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Abstract- Coronary arteries’ diseases are deliberated as one 

of the most common heart diseases leading to death worldwide. 

For their early detection, the X-ray angiography is uses as a 

benchmark imaging modality for diagnosis. The acquired X-ray 

angiography images usually suffer from low quality, and the 

presence of noise. Therefore, for developing a computer-aided 

diagnosis (CAD) system, vessel enhancement and segmentation 

play significant role. In this paper, an optimized adapted filter 

based on Frangi filter was proposed for superior segmentation of 

the angiography images using genetic algorithm (GA). The 

original angiography images were initially preprocessed to 

enhance their contrast followed by generating the vesselness map 

using the proposed optimized Frangi filter. Then, a segmentation 

technique was applied to extract only the main artery vessel. The 

experimental results on angiography images established the 

superiority of the vessel regions extraction showing 98.58% 

accuracy compared to the state-of-the-art.  

Keywords- Angiography; vessel segmentation; Frangi filter; 

genetic algorithm; stenosis.  

1. INTRODUCTION 

X-ray coronary angiogram is a gold standard in cardiology 

for evaluating/monitoring irregularities of the coronary artery. 

The main three coronary artery branches are left circumflex 

artery (LCX), the right coronary artery (RCA), and left anterior 

descending artery (LAD). Automated segmentation of 

coronary artery has a significant role in the development of 

CAD systems to support the recognition of coronary heart 

diseases. For medical image segmentation, a preprocessing 

phase is essential to improve the further stages and identify the 

tubular structures for efficient clinical practice on 

cardiovascular diseases. Several methods based on Frangi 

filter [1] and Hessian matrix have been applied for the 

enhancement for further segmentation and detection of the 

vessels in different medical applications [2, 3]. Likewise, Cui 

et al. [4] implemented a modified Frangi filter that multiplies 

an exponential term by the original Frangi filter to tackle the 

non-smoothness problem in the origin image and improve the 

identification of the targeted tubular structures from the nearby 

tissues. For coronary artery segmentation, Matthias et al. [5] 

designed an automated robust histogram-based threshold 

method to generate the vessel tree. In retinal images, Cervantes 

et al. [6] implemented a vessel segmentation scheme by fine 

tuning the different parameters using the genetic algorithms to 

achieve high quality of vessel segmentation. In coronary 

arteries in X-ray angiograms, Cruz-Aceves et al. [7] developed 

an automated segmentation using multiscale Gabor filter for 

vessel structures’ detection. In addition, Tenekeci et al. [8] 

determined the position of the vessel structure in the XCA 

image. The deteriorated performance of the different 

segmentation methods of the coronary artery’s vessels was due 

to different limitations including the calcified arteries, arteries 

narrowed/discontinues branches, leading to imprecise 

extraction of the vessels. However, the most popularly used 

vesselness measure includes Frangi filter, which approximates 

the vessel by a tubular structure [9]. 

From the preceding studies, Frangi filter is considered one 

of the most common filters with angiography images. This 

paper aims to enhance the performance of Frangi filter by 

proposing a vessel extraction model for detecting the RCA 

using optimized adaptive Frangi filter. To extract coronary 

arteries, the location of the stenosis starts from seed points in 

the region growing segmentation as offered in this paper. In 

this approach, the proposed vessel extraction model is divided 

into two stages, namely 1) determining the optimal parameters 

of the adaptive Frangi filter, and 2) applying the optimal 

parameters for vessel extraction. Accordingly, a new process 

was proposed to determine the lower and upper boundary for 

different parameters for speeding-up the searching process to 

obtain the optimal values.  

2. METHODOLOGY  

In this section, the details of the proposed system are 

demonstrated in Fig. 1 showing the complete flow of the 

proposed system, including two main modules, namely pre-

processing, and segmentation, respectively. In this paper, an 

optimized adaptive Frangi filter was proposed to detect the 

RCA vessel by finding the optimal values across the whole 

processes. The details of each module in the proposed method 

are defined in the following subsections, including contrast 

adjustment, and vesselness map. 

 

 
 

Figure 1. Block diagram of the proposed method of the main vessel 

extraction. 
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A. Preprocessing 

One of the most challenging limitations affecting the 

angiography images is their low contrast causing an obstacle 

to distinguish between the vessels and the background. So, the 

main objective of the preprocessing stage is to facilitate the 

segmentation process through enhancing the input image’s 

contrast without adding extra noise. The original image is 

passed through three main steps, namely: a) contrast 

adjustment, b) contrast equalization, and c) smoothing and 

histogram stretching as illustrated in Fig.1. Since the Singular 

Value Decomposition (SVD) [10] is one of the contrast 

adjustment techniques, which is used in the proposed system. 

It controls the determination of the chosen contrast level for 

enhancing the contrast based on the image itself. Improving 

the images’ contrast is significant, where the illumination has 

a great effect. In this paper, the SVD was applied, where a 

matrix signifying the SVD of any image can be formulated as 

follows [10]: 

( , , ) * *U S AI U S A    (1) 

where U, and A are square matrices, called hanger and aligner, 

respectively, also, S is a matrix of the singular terms along the 

diagonal that represents the image’s intensity information. 

Changing these singular terms modifies the image’s intensity 

profile that improves the equalization process. The resultant 

matrix of the SVD yields to the preferred singular terms as 

follows [11]:  

( 128,var 0)max( )

max( )

NS
F

S

 
   (2) 

where 𝑆𝑁(𝜇=128,𝑣𝑎𝑟=0) signifies the matrix of artificial 

intensity singular values. After applying the equalization steps, 

the equalized image is regenerated and expressed as follows:  

( , , ) * * .U S AI U S F A      (3) 

Then, the histogram equalization is performed using 

contrast-limited adaptive histogram equalization (CLAHE) 

method [12] to enhance the images having low contrast. It 

reduces the noise by handling small regions, called tiles, 

instead of the entire image. The histogram of the enhanced 

region is almost matches a specific histogram, so the adjacent 

tiles are then joint using bilinear interpolation for eliminating 

the boundaries. In homogeneous regions, the contrast can be 

restricted for avoiding noise amplification. The output image 

of the histogram equalizer is then processed using smoothing 

filter (guided filter) [13] to filter out the noise while keeping 

the boundaries of the sharp objects. The lower value at the 

generated guided image is limited by 90% of the 1st percentiles 

of the guided image. Finally, the image is stretched using the 

following formula [14]: 

𝑡ℎ𝑟 =  𝑝𝑟𝑐𝑡𝑖𝑙𝑒(𝐼𝑚, 1) ∗  0.9 

𝐼𝑚(𝐼𝑚 ≤ 𝑡ℎ𝑟) = 𝑡ℎ𝑟 

𝐼𝑚` =
𝐼𝑚 − 𝑡ℎ𝑟

max (𝐼𝑚)
 

(4) 

B. Segmentation based on Vesselness map 

The segmentation of the coronary artery is based on 

multiscale image analysis, which adds a new space to the 

original image. New versions of the image are produced based 

on a scale value and the original image [15] by convolving the 

original image Im ( , )org x y  with the Gaussian filter ( , )G x y

for representing the image at a definite scale  as follows:  

Im ( , ) Im ( , ) ( , )orgx y x y G x y          (5) 

where (x,y) is the pixel location,  is the convolution operator, 

and ( , )G x y
, which is given by: 

2 2

2

1 ( )
( , ) exp

22

x y
G x y





 


         (6) 

where  min max,...., }   , min and max are sets 

consistent with the approximate width of the smallest, and 

largest detected vessel, respectively. 

The main advantage of this new scale space is that second 

order derivative can be calculated directly from the 

convolution with derivatives of Gaussian. Thus, the Hessian 

matrix can be calculated at each point by [16]: 

 
2 2

2

2 2

2
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( , )
Im ( , ) Im ( , )
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Hu x y

x y x y

x y y

 



 

   
  

    
   
  

     

 (7) 

The Hessian matrix has two real eigenvalues 𝜆1 and 𝜆2 and 

two related eigenvectors e1 and e2. The relative and absolute 

magnitudes along with the signs of the eigenvalues describe 

the intensity’s local shape in the image. For angiography 

images, a pixel belonging to a vessel region is signified by 

black color, and its eigenvalues are closed to zero ( 𝜆1 =
0) with high  𝜆2 positive value, where (𝜆1 <  𝜆2). 

Frangi geometrically interprets the principal vessel curvatures 

from Hessian eigenvalues with providing vesselness measure. 

Two components are produced that describe object structures 

in the images:  

i) 
1 2/R   which is the blob-like structure measure, 

and 

ii) 2 2

1 2pS     which is second-order structure-ness 

measure, called the Frobenius norm of the Hessian 

matrix.  

These components were combined in a function to describe 

the vesselness as [1]: 

 

2

22

22 2

0 0

( , )
exp( )(1 exp( )) 0

2 2

b

if

V x y SR
if




 

 
 

  
    

 

 
(8) 

 

where   and K are tuned parameters that control the 

sensitivity of the filter to R and bS , respectively. Also, 

( , )V x y  becomes maximum only when the vessel’s width 

in pixel ( , )x y  counterparts an appropriate scale factor  

according to the multiscale concept. Therefore, for multi-scale 

vessel enhancement, V is calculated at different scales, 

afterward, the maximum value is considered. The filter’s final 

output can be given by: 

max ( , ) max ( ( , ))V x y V x y 
             (9) 
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For segmentation, Hessian matrix provides information 

related to the direction of optical flow through the objects, i.e. 

the vessels where e1 provides the direction of the potential 

linear structure, whereas e2 gives its normal direction. 

Consequently, the vessel direction information D
 can be 

represented as: 

20 0
( , )

1 .

if
D x y

e o w





 


      (10) 

At the location of the coronary artery stenosis, the filter 

response considerably decreases. Nevertheless, the direction 

matrix ensures the continuousness of the concerned pixels and 

their neighbors. To find proper vesselness map, Frangi is 

applied as it has high immunity to noise. Also, it is more robust 

for vessel detection. Hence, the output of the previous stage is 

passed through Frangi filter to obtain the vesselness map, 

which will be used on the segmentation process. Beginning 

from the highest scale of 
max  till 

min , the vesselness (V) and 

direction ( D
) features are calculated for each scale, and the 

maximum values are chosen across the multiscale version to 

construct the output image. Based on these multiscale 

geometrical and direction information, a robust multiscale 

region growing segmentation is introduced and applied by 

Kerkeni et al. [17] to track thin and wide vessels. For all pixels

( , )x y having any neighbors equal to 1, and 

( , ) (1 (( , ),( , )))n nV x y x y x y    , where   is a 

tunable parameter of the vesselness value required to grow the 

vessel area. For normalized vesselness value between [0, 1], 

the smaller vesselness value can cause over-growth of the 

vessel constituency, although the biggest one limits the 

extension of these points. Then, ( , ) 1segI x y  , where 
  is 

the correlation between the two pixels originations, which is 

given by: 
( , ). ( , )

(( , ), ( , ))
( , ) ( , )

n n
n n

n n

D x y D x y
x y x y

D x y D x y

 


 

   (11) 

where (( , ), ( , ))n nx y x y has value close to one when 

these two local directions are parallel. The vessel segmentation 

result is incredibly increased due to use a combination between 

the vesselness response, and the vessel direction information. 

Thus, neighbors showing directions close to the seed point 

direction even if their vesselness responses are less than an 

assumed threshold (  ). This assists the segmentation 

continuity lengthwise the artery direction as well as diminishes 

the number of broken branches. Then, a region growing 

procedure is performed to determine the initial seed points of 

the regional growing process, where top pixels with the highest 

Frangi vesselness response are selected. Some top pixels are 

being ignored based on the predefine spacing Euclidean 

distance (Ed) threshold as these points are already neighbor of 

selected seed points that will increase our system performance. 

Finally, the component analysis is executed to extract the 

largest object representing the RoI. 

From the previous analysis, there are several tunable 

parameters that have direct effect on the vessel segmentation 

results. To determine the weight and effect for each parameter 

a try and error mechanism was carried out to select the main 

parameters to be tuned using the GA optimization technique. 

Hence, the proposed system aims to get the optimal values for 

the tunable parameters, which increase the credibility of the 

proposed segmentation system to deal with different types, and 

shapes of arteries. Six parameters were selected for further 

tuning, namely the three sigma parameters min max step    

are selected as they control the vesselness response based on 

artery size, along with tuning the regional growing process by 

adjusting the best value for   as well as the number of seeds 

points (Ns), and the log distance. Such parameters are selected 

for further tuning, as a small number of points leads to 

deteriorated segmentation results, and a large number of initial 

seed points leads to over segmentation.  

Therefore, the proposed method provided a reliable way to 

search for the most suitable values using the GA. Initially, the 

exact boundary ranges for each of these tunable parameters 

were determined to speed the optimization process. Typically, 

unsuitable setting of
min max   leads to failure of the 

segmentation process, where very small 
min  leads to detecting 

very tiny vessels which are out of interest. Also, large value 

for 
max increases the boarder thickness of the vessel, which 

reduces the overall segmentation accuracy. Thus, 
min max   

were chosen according to the largest, and smallest vessel 

thickness. The lower and upper boundary limits were set 

according to the average of the minimum and maximum 

diameters for all ground-truth images. Consequently, we 

perform an extra step to know the range of the vessel thickness 

size in our dataset. The diameter of vessel was calculated based 

on sequence of morphological operations on the binary image 

as illustrated in Fig. 2. 

To compute the vessel radius, the central line of the vessel 

is determined, then the Euclidian distance is calculated 

between each point on it to the border line. Consequently, the 

Euclidean distance transform (EDT) of the inverse binary 

image was computed. The distance for all points related to the 

vessel are obtained to skeletonize the binary image for further 

use to mask the EDT image for obtaining an image with values 

only along the centerline of the vessel. This gives all the radii 

along the axis of the vessel. Finally, the minimum, and 

maximum radii are obtained, from which the diameters of the 

vessel are determined to be 2, and 26, respectively.  

 

 

Figure 2. Flow diagram to calculate the minimum and maximum vessel 

radius. 
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C. Genetic Algorithm Optimizer 

Once the boundaries of 
min max   were determined, 

step

range can also be set to the same range for the lower and upper 

boundaries with constrain that these values cannot exceed
max . 

In addition, the limiting value for   is [0:1], the number of 

seeds point is ranging [1:1000], and the log distance between 

each seed points is [0:10]. Figure 3 includes the flow diagram 

of the genetic algorithm procedure. The GA is accomplished 

using 5-fold cross-validation procedure to obtain the optimized 

values, and avoid any misleading values. Finally, the obtained 

optimal parameters’ values are correlated using simple 

mathematical function, such as the average, the median, or the 

best function for selecting the best set of values to be 

considered as the optimal values for the whole training set. 

 

 
 

Figure 3. GA optimization flow diagram. 

D. Performance evaluation metrics  

Numerous performance metrics can be computed for 

evaluating the proposed vesselness segmentation system, 

including the Jaccard index (JAC), Dice coefficient, sensitivity, 

specificity, and accuracy, which are defined as follows. The 

JAC compares the diversity between the samples using the 

following formula [18]: 

𝐽𝐴𝐶(𝑂, 𝑇) =  
𝐴𝑂 ∩  𝐴𝑇

𝐴𝑂 ∪  𝐴𝑇

 (12) 

where ∩  and ∪  are the intersection, and union of two sets, 

respectively, furthermore, 𝐴𝑜 and 𝐴𝑇  are the segmented and 

the reference images surrounded by the boundaries 𝑂 and 𝑇; 

respectively. Furthermore, the Dice index likens the similarity 

of two sets 𝑂 and 𝑇 [19] as follows: 

𝐷𝐼𝐶(𝑂, 𝑇) =  
2 |𝐴𝑂 ∩  𝐴𝑇|

|𝐴𝑂 | + |𝐴𝑇|
 (13) 

 

Additionally, the sensitivity, specificity, and accuracy are 

correlated to the recognition of the main branch, which are 

expressed as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
 |𝑇𝑃|

|𝑇𝑃| +  |𝐹𝑁|
 (14) 

where TP  is true positives, and FN  is false negatives. The 

specificity is expressed as follows:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
 |𝑇𝑁|

|𝑇𝑁| + |𝐹𝑃|
 (15) 

 

where TN  is true negatives, and FP  is false positives. The 

accuracy measures the dependability degree of a diagnostic 

test, which is given by [20]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
 |𝑇𝑃| +  |𝑇𝑁|

 |𝑇𝑃| + |𝑇𝑁| + |𝐹𝑃| + |𝐹𝑁|
 (16) 

  

3. RESULTS AND DISCUSSION 

A. Dataset Acquisition 

Clinical X-ray angiograms were attained during cardiac 

catheter checkups using PHILIPS INTEGRIS H50000 F 

system available at OM EL-Kore Cardiac Center, Tanta, 

ElGharbia, Egypt. The used dataset consists of X-ray 

angiogram images of RCA view for 200 patients, where each 

patient has about 30 significant images. Each image in the used 

dataset has a size of 512x512 in gray scale format. The ground-

truth images are manually labeled by an expert physician. 

Figure 4 illustrates sample images from the used dataset and 

their equivalent ground-truth images. 

B. Software Specifications 

An Intel CORE i7 processor running at 2.50GHz that has 

16.0 GB RAM with Windows version 10 was used to conduct 

the experiments. MATLAB 2016b software was used to 

implement and evaluate the proposed model. 

C. Proposed system evaluation results  

During the experimental results for evaluating the proposed 

system, we usedη= 0.5, and half the maximum Hessian norm 

for 0.5 || max( ( )) ||K H x . The GA is configured as shown 

in Table 1. In Table 1, the population’s initial range of the 

tuned parameters ofσ max represents the maximum artery’s 

radius found on the used dataset, while the range of 
min  was 

selected with a constrain that 
max  cannot be less than 

min . 

The convergence/iterative processes of the GA are shown in 

Fig. 5 illustrating the best/mean fitness values on the X-ray 

angiography training images.  
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(a) (b) (c) 

Figure 4. Sample of the used dataset including X-ray angiogram images 

in the RCA view, where (a) image ID, (b) original image, and (c) the 

corresponding ground-truth of each image. 

Table 1. Genetic algorithm configuration. 

Parameters/Function  Settings/Range 

max
 

 [1 - 13] 

min
 

[1 - 2] 

step   [2 - 5] 

  [0 - 1] 

N [1 – 500] 

Log distance (d) [0 - 10] 

Population Size 10 

Unlimited Stall Generation Limit 1e-4 

Tolerance value of Fitness Limit 1e-6 

Number of generations 50 

Fitness function 1-average(JAC) 

 

 

Figure 5. The best function value vs. the generation. 

Table 2 the optimal values calculated after performing the iterations of 

the GA. 

Function max
 min

 step
 

  N d 

Average 8.043 1.549 6.875 0.948 118.125 4.75 

Median 9.033 1.803 9.500 0.974 73 3 

Best 9.530 1.805 6.000 0.999 186 3 

 

 

Figure 6. Comparison between the calculated optimal values in terms of 

the evaluation metrics. 

 

In Fig. 5, the mean fitness indicates the average value of all 

fitness function’s output over one generation, and the best 

fitness is the best population in this generation, where we run 

the GA on the training images set to find the optimal values for 

all images dataset. After performing all GA iterations for 

training and validation tasks. The average, median, and best 

values are being calculated across all the obtained results. 

After applying the corresponding mathematical function, the 

calculated values are used to examine the performance across 

the whole dataset. The best values are considering the optimal 

value set for the whole dataset.   

From Table 2, the calculated values for 
min  are very close 

to each other, which are equivalent to the radius of the smallest 

detected vessel. Conversely, the other parameters have 

significant changes, which means each image can have its own 

optimal values, which inspired the proposed system to find the 

best values that fit the most number of images. A comparative 

study in terms of the evaluation metrics was conducted to show 

the effect of using the calculated parameters based on 

mathematical function for the whole dataset as shown on Fig. 

6. 

Regarding the JAC, the median values of the parameters 

have the highest dice and JAC values, median and best 

parameters have slightly equal evaluation values. The average 

parameters have higher sensitivity than using the best, and 

median parameters, but it has disadvantages of producing 

various false positives as proved by the low specificity, and 

accuracy values. Accordingly, Fig. 6 proved the efficiency of 

using the optimized median parameters for detecting the main 

coronary artery even though the existence of arteries of 

dissimilar shapes, sizes, and color in the presence of artifacts. 

From the above results and discussions, it is obvious that the 

median parameters values is the optimal set of values that 

perfect match the used dataset.  
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Figure 7 shows the detection outcomes related to the 

corresponding ground truth images.  Fig. 7(c), (d), and (e) 

show the marked detected boundaries in blue, while the 

ground-truth boundary in red. These visual results specify that 

the proposed model provides highly harmonized detected 

vessels with the ground-truth results. Fig. 7(c) displays that the 

detected boundaries are highly harmonized with the ground-

truth. 

Figure 7 proved that the efficiency of the proposed model 

using the optimized median parameters for detecting the main 

coronary artery regardless of the existence of arteries having 

unlike sizes, shapes, and color. From the above results and 

discussions, it is obvious that the median parameters’ values 

are the optimal set of values that provide perfect match to the 

used dataset. 

Further, the optimization approach using the median 

parameters is compared with designed system by Kerkeni et al. 

[17] using the parameters stated in its approach. In [17], the 

used maximum radius value was 
max  which in our case is 13, 

1 for 
min , four log spacing between 

max minand  , and 95% for 

 . Table 3 demonstrated that the tuned parameters are totally 

different from the proposed system by Kerkeni et al. [17], 

which means these parameters are based on the dataset under 

concern. 

From the previous experiments, any change of these six 

parameters will have a direct effect on the segmented results, 

leading to different evaluation metrics’ values.  The evaluation 

metrics are also calculated for Kerkeni et al. [17] technique 

using default parameters as shown in Table 4. 

 

S
_
0
3
3
_
0
5
_
S

i

lc
eN

o
-

0
2
3
.j

p
g
 

    

S
_
0
1
0
_
0
6
_
S

il

ce
N

o
-0

3
9
.j

p
g
 

    

(a) (b) (c) (d) (e) 

Figure 7. Proposed system detection results, where (a) image ID, (b) 

original image, (c) detection results using the median parameters, (d) 

detection results using the best parameters, and (e) detection results 

using the average parameters. 

Table 3. The optimal values of configured parameters by the proposed 

model compared with their corresponding parameters by Kerkeni et al. 

[17]. 

Method 
max

 min
 

step
 

  N d 

Kerkeni et al. [17]  13 1 4 0.95 150 5 

Proposed model  9.03 1.80 9.5 0.97 73 3 

Table 4. Comparison in terms of the evaluation metrics between the 

proposed model and using Kerkeni et al. [17] on our dataset.  

 

JAC DSC SEN SPEC ACC 

Proposed model  0.579 0.716 0.733 0.993 0.986 

Kerkeni et al. [17]  0.397 0.558 0.962 0.958 0.958 

 

Figure 8. Comparison between the proposed model and the method by 

Kerkeni et al. [17] using our dataset in terms of the performance 

evaluation metrics, where the ‘blue’ bars indicate the proposed model 

results, and the ‘orange’ bars indicate the results of the method in [17]. 

 

Figure 8 validated that the proposed optimization method 

is accurately detects the main artery for the various cases. The 

dominance of the proposed method is due to the use of the 

optimized parameters in the Frangi filter, and the regional 

growing method that reduced the indeterminacy. It is also 

illustrated the dominance of the proposed optimized system 

compared to using the default parameters by decreasing the 

indeterminate information more powerfully because of using 

optimized Frangi with regional growing. Typically, the 

sensitivity and specificity represent the presence ‘positive’ or 

absence ‘negative’ the disease.  

The sensitivity (true positive rate) refers to the probability 

of truly being positive, i.e. the probability of a branch being 

main coronary artery and it is actually main artery, while the 

specificity (true negative rate) refers to the probability of the 

detected branch to be truly being not a coronary artery. For all 

assessments and evaluations of the screening, and diagnostic, 

there is a trade-off between specificity and sensitivity, such 

that higher sensitivity means lower specificity and vice-versa. 

Since the main aim of the proposed model is detecting the 

coronary artery by searching only for main branch, the 

achieved accuracy and specificity values are superior to their 

corresponding ones using the model in [17]. Conversely, the 

model in [17] realized superior sensitivity compared to our 

proposed model, as reported in Table 4 and Fig. 8, as it 

concerned with detecting any minor branches as well. 

Typically, the proposed model searches only for the main 

branch, which is also proven with superior accuracy and 

specificity values compared to using the model in [17]. The 

comparative consequences of the evaluation metrics are 

illustrated in Fig. 9 using the proposed optimized parameters. 

Figure 9 illustrates the dominance of the proposed model 

in comparison with using default parameters. Table 4 shows 

the mean of different performance metrics over the whole 

dataset. The results verified the preeminence of the proposed 

system for detecting the main artery with 71.6% average Dice 

compared to the results of the other methods. 

4. CONCLUSION 

Coronary artery computerized detection/segmentation is an 

inspiring process due to the intra-class discrepancy of low 

contrast and the artifacts in the X-ray angiography images. 

Numerous studies have been carried out to resolve these trials. 

In this paper, a novel main artery segmentation system was 

realized based on optimizing the value of Frangi with regional 

growing method in the X-ray angiography images. 
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    (a)                       (b)                                 (c)                                         (d)  

Figure 9. The proposed system detection results, where: (a) image ID, 

(b) original image, (c) detection results using Median parameters, and 

(d) detection results using default parameters by Kerkeni et al. [17]. 

 

The results of the proposed system proved that the optimal 

values of three Sigma parameters 
min max step    are selected. 

These parameters control the vesselness response based on 

artery size according to the sigma that realized the highest JAC 

values (fitness function) throughout the GA optimization 

process. Five evaluation metrics were considered to compare 

the performance of the proposed system with other methods. 

The results proven the superiority of the proposed system with 

71.6% average Dice over the results of other methods at 

different size, shape and uniformity of the main artery. 
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