4 research outputs found

    Interplay between multipole expansion of exchange interaction and Coulomb correlation of exciton in colloidal II-VI quantum dots

    Get PDF
    We study the effect of Coulomb correlation on the emission properties of the ground state exciton in zincblende CdSe/ZnS core-shell and in wurtzite ZnO quantum dots (QDs). We validate our theory model by comparing results of computed exciton energies of CdSe/ZnS QDs to photoluminescence and scanning near-field optical microscopy measurements. We use that to estimate the diameter of the QDs using a simple model based on infinitely deep quantum well and compare the results with the statistics of the atomic force microscopy scans of CdSe/ZnS dots, obtaining excellent agreement. Thereafter, we compute the energy fine structure of exciton, finding striking difference between properties of zincblende CdSe/ZnS and wurtzite ZnO dots. While in the former the fine structure is dominated by the dipole terms of the multipole expansion of the exchange interaction, in the latter system that is mostly influenced by Coulomb correlation. Furthermore, the correlation sizeably influences also the exciton binding energy and emission radiative rate in ZnO dots

    On the importance of antimony for temporal evolution of emission from self-assembled (InGa)(AsSb)/GaAs quantum dots on GaP(001)

    Get PDF
    Understanding the carrier dynamics of nanostructures is the key for development and optimization of novel semiconductor nano-devices. Here, we study the optical properties and carrier dynamics of (InGa)(AsSb)/GaAs/GaP quantum dots (QDs) by means of non-resonant energy and time-resolved photoluminescence depending on temperature. Studying this material system is fundamental in view of the ongoing implementation of such QDs for nano memory devices. The structures studied in this work include a single QD layer, QDs overgrown by a GaSb capping layer, and solely a GaAs quantum well, respectively. Theoretical analytical models allow to discern the common spectral features around the emission energy of 1.8 eV related to the GaAs quantum well and the GaP substrate. We observe type-I emission from QDs with recombination times between 2 ns and 10 ns, increasing towards lower energies. Moreover, based on the considerable tunability of the QDs depending on Sb incorporation, we suggest their utilization as quantum photonic sources embedded in complementary metal-oxide-semiconductor platforms, due to the feasibility of a nearly defect-free growth of GaP on Si. Finally, our analysis confirms the nature of the pumping power blue-shift of emission originating from the charged-background induced changes of the wavefunction spatial distribution

    Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots

    Get PDF
    We investigated metal-organic vapor phase epitaxy grown (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots (QDs) with potential applications in QD-Flash memories by cross-sectional scanning tunneling microscopy (X-STM) and atom probe tomography (APT). The combination of X-STM and APT is a very powerful approach to study semiconductor heterostructures with atomic resolution, which provides detailed structural and compositional information on the system. The rather small QDs are found to be of truncated pyramid shape with a very small top facet and occur in our sample with a very high density of ∼4 × 1011 cm−2. APT experiments revealed that the QDs are GaAs rich with smaller amounts of In and Sb. Finite element (FE) simulations are performed using structural data from X-STM to calculate the lattice constant and the outward relaxation of the cleaved surface. The composition of the QDs is estimated by combining the results from X-STM and the FE simulations, yielding ∼InxGa1 − xAs1 − ySby, where x = 0.25–0.30 and y = 0.10–0.15. Noticeably, the reported composition is in good agreement with the experimental results obtained by APT, previous optical, electrical, and theoretical analysis carried out on this material system. This confirms that the InGaSb and GaAs layers involved in the QD formation have strongly intermixed. A detailed analysis of the QD capping layer shows the segregation of Sb and In from the QD layer, where both APT and X-STM show that the Sb mainly resides outside the QDs proving that Sb has mainly acted as a surfactant during the dot formation. Our structural and compositional analysis provides a valuable insight into this novel QD system and a path for further growth optimization to improve the storage time of the QD-Flash memory devices

    Electroluminescence studies on longwavelength indium arsenide quantum dot microcavities grown on gallium arsenide

    Get PDF
    A comprehensive study of the electroluminescence of four GaAs/AlGaAs microcavity devices with InAs/GaInAs quantum dot active regions emitting near 1.3 µm was conducted. The four molecular beam epitaxial grown samples with AlAs oxide aperture confinement layers were fabricated, characterized, and optically modeled. Optical power transmission of the samples was modeled using Matlab and compared with measured transmission data. Resonant cavity light emitting diodes (RCLEDs) and three vertical cavity surface emitting laser (VCSEL) samples were fabricated and electro-optically characterized over a range of injection currents and temperatures. Devices achieved continuous wave room temperature lasing at 1.28 µm with an output power of more than 3 mW, a threshold current of 2.3 mA, and a slope efficiency of 10.3 W/A. The characteristic temperature was 49.4 K and the wall plug efficiency at was a maximum of over 36%. The minimum threshold current, 1.25 mA, was at a temperature of -10°C. The cavity resonance wavelength was tuned too short for the peak wavelength of the active region gain curve which limited the temperature at which the VCSELs produced lasing to about room temperature
    corecore