678 research outputs found

    Adaptive Multiscale Weighted Permutation Entropy for Rolling Bearing Fault Diagnosis

    Get PDF
    © 2020 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Bearing vibration signals contain non-linear and non-stationary features due to instantaneous variations in the operation of rotating machinery. It is important to characterize and analyze the complexity change of the bearing vibration signals so that bearing health conditions can be accurately identified. Entropy measures are non-linear indicators that are applicable to the time series complexity analysis for machine fault diagnosis. In this paper, an improved entropy measure, termed Adaptive Multiscale Weighted Permutation Entropy (AMWPE), is proposed. Then, a new rolling bearing fault diagnosis method is developed based on the AMWPE and multi-class SVM. For comparison, experimental bearing data are analyzed using the AMWPE, compared with the conventional entropy measures, where a multi-class SVM is adopted for fault type classification. Moreover, the robustness of different entropy measures is further studied for the analysis of noisy signals with various Signal-to-Noise Ratios (SNRs). The experimental results have demonstrated the effectiveness of the proposed method in fault diagnosis of rolling bearing under different fault types, severity degrees, and SNR levels.Peer reviewedFinal Accepted Versio

    Rolling bearing fault diagnosis by a novel fruit fly optimization algorithm optimized support vector machine

    Get PDF
    Based on the nonlinear and non-stationary characteristics of rotating machinery vibration, a FOA-SVM model is established by Fruit Fly Optimization Algorithm (FOA) and combining the Support Vector Machine (SVM) to realize the optimization of the SVM parameters. The mechanism of this model is imitating the foraging behavior of fruit flies. The smell concentration judgment value of the forage is used as the parameter to construct a proper fitness function in order to search the optimal SVM parameters. The FOA algorithm is proved to be convergence fast and accurately with global searching ability by optimizing the analog signal of rotating machinery fault. In order to improve the classification accuracy rate, built FOA-SVM model, and then to extract feature value for training and testing, so that it can recognize the fault rolling bearing and the degree of it. Analyze and diagnose actual signals, it prove the validity of the method, and the improved method had a good prospect for its application in rolling bearing diagnosis

    Multi-fault diagnosis for rolling element bearings based on intrinsic mode function screening and optimized least squares support vector machine

    Get PDF
    Multi-fault diagnosis of rolling element bearing is significant to avoid serious accidents and huge economic losses effectively. However, due to the vibration signal with the character of nonstationarity and nonlinearity, the detection, extraction and classification of the fault feature turn into a challenging task. This paper presents a novel method based on redundant second generation wavelet packet transform (RSGWPT), ensemble empirical mode decomposition (EEMD) and optimized least squares support vector machine (LSSVM) for fault diagnosis of rolling element bearings. Firstly, this method implements an analysis combining RSGWPT-EEMD to extract the crucial characteristics from the measured signal to identify the running state of rolling element bearings, the vibration signal is adaptively decomposed into a number of modified intrinsic mode functions (modified IMFs) by two step screening processes based on the energy ratio; secondly, the matrix is formed by different level modified IMFs and singular value decomposition (SVD) is used to decompose the matrix to obtain singular value as eigenvector; finally, singular values are input to LSSVM optimized by particle swarm optimization (PSO) in the feature space to specify the fault type. The effectiveness of the proposed multi-fault diagnosis technique is demonstrated by applying it to both simulated signals and practical bearing vibration signals under different conditions. The results show that the proposed method is effective for the condition monitoring and fault diagnosis of rolling element bearings

    A novel bearing multi-fault diagnosis approach based on weighted permutation entropy and an improved SVM ensemble classifier

    Get PDF
    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available

    Marine propulsion shaft system fault diagnosis method based on partly ensemble empirical mode decomposition and SVM

    Get PDF
    This paper investigates the application of the Partly Ensemble Empirical Mode Decomposition (PEEMD), Principal Component Analysis (PCA) and Support Vector Machine (SVM) on signal processing, attribute reduction and pattern recognition. On this basis, a novel method for mechanical faulty diagnosis based on PEEMD, PCA and SVM is presented, which utilizes the PEEMD to extract faulty feature parameters from the statistical characteristics of intrinsic mode functions to constitute feature vectors, and then makes the attribute reduction by PCA method to obtain the key features, lastly these key features are input into GA-optimized SVM to accomplish faulty pattern recognition. The experimental results of the proposed method to fault diagnosis of the rolling bearing and stern bearing on marine propulsion shaft system show that this method can extract the faulty features, which have better classification ability and at the same time reduce the computation complexity significantly, accordingly improve the classifier efficiency and achieve a better classification performance

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries

    Deep adversarial domain adaptation model for bearing fault diagnosis

    Get PDF
    Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge to ensure fault diagnosis accuracy in particular under severe working conditions. In this article, a deep adversarial domain adaptation (DADA) model is proposed for rolling bearing fault diagnosis. This model constructs an adversarial adaptation network to solve the commonly encountered problem in numerous real applications: the source domain and the target domain are inconsistent in their distribution. First, a deep stack autoencoder (DSAE) is combined with representative feature learning for dimensionality reduction, and such a combination provides an unsupervised learning method to effectively acquire fault features. Meanwhile, domain adaptation and recognition classification are implemented using a Softmax classifier to augment classification accuracy. Second, the effects of the number of hidden layers in the stack autoencoder network, the number of neurons in each hidden layer, and the hyperparameters of the proposed fault diagnosis algorithm are analyzed. Third, comprehensive analysis is performed on real data to validate the performance of the proposed method; the experimental results demonstrate that the new method outperforms the existing machine learning and deep learning methods, in terms of classification accuracy and generalization ability

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically
    corecore