5*5], where the point of 

interest is located at the middle. By knowing the orientation of 

a specific point, the norm direction of this point is determined. 

Subsequently, a counter is proposed to count each pixel point 

that has value equal to 1 starting for the interested point till 

reach the boundary point on the segmented image on the norm 

direction as well as for the opposite direction, which will 

signify the diameter vessel at this point. During scanning the 

detected branches, the geometric shape features characteristics 

are determined (i.e., branch length, diameter, and distance 

from a reference point local near the lower right corner). The 

final selection of the main branch is based on a proposed 

ranking equation for these features.  

All branches are being sorted ascendingly based on each 

geometric shape features (i.e. length, diameter and distance 

from a reference point). For example, the shortest branch will 

assign to rank number 1, while the longest one will have the 

highest rank based on the number of branches are being 

evaluated. The same is followed in terms of the diameter, and 

distance from a reference point. The decision making DM is 

then evaluated using the ranking of the geometric shape 

features of the branch to finally conclude the main artery 

branch (i.e. RCA), which physician is interested based on the 

value of 𝐷𝑀as follows: 

𝐷𝑀 = 𝑚𝑎𝑥( ∀(
𝐿𝑒𝑛𝑅𝑛 ∗ 𝐷𝑖𝑎𝑅𝑛

𝐷𝑖𝑠𝑅𝑛

) (8) 

where 𝐿𝑒𝑛𝑅𝑛 is the length rank, 𝐷𝑖𝑎𝑅𝑛 is the diameter rank, 

and 𝐷𝑖𝑠𝑅𝑛 is the reference distance rank. The branch with the 

maximum 𝐷𝑀 is being selected as the main branch that 

represents the main artery branch. 

B. Performance evaluation metrics of proposed system 

Numerous quantitative metrics are calculated to evaluate 

the performance of the proposed vesselness segmentation 

methodology, namely Jaccard index (JAC), Dice coefficient, 

sensitivity, specificity, and accuracy, which are defined as 

follows [18]. The JAC is a statistical metric that compares the 

diversity between sample sets as follows: 

𝐽𝐴𝐶(𝑂, 𝑇) =  
𝐴𝑂 ∩  𝐴𝑇

𝐴𝑂 ∪  𝐴𝑇

 (9) 

where ∩ and ∪  are the intersection and union of two sets, 

correspondingly, in addition, 𝐴𝑜  and 𝐴𝑇   are the segmented, 

and the ground-truth images enclosed by the boundaries 𝑂 and 

𝑇; respectively. The value of 1 specifies complete similarity, 

while JAC value of 0 specifies no similarity. In addition, 

the Dice index (F1-score) is measured to compare the 

similarity of any two sets, which is given as follows for two 

sets  𝑂 and 𝑇: 

 𝐷𝐼𝐶(𝑂, 𝑇) =  
2 |𝐴𝑂 ∩  𝐴𝑇|

|𝐴𝑂 | + |𝐴𝑇|
 (10) 

Likewise, the sensitivity, specificity, and accuracy are 

associated to the recognition of the main branch. The 

sensitivity designates the true positive rate viewing the success 

of the proposed system to predict the main branch, which is 

stated as follows: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
 |𝑇𝑃|

|𝑇𝑃| +  |𝐹𝑁|
 (11) 

where TP  is true positives and FN  is false negatives. The 

specificity designates the true negative rate viewing the ability 

of the proposed system to predict the other regions as follows:  

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
 |𝑇𝑁|

|𝑇𝑁| +  |𝐹𝑃|
 (12) 
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where TN  is true negatives and FP  is false positives. The 

accuracy is the true results proportion either positive or 

negative that measures the reliability degree of a diagnostic 

test using the following formula: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
 |𝑇𝑃| +  |𝑇𝑁|

 |𝑇𝑃| +  |𝑇𝑁| +  |𝐹𝑃| +  |𝐹𝑁|
 (13) 

IV. RESULTS AND DISCUSSION 

C. Dataset Acquisition 

X-ray angiography images were acquired during 

cardiology catheter examination on 200 patients in OM EL-

Kore Cardiac Center, Tanta, ElGharbia, Egypt, which is 

described in detail in [10]. The ground-truth images were 

labeled by an expert, where, in this work, we detected the main 

branch of the RCA view. Figure 2 shows samples of the 

original images of the RCA X-ray angiogram images in the 

RCA view, and the corresponding ground-truth images, in the 

upper, and lower row, respectively. 

 

   

   

Figure 2. Samples of the original images, and their ground-truth images, 

in the upper, and lower row, respectively. 

D. Results of proposed system: Part 1 

As previously explained in the Methodology section, the 

proposed system in Part 1 has 3 main stages/modules. The 

results of each stage in Part 1 are demonstrated and discussed 

as follows.  

1) Results of preprocessing stage  

Firstly, the original image passed through the 

preprocessing stage. Figure 3 illustrates the more brightness 

added to the image especially at the left upper corner after 

contrast adjust without effect any other information related to 

the image. 

Figure 3 illustrates that the contrast of the image is 

enhanced using the SVD. Then, this enhanced image is passed 

through a histogram equalizer by applying the CLAHE method 

with its default parameters’ setting for the tile size of 8x8. In 

addition, the trial-and-error approach was followed to 

determine the clip limit value of 0.0047. Figure 4 shows the 

visual display of the resultant image after the histogram 

equalization process. 

Figure 4 demonstrates the contrast improvement with clear 

visibility of the arteries structure. The final preprocessing stage 

is to perform smoothing, and histogram stretching on the 

image illustrated in Fig. 5. 

Figure 5 proves that the image contrast is properly 

enhanced, and the main artery is completely visible after 

finalizing the whole preprocessing steps. 

 
 (a) 

 
(b) 

Figure 3. Result of contract adjustment using SVD, where (a) the 

original image, and (b) the image after SVD processing. 

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

  
Figure 4. Result of histogram equalizer using CLAHE, where (a) input 

image, (b) enhanced contrast image, (c) histogram of the input image, 

and (d) histogram of enhanced image. 

 
(a) 

 
(b) 

Figure 5. Result of preprocessing, where (a) output image of CLAHE, 

and (b) the final image after smoothing and histogram stretching. 

2) Results of vesselness map generation and segmentation 

stages 

The next stage is only concerned with segmentation of the 

main artery. Figure 6(a) shows the vesselness map response 

when using Jerman filter. The results show high sensitivity for 

any change on the spatial domain, where it can be considered 
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a strength point if it is combined with selective technique with 

high efficiency. Figure 6(b) shows the result after applying K-

means with initial cluster points [50 180] which represent 

displacement by 20% from zero value (near value for 

background) and from half gray scale value 127.5 (near value 

for foreground) respectively. 

Finally, a searching analysis is performed to extract the 

largest connected component to be used for the next stage as 

shown in Fig. 7. Figure 7 demonstrates that the segmented 

regions include too many small vessels that are not interested 

based on physician advice. So, in the next stage the proposed 

technique tries to eliminate these unwanted branches plus 

extract only main vessel by applying part 2 of the proposed 

system.   

 

 
(a) 

 
(b) 

Figure 6. Result of Jerman filer, where (a) vesselness map response, and 

(b) segmented object after using K-means. 

 

 

Figure 7. Segmentation results 

 

E. Results of proposed system: Part 2  

Generally, the main artery is noticeable by the naked eye; 

nevertheless, stenosis detection is a complicated and essential 

process for detecting and determining the oblique percentage 

for further diagnosis and treatment. It is required to determine 

the main branch and the diameter of the stenosis to choose the 

correct stent dimension for the patient automatically. Detecting 

and recognizing the main branch simplify and guide the 

stenosis calculations. In the present study, the angiography 

images are employed to detect the main RCA branch for 

precise computerized identification and clinical decision 

support.  

3) Results of Geodesic distance transform and skeletonization 

stage 

In part 2, the target is to extract the main vessel by 

performing deep analysis on the skeleton image. Before 

applying the standard skeletonization, there is an important 

mapping called SGT to be used instead of the segmented image 

for better skeletonization results. Figure 8 illustrates the 

difference between applying the standard skeletonization on 

the segmented image directly and applying the same technique 

on the SGT version of the image. 

Figure 8 (b) shows a very smooth version by removing very 

small branches that will cause unnecessary processing while 

searching for the main vessel compared to Fig. 8(a). Based on 

the skeleton image, it is easy to determine the end, and the 

branching points. The next stage is to determine the starting 

point based on the correlation between the upper part of the 

segmented image, and a predefined image for the stent as show 

in Fig. 9. Figure 9 depicts that the region with high correlation 

value enclosed the area containing the starting point of the 

main vessel. 

 

 
(a) 

 
(b) 

Figure 8. Results of applying standard skeletonization on: (a) the 

segmented image directly, and (b) the SGT image. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 9. Start point selection, where (a) Original image, (b) segmented 

image, (c) predefined stent image, (d) correlation result response, and (e) 

the area of high correlation value bounded in green box. 

4) Results of geometric shape features extraction and inverse 

skeletonization stages 

After determining the starting point, an extensive search 

analysis is conducted to find the main branch’s end point that 

matches the geometric shape features (i.e., longest length, 

largest diameter, and the nearest one to the lower center points). 

Once the ranking process is completed, the main branch is 

finally determined and the inverse skeletonization is being 
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performed to extract the main vessel as shown on Fig. 10 as 

standard stage call “skeleton gradient transform” (SGT) for 

accurate results. 

Figure 10 displays that this stage provides a transient image 

version based on the intensity at each point that is proportional 

to the degree of evidence that this should be a point on the 

skeleton. Figure 10 validates the recognition results using the 

proposed technique in comparison to the ground-truth images. 

In the Fig. 11(d), the detected boundaries are marked in blue, 

and the ground-truth results are in red.  

Figure 11 establishes that the detection results are 

accurately matched with the corresponding ground-truth. The 

proposed system is accurately detected the main branch 

regions even with different shapes and sizes.   
 

 
(a) 

 
(b) 

Figure 10.  Finding the main artery RCA, where (a) the detected path 

after performing ranking process and (b) segmented image after 

applying inverse skeleton process. 

F. Performance evaluation results  

Different assessment measurements were calculated for 

evaluating the execution of the proposed system and its ability 

for detecting the main RCA branch as reported in Table 1. 

Table 1 accounts the average values and the standard deviation 

(SD) of the assessment metrics of the proposed system after 

preprocessing using Jerman for skeletonization, and K-means 

for final extraction of the main branch of RCA. The 

comparative study in Table 1 compares the proposed system 

performance for detection with and without conducting the 

stage of main branch extraction over the dataset. 

Table 1 indicates that the proposed system provides a 

significant enhancement compared to the traditional methods. 

An improvement in the JAC average value by 25% was 

measured with accurate capability of the proposed system to 

detect the main RCA vessel. Also, the DSC and JAC values 

are less than SEN, SPEC and ACC values, where the interested 

object is very small compared with its background leading to 

high values for SEN, SPEC and ACC even if the system is 

inaccurate. 

Other comparative study using different combinations of 

the used vesselness and segmentation techniques in part 1 of 

the proposed system were conducted. Thus, the proposed 

system for extracting the main RCA vessel is also combined 

with other vesselness technique, such as Frangi with using the 

regional growing for segmentation to evaluate the system 

reliability across different techniques as reported in Table 2.  

Table 2 shows a major enhancement added for each method 

to detect only the main artery. The only exception is when 

using the Frangi with the regional growing as there is minor 

enhancement as the parameters used is optimized to generate 

only main artery only that is why there is no significant 

enhancement (the same results are presented in Fig. 12). 
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Figure 11. Final RCA main branch selection results, where (a) the 

original image ID number, (b) the original image, (c) the ground-truth 

image, and (d) the detected main branch using the proposed system. 

Table 1. The performance of segmentation using the proposed system 
with reference to ground-truth boundaries (average ± SD).  

Proposed 

system 
JAC DSC SEN SPEC ACC 

Part1 only 

 

49.87 
±14.72 

65.03±1
5.74 

87.68±1
7.04 

97.89±
1.32 

97.61±
1.49 

Part1 and 

part2 

75.26±5.

29 

85.78±3.

44 

87.99±7.

81 

99.63± 

0.2 

99.33±

0.14 

 

In Table 2, and Fig. 12, J stands for Jerman vesselness filter, 

F stands for Frangi vesselness filter, K stands for K-means 

segmentation, R stands for the regional growing segmentation, 

P1 stands for apply part1 only, P1P2 stands for apply part1 

then P2 in the proposed system. 
 

Table 2. Comparison of using part 2 for extracting the main branch with 
different vesselness and segmentation techniques in part 1 of the 

proposed system. 

Main RCA 

extraction 

system 

JAC DSC SEN SPEC ACC 

JKP1 50.46 65.58 87.65 98 97.72 

JKP1P2 75 85.61 88.01 99.62 99.33 

JRP1 11.78 20.2 99.27 75.82 76.36 

JRP1P2 39.08 51.78 67.27 97.93 97.21 

FKP1 44.96 61.14 54.78 99.59 98.58 

FKP1P2 52 67.06 55.69 99.85 98.74 

FRP1 57.9 71.6 73.3 99.3 98.6 

FRP1P2 61.07 73.76 66.15 99.82 98.94 
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Figure 12 Comparison of using part 2 for extracting the main branch 

with different vesselness and segmentation techniques in part 1 of the 

proposed system. 

Table 3. Numerical comparison of segmentation methods with the 
proposed system 

Ref. 
Used 

method 

Dice 

Score 
Accuracy Sensitivity Specificity 

Hernandez-

Vela, C. Gatta, 

et al.[13] 

Centerline 

with Graph 

Cut 

69.75 97.20 63.51 99.03 

Taghizadeh 

Dehkordi, 

A.M. Doost 

Hoseini, et 

al.[11] 

HM + 

Active 

contours 

68.50 96.91 67.88 98.41 

Felfelian, H.R. 

Fazlali, et 

al.[12] 

HM with 

Flux flow 
72.79 97.09 74.92 98.32 

Nasr-Esfahani, 

S. Samavi, et 

al.[19] 
CNN 75.62 97.27 79.35 98.91 

Nasr-Esfahani, 

N. Karimi, et 

al.[20] 
CNN 81.51 97.93 86.76 98.59 

Proposed 

system 

Geometric 

shape 

features 

85.78 99.33 87.99 99.63 

*The best results are in bold. 

G. Comparative study with state-of-the-art   

The proposed system is also evaluated against others state-

of-the-art (SOTA) for vessel extraction in X-ray angiograms 

[11-13]. In [11], active contour was applied on HM filter 

response, also in [12], the authors also applied hessian filter 

combined with flux flow results, while in [13] the graph cut 

and centerline for segmentation were applied. The proposed 

system is also evaluated in comparison with other SOTA that 

used deep learning networks, where for example [19] applied 

deep learning by using one conventional neural network 

(CNN), while [20, 21]  used two CNNs. the first stage for CNN 

is used to construct the vessel probability map based on local 

and global features then this probability map is combined with 

edge detection map to second CNN stage for vesselness 

detection.  

Table 3 indicates that the suggested system surpasses the 

other methods in terms of the segmentation metrics. It is 

notable that the exact recognition of the vessel parts by the 

proposed system leads to high Dice of 85.78%, which exceeds 

the 2nd best technique by variance about 4%. The sensitivity, 

and accuracy of the proposed system are 87.99%, and 99.33%, 

respectively, which outpaced the current SOTA by 

accomplishing almost 4% higher Dice. 

V. CONCLUSION 

Computer-assisted detection/segmentation of coronary 

arteries is exciting challenging process due to the low contrast 

and class mismatch of artifacts in X-ray angiographic images. 

Various studies have been conducted to solve these limitations. 

This study introduced a novel main artery detection system 

based on geometric shape features of the main artery in the X-

ray angiographies. In the proposed system, each vessel’s 

geometric features were determined then the perfect match 

vessel based on ranking equation is considered as the main 

artery. To speed up the searching computation, First, a starting 

point was defined by locating the catheter position on the 

segmented image. This will automatically lead to the starting 

point of the vessel.  

A skeletonized image version is also computed from the 

segmented image and analyzed to explore all branches starting 

from a given starting point to all available endpoints and 

branch points. During the scanning process, each vessel branch 

determines its properties such as junction length, diameter, and 

distance from the predefined point. Finally, decision-making 

was assessed using a ranking of features that led to major 

arterial branches of interest. The outcomes of the suggested 

system demonstrated its robustness to deal with any vesselness 

filter. The proposed system provides higher evaluation metrics 

than the traditional ways. These features manage the 

vesselness selection based on artery length, diameter and its 

position that achieved the highest JAC in the segmentation 

procedure. Five measurements were calculated for comparing 

the performing of the proposed method with other procedures. 

The findings demonstrated the dominance of the proposed 

system with an average 85.78% dice across the outcomes of 

other techniques with distinct sizes, shapes, and homogeneity 

of the main artery. 
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