1,083 research outputs found

    Exploring the potential of 3D Zernike descriptors and SVM for protein\u2013protein interface prediction

    Get PDF
    Abstract Background The correct determination of protein–protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. Results In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein–Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). Conclusions The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class

    NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm

    Get PDF
    BACKGROUND: Protein palmitoylation, an essential and reversible post-translational modification (PTM), has been implicated in cellular dynamics and plasticity. Although numerous experimental studies have been performed to explore the molecular mechanisms underlying palmitoylation processes, the intrinsic feature of substrate specificity has remained elusive. Thus, computational approaches for palmitoylation prediction are much desirable for further experimental design. RESULTS: In this work, we present NBA-Palm, a novel computational method based on Naïve Bayes algorithm for prediction of palmitoylation site. The training data is curated from scientific literature (PubMed) and includes 245 palmitoylated sites from 105 distinct proteins after redundancy elimination. The proper window length for a potential palmitoylated peptide is optimized as six. To evaluate the prediction performance of NBA-Palm, 3-fold cross-validation, 8-fold cross-validation and Jack-Knife validation have been carried out. Prediction accuracies reach 85.79% for 3-fold cross-validation, 86.72% for 8-fold cross-validation and 86.74% for Jack-Knife validation. Two more algorithms, RBF network and support vector machine (SVM), also have been employed and compared with NBA-Palm. CONCLUSION: Taken together, our analyses demonstrate that NBA-Palm is a useful computational program that provides insights for further experimentation. The accuracy of NBA-Palm is comparable with our previously described tool CSS-Palm. The NBA-Palm is freely accessible from:

    Incorporating Distant Sequence Features and Radial Basis Function Networks to Identify Ubiquitin Conjugation Sites

    Get PDF
    Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are – E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (−20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features of Ub sites can improve predictive performance. Additionally, the independent test demonstrates that the proposed method can outperform other ubiquitylation prediction tools

    A Combination of Multilayer Perceptron, Radial Basis Function Artificial Neural Networks and Machine Learning Image Segmentation for the Dimension Reduction and the Prognosis Assessment of Diffuse Large B-Cell Lymphoma

    Get PDF
    The prognosis of diffuse large B-cell lymphoma (DLBCL) is heterogeneous. Therefore, we aimed to highlight predictive biomarkers. First, artificial intelligence was applied into a discovery series of gene expression of 414 patients (GSE10846). A dimension reduction algorithm aimed to correlate with the overall survival and other clinicopathological variables; and included a combination of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) artificial neural networks, gene-set enrichment analysis (GSEA), Cox regression and other machine learning and predictive analytics modeling [C5.0 algorithm, logistic regression, Bayesian Network, discriminant analysis, random trees, tree-AS, Chi-squared Automatic Interaction Detection CHAID tree, Quest, classification and regression (C&R) tree and neural net)]. From an initial 54,613 gene-probes, a set of 488 genes and a final set of 16 genes were defined. Secondly, two identified markers of the immune checkpoint, PD-L1 (CD274) and IKAROS (IKZF4), were validated in an independent series from Tokai University, and the immunohistochemical expression was quantified, using a machine-learning-based Weka segmentation. High PD-L1 associated with poor overall and progression-free survival, non-GCB phenotype, Epstein–Barr virus infection (EBER+), high RGS1 expression and several clinicopathological variables, such as high IPI and absence of clinical response. Conversely, high expression of IKAROS was associated with a good overall and progression-free survival, GCB phenotype and a positive clinical response to treatment. Finally, the set of 16 genes (PAF1, USP28, SORT1, MAP7D3, FITM2, CENPO, PRCC, ALDH6A1, CSNK2A1, TOR1AIP1, NUP98, UBE2H, UBXN7, SLC44A2, NR2C2AP and LETM1), in combination with PD-L1, IKAROS, BCL2, MYC, CD163 and TNFAIP8, predicted the survival outcome of DLBCL with an overall accuracy of 82.1%. In conclusion, building predictive models of DLBCL is a feasible analytical strategy

    Machine Learning based Protein Sequence to (un)Structure Mapping and Interaction Prediction

    Get PDF
    Proteins are the fundamental macromolecules within a cell that carry out most of the biological functions. The computational study of protein structure and its functions, using machine learning and data analytics, is elemental in advancing the life-science research due to the fast-growing biological data and the extensive complexities involved in their analyses towards discovering meaningful insights. Mapping of protein’s primary sequence is not only limited to its structure, we extend that to its disordered component known as Intrinsically Disordered Proteins or Regions in proteins (IDPs/IDRs), and hence the involved dynamics, which help us explain complex interaction within a cell that is otherwise obscured. The objective of this dissertation is to develop machine learning based effective tools to predict disordered protein, its properties and dynamics, and interaction paradigm by systematically mining and analyzing large-scale biological data. In this dissertation, we propose a robust framework to predict disordered proteins given only sequence information, using an optimized SVM with RBF kernel. Through appropriate reasoning, we highlight the structure-like behavior of IDPs in disease-associated complexes. Further, we develop a fast and effective predictor of Accessible Surface Area (ASA) of protein residues, a useful structural property that defines protein’s exposure to partners, using regularized regression with 3rd-degree polynomial kernel function and genetic algorithm. As a key outcome of this research, we then introduce a novel method to extract position specific energy (PSEE) of protein residues by modeling the pairwise thermodynamic interactions and hydrophobic effect. PSEE is found to be an effective feature in identifying the enthalpy-gain of the folded state of a protein and otherwise the neutral state of the unstructured proteins. Moreover, we study the peptide-protein transient interactions that involve the induced folding of short peptides through disorder-to-order conformational changes to bind to an appropriate partner. A suite of predictors is developed to identify the residue-patterns of Peptide-Recognition Domains from protein sequence that can recognize and bind to the peptide-motifs and phospho-peptides with post-translational-modifications (PTMs) of amino acid, responsible for critical human diseases, using the stacked generalization ensemble technique. The involved biologically relevant case-studies demonstrate possibilities of discovering new knowledge using the developed tools

    Prediction of DNA-Binding Proteins and their Binding Sites

    Get PDF
    DNA-binding proteins play an important role in various essential biological processes such as DNA replication, recombination, repair, gene transcription, and expression. The identification of DNA-binding proteins and the residues involved in the contacts is important for understanding the DNA-binding mechanism in proteins. Moreover, it has been reported in the literature that the mutations of some DNA-binding residues on proteins are associated with some diseases. The identification of these proteins and their binding mechanism generally require experimental techniques, which makes large scale study extremely difficult. Thus, the prediction of DNA-binding proteins and their binding sites from sequences alone is one of the most challenging problems in the field of genome annotation. Since the start of the human genome project, many attempts have been made to solve the problem with different approaches, but the accuracy of these methods is still not suitable to do large scale annotation of proteins. Rather than relying solely on the existing machine learning techniques, I sought to combine those using novel “stacking technique” and used the problem-specific architectures to solve the problem with better accuracy than the existing methods. This thesis presents a possible solution to the DNA-binding proteins prediction problem which performs better than the state-of-the-art approaches

    CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources

    Get PDF
    International audienceBACKGROUND: The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes) but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. DESCRIPTION: The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total). CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments). Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools"). The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. CONCLUSIONS: With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten

    Prediction of DNA-Binding Proteins and their Binding Sites

    Get PDF
    DNA-binding proteins play an important role in various essential biological processes such as DNA replication, recombination, repair, gene transcription, and expression. The identification of DNA-binding proteins and the residues involved in the contacts is important for understanding the DNA-binding mechanism in proteins. Moreover, it has been reported in the literature that the mutations of some DNA-binding residues on proteins are associated with some diseases. The identification of these proteins and their binding mechanism generally require experimental techniques, which makes large scale study extremely difficult. Thus, the prediction of DNA-binding proteins and their binding sites from sequences alone is one of the most challenging problems in the field of genome annotation. Since the start of the human genome project, many attempts have been made to solve the problem with different approaches, but the accuracy of these methods is still not suitable to do large scale annotation of proteins. Rather than relying solely on the existing machine learning techniques, I sought to combine those using novel “stacking technique” and used the problem-specific architectures to solve the problem with better accuracy than the existing methods. This thesis presents a possible solution to the DNA-binding proteins prediction problem which performs better than the state-of-the-art approaches

    High Expression of Caspase-8 Associated with Improved Survival in Diffuse Large B-Cell Lymphoma: Machine Learning and Artificial Neural Networks Analyses

    Get PDF
    High expression of the anti-apoptotic TNFAIP8 is associated with poor survival of the patients with diffuse large B-cell lymphoma (DLBCL), and one of the functions of TNFAIP8 is to inhibit the pro-apoptosis Caspase-8. We aimed to analyze the immunohistochemical expression of Caspase-8 (active subunit p18; CASP8) in a series of 97 cases of DLBCL from Tokai University Hospital, and to correlate with other Caspase-8 pathway-related markers, including cleaved Caspase-3, cleaved PARP, BCL2, TP53, MDM2, MYC, Ki67, E2F1, CDK6, MYB and LMO2. After digital image quantification, the correlation with several clinicopathological characteristics of the patients showed that high protein expression of Caspase-8 was associated with a favorable overall and progression-free survival (Hazard Risks = 0.3; p = 0.005 and 0.03, respectively). Caspase-8 also positively correlated with cCASP3, MDM2, E2F1, TNFAIP8, BCL2 and Ki67. Next, the Caspase-8 protein expression was modeled using predictive analytics, and a high overall predictive accuracy (>80%) was obtained with CHAID decision tree, Bayesian network, discriminant analysis, C5 tree, logistic regression, and Artificial Intelligence Neural Network methods (both Multilayer perceptron and Radial basis function); the most relevant markers were cCASP3, E2F1, TP53, cPARP, MDM2, BCL2 and TNFAIP8. Finally, the CASP8 gene expression was also successfully modeled in an independent DLBCL series of 414 cases from the Lymphoma/Leukemia Molecular Profiling Project (LLMPP). In conclusion, high protein expression of Caspase-8 is associated with a favorable prognosis of DLBCL. Predictive modeling is a feasible analytic strategy that results in a solution that can be understood (i.e., explainable artificial intelligence, “white-box” algorithms)

    Machine learning methods for omics data integration

    Get PDF
    High-throughput technologies produce genome-scale transcriptomic and metabolomic (omics) datasets that allow for the system-level studies of complex biological processes. The limitation lies in the small number of samples versus the larger number of features represented in these datasets. Machine learning methods can help integrate these large-scale omics datasets and identify key features from each dataset. A novel class dependent feature selection method integrates the F statistic, maximum relevance binary particle swarm optimization (MRBPSO), and class dependent multi-category classification (CDMC) system. A set of highly differentially expressed genes are pre-selected using the F statistic as a filter for each dataset. MRBPSO and CDMC function as a wrapper to select desirable feature subsets for each class and classify the samples using those chosen class-dependent feature subsets. The results indicate that the class-dependent approaches can effectively identify unique biomarkers for each cancer type and improve classification accuracy compared to class independent feature selection methods. The integration of transcriptomics and metabolomics data is based on a classification framework. Compared to principal component analysis and non-negative matrix factorization based integration approaches, our proposed method achieves 20-30% higher prediction accuracies on Arabidopsis tissue development data. Metabolite-predictive genes and gene-predictive metabolites are selected from transcriptomic and metabolomic data respectively. The constructed gene-metabolite correlation network can infer the functions of unknown genes and metabolites. Tissue-specific genes and metabolites are identified by the class-dependent feature selection method. Evidence from subcellular locations, gene ontology, and biochemical pathways support the involvement of these entities in different developmental stages and tissues in Arabidopsis
    corecore