45,301 research outputs found

    Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range

    Get PDF
    Value-at-Risk (VaR) is commonly used for financial risk measurement. It has recently become even more important, especially during the 2008-09 global financial crisis. We propose some novel nonlinear threshold conditional autoregressive VaR (CAViar) models that incorporate intra-day price ranges. Model estimation and inference are performed using the Bayesian approach via the link with the Skewed-Laplace distribution. We examine how a range of risk models perform during the 2008-09 financial crisis, and evaluate how the crisis affects the performance of risk models via forecasting VaR. Empirical analysis is conducted on five Asia-Pacific Economic Cooperation stock market indices and two exchange rates????. We examine violation rates, back-testing criteria, market risk charges and quantile loss function to measure the forecasting performance of a variety of risk models. The proposed threshold CAViaR model, incorporating range information, is shown to forecast VaR more efficiently than other models, which should be useful for financial practitioners.Markov chain Monte Carlo;backtesting;Value-at-Risk;CAViaR model;Skewed-Laplace distribution;intra-day range

    Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range

    Get PDF
    Value-at-Risk (VaR) is commonly used for financial risk measurement. It has recently become even more important, especially during the 2008-09 global financial crisis. We propose some novel nonlinear threshold conditional autoregressive VaR (CAViaR) models that incorporate intra-day price ranges. Model estimation and inference are performed using the Bayesian approach via the link with the Skewed-Laplace distribution. We examine how a range of risk models perform during the 2008-09 financial crisis, and evaluate how the crisis affects the performance of risk models via forecasting VaR. Empirical analysis is conducted on five Asia-Pacific Economic Cooperation stock market indices as well as two exchange rate series. We examine violation rates, back-testing criteria, market risk charges and quantile loss function values to measure and assess the forecasting performance of a variety of risk models. The proposed threshold CAViaR model, incorporating range information, is shown to forecast VaR more efficiently than other models, across the series considered, which should be useful for financial practitioners.Value-at-Risk; CAViaR model; Skewed-Laplace distribution; intra-day range; backtesting; Markov chain Monte Carlo

    Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range

    Get PDF
    Value-at-Risk (VaR) is commonly used for financial risk measurement. It has recently become even more important, especially during the 2008-09 global financial crisis. We pro- pose some novel nonlinear threshold conditional autoregressive VaR (CAViaR) models that incorporate intra-day price ranges. Model estimation and inference are performed using the Bayesian approach via the link with the Skewed-Laplace distribution. We examine how a range of risk models perform during the 2008-09 financial crisis, and evaluate how the crisis aects the performance of risk models via forecasting VaR. Empirical analysis is conducted on five Asia-Pacific Economic Cooperation stock market indices as well as two exchange rate series. We examine violation rates, back-testing criteria, market risk charges and quantile loss function values to measure and assess the forecasting performance of a variety of risk models. The proposed threshold CAViaR model, incorporating range information, is shown to forecast VaR more eficiently than other models, across the series considered, which should be useful for financial practitioners.Value-at-Risk; CAViaR model; Skewed-Laplace distribution; intra-day range; backtesting, Markov chain Monte Carlo.

    Improving Long Term Stock Market Prediction with Text Analysis

    Get PDF
    The task of forecasting stock performance is well studied with clear monetary motivations for those wishing to invest. A large amount of research in the area of stock performance prediction has already been done, and multiple existing results have shown that data derived from textual sources related to the stock market can be successfully used towards forecasting. These existing approaches have mostly focused on short term forecasting, used relatively simple sentiment analysis techniques, or had little data available. In this thesis, we prepare over ten years worth of stock data and propose a solution which combines features from textual yearly and quarterly filings with fundamental factors for long term stock performance forecasting. Additionally, we develop a method of text feature extraction and apply feature selection aided by a novel evaluation function. We work with investment company Highstreet Inc. and create a set of models with our technique allowing us to compare the performance to their own models. Our results show that feature selection is able to greatly improve the validation and test performance when compared to baseline models. We also show that for 2015, our method produces models which perform comparably to Highstreet\u27s hand-made models while requiring no expert knowledge beyond data preparation, making the model an attractive aid for constructing investment portfolios. Highstreet has decided to continue to work with us on this research, and our machine learning models can potentially be used in actual portfolio selection in the near future

    Contagion as Domino Effect in Global Stock Markets

    Get PDF
    This paper shows that stock market contagion operates through a domino effect, where small crashes evolve into more severe crashes. Using a novel unifying framework we model the occurrence of local, regional and global crashes in terms of past occurrences of these different crashes and financial variables. We find convincing evidence that global crashes do not occur abruptly but are preceded by local and regional crashes. Additionally, interest rates, bond returns and volatility affect the probabilities of different crash types, indicating interdependence. We show that in forecasting global crashes our model outperforms a binomial model for global crashes only

    Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range

    Get PDF
    Value-at-Risk (VaR) is commonly used for financial risk measurement. It has recently become even more important, especially during the 2008-09 global financial crisis. We propose some novel nonlinear threshold conditional autoregressive VaR (CAViar) models that incorporate intra-day price ranges. Model estimation and inference are performed using the Bayesian approach via the link with the Skewed-Laplace distribution. We examine how a range of risk models perform during the 2008-09 financial crisis, and evaluate how the crisis affects the performance of risk models via forecasting VaR. Empirical analysis is conducted on five Asia-Pacific Economic Cooperation stock market indices and two exchange rates????. We examine violation rates, back-testing criteria, market risk charges and quantile loss function to measure the forecasting performance of a variety of risk models. The proposed threshold CAViaR model, incorporating range information, is shown to forecast VaR more efficiently than other models, which should be useful for financial practitioners

    Technical and Fundamental Features Analysis for Stock Market Prediction with Data Mining Methods

    Get PDF
    Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.154 - Katedra financívyhově

    Essays in financial forecasting

    Get PDF
    Forecasting is central to economic and financial decision-making. Government institutions and agents in the private sector often base their decisions on forecasts of financial and economic variables. Forecasting has therefore been a primary concern for practitioners and financial econometricians alike, and the relevant literature has witnessed a renaissance in recent years. This thesis contributes to this literature by investigating three topical issues related to financial and economic forecasting. The first chapter finds its rationale in the large literature suggesting that standard exchange rate models cannot outperform a random walk forecast and that the forward rate is not an optimal predictor of the spot rate. However, there is some evidence that the term structure of forward premia contains valuable information for forecasting future spot exchange rates and that exchange rate dynamics display nonlinearities. This chapter proposes a term-structure forecasting model of exchange rates based on a regime-switching vector equilibrium correction model which is novel in this context. Our model significantly outperforms both a random walk and, to a lesser extent, a linear term-structure vector equilibrium correction model for four major dollar exchange rates across a range of horizons. The second chapter proposes a vector equilibrium correction model of stock returns that exploits the information in the futures market, while also allowing for regime-switching behavior and international spillovers across stock market indices. Using data for three major stock market indices since 1989, we find that: (i) in sample, the model outperforms several alternative models on the basis of standard statistical criteria; (ii) in out-of-sample forecasting, the model does not produce significant gains in terms of point forecasts relative to more parsimonious alternative specifications, but it does so both in terms of market timing ability and in density forecasting performance. The importance of these gains is illustrated with a simple application to a risk management problem. The third chapter re-examines a major puzzle in international finance that is the inability of exchange rate models based on monetary fundamentals to produce better out-of-sample forecasts of the nominal exchange rate than a naive random walk. While prior research has generally evaluated exchange rate forecasts using conventional statistical measures of forecast accuracy, this chapter investigates whether there is any economic value to the predictive power of monetary fundamentals for the exchange rate. We estimate, using a framework that allows for parameter uncertainty, the economic and utility gains to an investor who manages her portfolio based on exchange rate forecasts from a monetary fundamentals model. In contrast to much previous research, we find that the economic value of the exchange rate forecasts implied by monetary fundamentals can be substantially greater than the economic value of forecasts obtained using a random walk across a range of horizons. In sum this thesis adds to the relevant literature on forecasting financial variables by providing insights and evidence to researchers and indicating potential avenues for futures research
    corecore