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Abstract: High expression of the anti-apoptotic TNFAIP8 is associated with poor survival of the pa-
tients with diffuse large B-cell lymphoma (DLBCL), and one of the functions of TNFAIP8 is to inhibit
the pro-apoptosis Caspase-8. We aimed to analyze the immunohistochemical expression of Caspase-8
(active subunit p18; CASP8) in a series of 97 cases of DLBCL from Tokai University Hospital, and
to correlate with other Caspase-8 pathway-related markers, including cleaved Caspase-3, cleaved
PARP, BCL2, TP53, MDM2, MYC, Ki67, E2F1, CDK6, MYB and LMO2. After digital image quantifi-
cation, the correlation with several clinicopathological characteristics of the patients showed that
high protein expression of Caspase-8 was associated with a favorable overall and progression-free
survival (Hazard Risks = 0.3; p = 0.005 and 0.03, respectively). Caspase-8 also positively correlated
with cCASP3, MDM2, E2F1, TNFAIP8, BCL2 and Ki67. Next, the Caspase-8 protein expression was
modeled using predictive analytics, and a high overall predictive accuracy (>80%) was obtained with
CHAID decision tree, Bayesian network, discriminant analysis, C5 tree, logistic regression, and Artifi-
cial Intelligence Neural Network methods (both Multilayer perceptron and Radial basis function); the
most relevant markers were cCASP3, E2F1, TP53, cPARP, MDM2, BCL2 and TNFAIP8. Finally, the
CASP8 gene expression was also successfully modeled in an independent DLBCL series of 414 cases
from the Lymphoma/Leukemia Molecular Profiling Project (LLMPP). In conclusion, high protein
expression of Caspase-8 is associated with a favorable prognosis of DLBCL. Predictive modeling is a
feasible analytic strategy that results in a solution that can be understood (i.e., explainable artificial
intelligence, “white-box” algorithms).

Keywords: diffuse large B-cell Lymphoma; Caspase-8; Caspase-3; apoptosis; diffuse large B-cell
lymphoma; prognosis; artificial intelligence; machine learning; artificial neural network; explainable
Artificial Intelligence; personalized and precision medicine

1. Introduction

Diffuse Large B-cell Lymphoma (DLBCL) is one of the most frequent non-Hodgkin
lymphomas (NHLs) in western countries. DLBCL accounts for an approximate 25% of

Biomedinformatics 2021, 1, 18–46. https://doi.org/10.3390/biomedinformatics1010003 https://www.mdpi.com/journal/biomedinformatics

https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com
https://orcid.org/0000-0002-6129-8299
https://orcid.org/0000-0002-1402-0868
https://doi.org/10.3390/biomedinformatics1010003
https://doi.org/10.3390/biomedinformatics1010003
https://doi.org/10.3390/biomedinformatics1010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedinformatics1010003
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com/article/10.3390/biomedinformatics1010003?type=check_update&version=3


Biomedinformatics 2021, 1 19

NHLs and is characterized by being heterogeneous from a clinicopathological point of
view, including histological morphological features, genetic changes and biological charac-
teristics [1–3]. Within the category of DLBCL there are several distinct subtypes that are
separated, such as the T cell histiocyte rich large B cell lymphoma, the primary DLBCL of
mediastinum, the intravascular lymphoma and the lymphomatoid granulomatosis [2]. The
prognosis of DLBCL is variable, and with current treatment the disease is curable in 50%
of the cases [2,4]. As DLBCL is heterogeneous, it is necessary to identify biomarkers with
prognostic value.

The prognosis of DLBCL correlates with the International Prognostic Index (IPI) score,
which includes the factors of the age, the serum lactate dehydrogenase, Eastern Coop-
erative Oncology Group (ECOG) performance status, the clinical stage and the number
of extranodal disease sites [5–8]. A variation of the original IPI that incorporates more
detailed information about these used clinical variables is the National Comprehensive
Cancer Network (NCCN)-IPI [9]. In this research both IPIs will be used.

The molecular genetics has also managed to stratify the patients according to their
prognosis. The gene expression profiling identified three groups according to the postulated
cell-of-origin: the germinal center B-cell type (GCB), the activated B-cell type (ABC), and
the unclassified. The Hans’ algorithm also identifies the GCB and the non-GCB (ABC)
groups, but is based on a stepwise progression of 3 immunohistochemical markers of CD10,
BCL6 and MUM1 (IRF4) [10]. Other prognostic markers are the cytogenetic abnormalities
of the MYC, BCL2 and BCL6 oncogenes [11–19], M2-like tumor-associated macrophages
(M2-like TAMs) [20,21] and RGS1 (among others) [22].

In comparison to the GCB, the ABC subtype is characterized by a more aggressive
clinical evolution and constitutive activation of the anti-apoptotic nuclear factor kappa
B (NF-kB) pathway [23–26]. We have recently described the prognostic value of a nega-
tive mediator of apoptosis in DLBCL, the tumor necrosis factor alpha-induced protein 8
(TNFAIP8) [27,28]. In this research, we had used artificial intelligence—the multilayer
perceptron neural network—to analyze the gene expression of the DLBCL series of the
Lymphoma/Leukemia Molecular Profiling Project (LLMPP) and to identify the genes
that were associated with the overall survival of the patients. The TNFAIP8 was identi-
fied within the top 20 most relevant genes of the LLMPP series. Then, we validated the
importance of TNFAIP8 by immunohistochemistry and by digital quantification using
a machine-learning Weka-based segmentation method in a series of DLBCL from Tokai
University Hospital, and we confirmed that high TNFAIP8 was associated with a poor
overall survival of the patients [28]. TNFAIP8 acts as a negative mediator of apoptosis and
may play a role in tumor progression. TNFAIP8 suppresses the TNF-mediated apoptosis by
inhibiting Caspase-8 activity but not the processing of procaspase-8, subsequently resulting
in inhibition of BID cleavage and Caspase-3 activation [29–31].

In our previous research, we quantified the protein expression of TNFAIP8 in a series
from Tokai University Hospital and we also correlated with two markers related to the
proliferation cycle, the Ki67 and MYC. We found that through immunohistochemistry,
the expression of TNFAIP8 was associated with a poor survival of the patients and also
positively correlated with Ki67 and MYC in a moderate manner. Nevertheless, in our pre-
vious work we had the limitation of not knowing how in DLBCL the TNFAIP8 expression
correlated with the apoptosis pathway (Caspase-8, Caspase-3, PARP), which is the main
function of TNFAIP8. In Figure 1 the protein–protein interactions of TNFAIP8 are shown.
These interactions highlight the apoptosis (including Caspase-8), cell cycle and the p53
signaling pathways. In addition, in our previous research our correlations included only a
linear analysis, and more complex nonlinear analyses (that may fit better in the biological
processes) had not been performed. Statistics and machine learning differ in their aim:
statistical models infer relationship between variables. Conversely, machine learning is
designed to make the most accurate predictions.
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Figure 1. Interactions between the Caspase-8 and the Caspase-8-related proteins. The aim of
this research is to analyze the role of Caspase-8 in Diffuse large B-cell lymphoma, focusing in the
investigation of the possible pathological mechanism, the correlations with Caspase-8-related markers
and the clinicopathological correlations. This network summarizes the predicted associations of
Caspase-8 with the group of pathway-related proteins. The nodes are the proteins and the edges
represent the predicted functional associations: action types (activation, binding, inhibition, etc.) and
effects types (positive, negative, and unspecified). The basic network only has the markers (nodes) of
this project (left), the extended network (right) includes additional nodes for better action types and
action effects information.

The purpose of this research was to analyze the expression of Caspase-8 (CASP8) in
DLBCL. A series of DLBCL from Tokai University was immunostained with Caspase-8 and
the protein expression was quantified by digital image analysis, and other markers of the
Caspase-8 pathway including BCL2, cCASP3, CDK6, E2F1, LMO2, MDM2, MKI67, MYB,
MYC, cPARP and TP53 were analyzed as well. We performed statistics and machine learn-
ing analyses to investigate the correlations between them and with the clinicopathological
characteristics of the samples. Then, we also used the multilayer perceptron neural network
analysis to identify other genes related to CASP8 using the LLMPP dataset. We found that
high expression of Caspase-8 was associated with a good prognosis of the patients.

2. Materials and Methods
2.1. Patients and Samples
2.1.1. Series of DLBCL from Tokai University Hospital

The DLBCL series of Tokai University Hospital is comprised of 97 cases, collected
from the years 2006 to 2011. The clinicopathological characteristics are shown in Table 1. In
summary, the male/female ratio was 54/43 (1.3) and the age ranged from 14 to 97 years,
with a median of 67 and a mean of 64.2 ± 14.5. According to the International Prognostic
Index (IPI), 38.3% of the patients were low, 30.9% were low-intermediate, 17.3% were
high-intermediate and 13.6% were high. Serum IL2R was high in 77% of the cases and B
symptoms were present in 24% of the cases. The location was nodal (including the spleen)
in 55% of the cases. The treatment was RCHOP or RCHOP-like in 93.4% of the cases.
Clinical response was achieved in 74% of the patients. The pathological characteristics
showed that the cell-of-origin was non-GCB in 67% of the cases, and the immune phenotype
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was CD5+ in 15%, CD10 in 30%, MUM1+ in 79%, BCL2+ in 79% and BCL6 in 67% of the
cases. The immunohistochemical expression of Regulator of G-protein signaling 1 (RGS1),
which is a marker associated with the chemotaxis of B-lymphocytes, with the germinal
centers formation and with a poor prognosis of DLBCL [22,32], was high in 54% of the
cases. The clinicopathological variables associated with the overall survival of the patients
are shown in Table 1. Relevant variables were the IPI, sIL2R, Epstein-Barr virus infection
and the cell-of-origin molecular classification according to the Hans’ classifier [10].

Table 1. Clinicopathological characteristics of the DLBCL series of Tokai University Hospital.

Variable Frequency (%)
Univariate Cox Regression for Overall Survival

p Value Hazard Risk Lower Upper

Male 54/97 (55.7) 0.941 1.0 0.5 1.9
Age > 60 67/97 (69.1) 0.004 4.0 1.6 10.3

Ann Arbor stage III-IV 42/89 (47.2) 0.06 1.9 0.9 3.7
ECOG performance status ≥2 13/78 (16.7) 0.0002 4.3 1.9 9.4

Serum LDH high (>219) 58/96 (60.4) 0.004 3.1 1.4 6.8
Extranodal sites >1 18/73 (24.7) 0.003 3.1 1.5 6.4

IPI
Low 31/81 (38.3) Reference - - -

Low-intermediate 25/81 (30.9) 0.008 3.7 1.4 9.8
High-intermediate 14/81 (17.3) 0.033 3.3 1.1 9.9

High 11/81 (13.6) 0.004 5.3 1.7 16.5
sIL2R high (>530) 70/91 (76.9) 0.017 4.2 1.3 13.7

B symptoms 19/80 (23.8) 0.395 1.4 0.7 3.0
Location

Nodal (+spleen) 53/97 (54.6) Reference - - -
Waldeyer’s ring 9/97 (9.3) 0.167 0.2 0.0 1.8
Gastrointestinal 10/97 (10.3) 0.748 0.8 0.2 2.8

Other extranodal 25/97 (25.8) 0.216 1.5 0.8 2.9
Treatment
RCHOP 65/91 (71.4) Reference - - -

RCHOP-like 20/91 (22.0) 0.136 1.7 0.8 3.6
Others 6/91 (6.6) 0.133 2.5 0.8 8.5

Response to treatment
CR 64/86 (74.4) Reference - - -
PD 11/86 (12.8) 6.5 × 10−11 26.3 9.8 70.2
PR 11/86 (12.8) 1.7 × 10−8 12.7 5.3 30.9

Epstein-Barr virus (EBER+) 12/95 (15.8) 0.004 3.0 1.4 6.4
Hans’ classifier

GCB 31/95 (32.6) Reference - - -
Non-GCB 64/95 (67.4) 0.013 2.8 1.3 6.4

Immune phenotype
CD3+ 0/97 (0) N/A - - -
CD5+ 14/96 (14.6) 0.736 0.9 0.4 2.1
CD20+ 93/97 (95.9) 0.417 0.6 0.1 2.3
CD10+ 29/96 (30.2) 0.011 0.3 0.1 0.8

MUM1+ (IRF4) 76/96 (79.2) 0.193 1.7 0.8 3.9
BCL2+ 76/96 (79.2) 0.054 2.8 0.9 7.8
BCL6+ 64/96 (66.7) 0.821 0.9 0.5 1.8

RGS1 high (>3%) 51/95 (53.7) 0.013 2.5 1.2 5.2
Molecular analysis

MYD88 L265P mutation 3/39 (7.7) 0.542 0.5 0.1 4.0
BCL2 translocation 2/42 (4.8) 0.993 0.9 0.1 7.4
MYC translocation 7/46 (15.2) 0.814 0.9 0.3 2.9

BCL2/MYC double hit 1/42 (2.4) 0.321 2.8 0.4 21.6

DLBCL, Diffuse Large B-cell Lymphoma; IPI, International Prognostic Index; CR, clinical response; PD, persistent disease; PR, partial
response; GCB, germinal center B-cell type.
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2.1.2. Series of DLBCL from the Lymphoma/Leukemia Molecular Profiling Project (LLMPP)

We used the series of the LLMPP for gene expression analysis [33,34]. This series,
the GSE10846, is a robust and well annotated series of 414 cases of DLBCL from Western
countries that is publicly archived and available for downloading at the webpage https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846 (accessed on 16 April 2021).
This series was last updated on 25 March 2019 (contact: Prof. Louis M. Staudt, Center for Cancer
Research, National Cancer Institute, Building 10, Room 5A02, Bethesda, MD 20892, USA).

The clinicopathological features of this series are shown in detail in the Table 2.
In summary, the male/female ratio was 224/172 (1.3) and the age ranged from 14 to
92 years, with a median of 62.5 and a mean of 61 ± 15.5. The 5 and 10-years overall survival
of the patients was 57% and 47%, respectively. The variables with prognostic value for the
overall survival included, among others, the National Comprehensive Cancer Network
International Prognostic Index (the enhanced NCCN IPI) and the cell-of-origin molecular
subtypes of germinal center B-cell (GCB), activated B-cell (ABC) and unclassified types
(Table 2). This series is comparable to the one from Tokai University Hospital.

Table 2. Clinicopathological characteristics of the DLBCL series of the LLMPP.

Variable Frequency (%)
Univariate Cox Regression for Overall Survival

p Value Hazard Risk Lower Upper

Male 224/414 (54.6) 0.9 1.0 0.7 1.4
Age > 60 226/414 (54.6) 0.2 × 10−5 2.2 1.6 3.1

Ann Arbor stage III or IV 218/406 (53.7) 0.3 × 10−3 1.8 1.3 2.5
ECOG performance status ≥ 2 93/389 (23.9) 3.1 × 10−10 2.8 2.1 3.9

LDH ratio > 1 182/351 (51.9) 5.1 × 10−8 2.7 1.9 3.9
LDH ratio > 3 32/351 (9.1) 2.9 × 10−8 3.7 2.3 5.8

Extranodal disease sites > 1 30/383 (7.8) 0.014 1.9 1.1 3.3
NCCN IPI

Low 54/321 (16.8) Reference - - -
Low-intermediate 152/321 (47.4) 0.4 × 10−3 5.2 2.1 13.0
High-intermediate 98/321 (30.5) 0.4 × 10−5 8.7 3.5 21.9

High 17/321 (5.3) 6.9 × 10−8 17.8 6.2 50.5
Treatment

RCHOP-like 233/414 (56.3) 0.1 × 10−3 0.5 0.4 0.7
CHOP-like 181/414 (43.7) Reference - - -

Cell-of-origin
GCB 183/414 (44.2) 2.8 × 10−8 - - -
ABC 167/414 (40.3) 1.1 × 10−8 2.8 1.9 3.9

Unclassified 64/414 (15.5) 0.2 1.4 0.8 2.3

ECOG, Eastern Cooperative Oncology Group; LDH, Lactate dehydrogenase; NCCN IPI, NCCN, National Comprehensive Cancer Network;
IPI, International Prognostic Index (IPI); RCHOP, rituximab, cyclophosphamide, hydroxydaunorubicin, oncovin, prednisone/prednisolone;
GCB, germinal center B-cell type; ABC, activated B-cell type. Note: The GSE10846 dataset represents previously published data of the
LLMPP, which is not the authors’ own work.

2.2. Immunohistochemistry and Digital Image Quantification

The immunohistochemical procedures were performed using formalin-fixed paraffin-
embedded tissue sections of the lymphoma samples. The immunostaining was performed
in a fully automated stainer for immunohistochemistry and in-situ hybridization (Leica
Biosystems Bond-Max, Leica K.K., Tokyo, Japan), including the manufacturer’s ancillary
reagents and consumables such as the Dewax solution (AR9222), Wash solution (AR9590),
Bond epitope retrieval solution 1 and 2 (AR9961 and AR9640) and Polymer refine detection
(DS9800). The staining process included the following steps: dewaxing, antigen retrieval,
peroxide block, post-primary, polymer, DAB and hematoxylin. The mounting was per-
formed in a Leica CV5030 coverslipper. The slides were visualized in an Olympus BX53
upright microscope, with a DP74 digital camera and cellSens imaging software (Olym-
pus LifeScience, Olympus K.K., Tokyo, Japan). The whole slides were also digitalized

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10846
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using a Hamamatsu digital slide scanner, the NanoZoomer S360, and visualized with
the NDP.view2 Viewing software (Hamamatsu Photonics K.K., Hamamatsu, Japan). The
representative areas of each marker were stored as a jpeg image for futher digital image
quantification using the Fiji (ImageJ) image processing package, in a RGB and threshold
strategy as we have recently described [28].

The primary antibodies that were used in the immunophenotype were the follow-
ing: CD3e [1:200, clone LN10, Novocastra (NV), Leica K.K., Tokyo, Japan], CD5 (1:400,
4C7, NV), CD20 (1:200, L26, NV), CD10 (1:100, 56C6, NV), MUM1 (1:100, IRF4, EAU32,
NV), BCL2 (1:400, bcl2/100/D5, NV), BCL6 (1:100, LN22, NV) and RGS1 (1:100, Rabbit
polyclonal, Thermo Fisher Scientific K.K., Yokohama, Japan). More than 30% expression
of the tumoral B-lymphocytes of the DLBCL was assessed as positive. The presence of
Epstein–Barr virus was also tested (EBER in-situ hybridization #PB0589, Leica K.K.) and
the molecular characterization included the gene translocation status of BCL2 and MYC by
FISH (split probes, #Y5407 and #Y5410, Dako/Agilent), and the MYD88 (L265P) mutation
assessment [22,35,36].

The target markers of this research were Caspase-8, BCL2, cleaved Caspase-3, CDK6,
E2F1, LMO2, MDM2, Ki67, A-B-C MYB, MYC, cleaved PARP, TP53 and TNFAIP8.

The primary antibodies and the staining conditions for the target markers were the
following: Caspase-8 (active subunit p18, found in caspases 8a, 8b and 8h)(1:30, 11B6,
NCL-CASP-8, NV), BCL2 (1:400, mouse monoclonal, bcl2/100/D5, NV), cleaved Caspase-3
(Asp175) [1:300, rabbit polyclonal, #9661, Cell Signalling (CST)], CDK6 [1:5, mouse mon-
oclonal, 98D, Monoclonal Antibodies Unit, Spanish National Cancer Research Center
(CNIO), Madrid, Spain], E2F1 (1:14, rat monoclonal, Agro368V, CNIO), LMO2 (1:10, mouse
monoclonal, 299B, CNIO), MDM2 (1:50, mouse monoclonal, IF2, Invitrogen K.K., Tokyo,
Japan), Ki67 (RTU, mouse monoclonal, MM1, NV), A-B-C MYB (1:10, rat monoclonal,
DANI51, CNIO), MYC (1:50, rabbit monoclonal, Y69, Abcam K.K., Tokyo, Japan), cleaved
PARP (Asp214) (1:100, rabbit monoclonal, D64E10, CST), TP53 (1:100, DO-7, NV) and
TNFAIP8 (1:30,000, mouse monoclonal, #14559-MM01, Sino Biological, Beijing, China).

2.3. Bioinformatics and Statistical Analyses
2.3.1. Comparison between Groups

Comparisons between groups was performed when needed using non-parametric
tests, with the Mann–Whitney U test or the Kruskal–Wallis test, and with crosstabulations
that included the Pearson Chi-Square, The Fisher’s Exact test, and the Likelihood Ratio
test. Correlations between two quantitative variables were performed with Pearson and
Spearman correlations. Binary logistic regression was performed to calculate Odds Ratios
and to correlate the expression of Caspase-8 (as dichotomic variable) and the rest of
clinicopathological variables (also as dichotomic variables).

2.3.2. Survival Analysis

The definition of overall and progression-free survivals were the standards as de-
scribed by Cheson BD et al. [37,38]. The overall survival was calculated from the time of
diagnosis to the time of the death or the last follow-up. The Kaplan–Meier analysis with
the Log rank test was used to calculate survival times, as well as for group comparisons;
and the analysis included the Breslow and Tarone–Ware tests when necessary. Survival
analysis was also performed with the Cox regression (enter method). The significance
threshold was set a priori at p < 0.05.

2.3.3. Software and Artificial Neural Network Analysis

Several software were used in this research according to the manufacturer’s instruc-
tions: R software for statistical computing version 3.6.3 (https://www.r-project.org/
(accessed on 29 February 2020)) and the integrated development environment R Studio
(version 1.3.959; https://www.rstudio.com/products/rstudio/#rstudio-desktop (accessed
on 16 April 2021)), the Gene set enrichment analysis software (GSEA 4.1.0, build: 27,

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/#rstudio-desktop
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Broad Institute, Cambridge, MA, USA; https://www.gsea-msigdb.org/gsea/index.jsp
(accessed on 16 April 2021)), IBM SPSS statistics (IBM Corp. Released 2019. IBM SPSS
Statistics for Windows, Version 26.0. Armonk, NY, USA: IBM Corp; https://www.ibm.
com/jp-ja/analytics/spss-statistics-software (accessed on 16 April 2021)), IBM data mining
and predictive analytics (Modeler version 18), Xlstat (version 2018.1, Addinsoft, USA;
https://www.xlstat.com/ja/solutions/premium (accessed on 16 April 2021)), Excel (ver-
sion 16.0.13127.21062, Microsoft, Redmond, WA, USA; https://www.microsoft.com/ja-
jp/microsoft-365/excel (accessed on 16 April 2021)) and EditPad Lite (version 8.1.2 x64,
Just Great Software Co. Ltd., Rawai Phuket, Thailand; https://www.editpadlite.com/
(accessed on 16 April 2021)). The IBM SPSS Statistics documentation can be found in the
following link: https://www.ibm.com/support/knowledgecenter/en/SSLVMB_26.0.0
/statistics_mainhelp_ddita/spss/base/overvw_auto_0.html (accessed on 16 April 2021).
The statistics algorithms are found at https://www.ibm.com/support/pages/node/8747
12#en (accessed on 16 April 2021) and ftp://public.dhe.ibm.com/software/analytics/spss/
documentation/statistics/26.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf
(accessed on 16 April 2021). The IBM Modeler can be accessed in the following link: http://
127.0.0.1:57379/help/index.jsp?topic=/com.ibm.spss.modeler.help/clementine/clem_intro.
htm (accessed on 16 April 2021). A package for survival analysis in R can be accessed
at https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf (accessed
on 16 April 2021). The Multilayer Perceptron (Figure 2a–d) and Radial Basis Function
analysis using the immunohistochemical data was performed following the manufacturer’s
instructions, and as we have thoroughly described in our previous publications [39,40].
In this neural network analysis, the prediction of Caspase-8 by the other related markers
of the pathway was performed using the immunohistochemical data of Caspase-8 as a
dichotomic variable (high vs. low, with the same cut-off of the overall survival).

The LLMPP dataset was downloaded from the Gene Expression Omnibus (GEO)
repository located on the National Center for Biotechnology Information (NCBI) webpage.
The gene expression data of the GSE10846 was normalized and log2 transformed. The
probes were collapsed according to the maximum probe values. Therefore, each gene
had one expression value and the final series was comprised of a total 20,684 genes and
414 cases. Using an Artificial Intelligence approach, we aimed to predict the gene expression
of Caspase-8 (CASP8) by the rest of the genes of the array (20,683 genes), using the series of
414 cases of DLBCL from the LLMPP. We used the multilayer perceptron (MLP) procedure,
which produced a predictive model for CASP8 (dependent, target variable) based on
the values of the predictor variables. Therefore, the dependent variable was the CASP8
and the covariates were the 20,683 genes. In this analysis, the dependent variable was
treated as a scale (continuous) because the values represent ordered categories with a
meaningful metric, so that distance comparisons between values are appropriate. Of note,
this differs from our previous publications in which the dependent (target) variables
were dichotomic (high vs. low, or dead vs. alive) [27,28]. Another difference from our
previous publications [27,28] is that we are using the values of the collapsed probes. In the
setup, CASP8 was the dependent variable, while for the rest of the genes the covariates
and the rescaling of the covariates were standardized. As partitions, 70% of the cases
corresponded with the training set, while 30% corresponded with the testing set (the
holdout was 0%). In the partition dataset the cases were randomly assigned based on the
relative number of cases. The architecture had a series of parameters. The hidden layers
setup included the number of hidden layers (one or two), the activation function (hyperbolic
tangent or sigmoid), and the number of units (automatically computed or custom). The
output layer setup included the activation function (identity, softmax, hyperbolic tangent
or sigmoid), and the rescaling of scale dependent variables (standardized, normalized,
adjusted normalized or none). The type of training could be batch, online or mini-batch;
and the optimization algorithm included the scaled conjugate gradient or gradient descent.
In the training options the initial lambda value was 0.0000005, the initial sigma 0.00005, the
interval center 0, and the interval offset ±0.5. The output displayed the network structure
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(description, diagram, and the synaptic weights), and the network performance (model
summary, predicted by observed chart and residual by predicted chart). In addition, the
output also showed the case processing summary and the independent variable importance
analysis. The predicted value or category for the dependent variable was saved as a new
variable. The synaptic weight estimates were also exported as an xml file. The setup also
included the user-missing values and the stopping rules.
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3. Results
3.1. Immunohistochemical Protein Expression of Caspase-8 in DLBCL (Tokai Series)

The immunohistochemical protein expression of Caspase-8 in the series of 97 cases of
DLBCL from Tokai University Hospital showed a histological localization in the cytoplasm
of the cells (compatible with B-lymphocytes), that had a morphology of middle or large
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sized centroblasts, or immunoblasts in some cases. In some cases, with high Caspase-8
expression the localization was perinuclear including some extension into the nucleus.
After digital image quantification, the Caspase-8 expression ranged from 0.0% to 40.2%,
with a median of 3.1% and a mean of 6.7% ± 8.3. In Figure 3, the immunohistochemical
expression of Caspase-8 is shown, with a characteristic low and high expression pictures. In
addition, the immunohistochemistry of the other markers is also shown in the Figures 3–5.

Figure 3. Immunohistochemical expression in the DLBCL samples of Caspase-8, cleaved Caspase-3,
cleaved PARP, MDM2 and BCL2 (Tokai series). Caspase-8 protein is a protease with a key role in
the programmed cell death (extrinsic apoptosis). Once activated, Caspase-8 cleaves and activates
other effector caspases including Caspase-3 and PARP1. It also regulates necroptosis and innate
immunity. MDM2 is a ligase that inhibits the p53 and p73-mediated cell cycle arrest and apoptosis.
BCL2 is an apoptosis inhibitor, controlling the mitochondrial membrane activity and inhibiting
caspase activity [31]. By immunohistochemistry, Caspase-8 protein expression was cytoplasmic
and perinuclear, with some staining in the nucleus when the protein expression was high. Cleaved
Caspase-3, cleaved PARP and MDM2 staining was nuclear. BCL2 expression was mainly cytoplasmic
and perinuclear.
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Figure 4. Immunohistochemical expression in the DLBCL samples of TP53, MYC, Ki67, E2F1 and
CDK6 (Tokai series). P53 is a tumor suppressor that controls the cell cycle and induces apoptosis.
MYC proto-oncogene is a transcription factor that binds the DNA and activates the transcription of
growth-related genes, promotes angiogenesis and regulates somatic reprogramming. Ki67 plays a key
role in cell proliferation, with a role in chromatin organization maintaining the mitotic chromosomes
dispersed. E2F1 is a transcription factor involved in cell cycle regulation (progression from G1
to S phase) and DNA replication. E2F1 binds RB1 and can mediate both cell proliferation and
p53 apoptosis. CDK6 is a kinase involved in the control of cell cycle (G1/S transition) and cell
differentiation [31]. By immunohistochemistry all the markers show nuclear staining. CDK6 also
shown cytoplasmic localization.

3.2. Correlation between Caspase-8 and the Clinicopathological Variables in DLBCL (Tokai Series)

The protein expression of Caspase-8 as a quantitative variable correlated with the
overall survival of the patients (Figure 6). The Cox regression analysis showed a trend
of correlation with the overall survival, with high values associated with better survival,
Beta = −0.045, p value = 0.071, Hazard risk = 0.956 (95% CI 0.911–1.004). A cut-off was
searched and at 8.7% two groups of patients were identified, with different overall survival.
The group of high Caspase-8 expression (>8.8%, n = 27/97, 27.8%) was characterized by a
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more favorable overall survival than the group of low expression (<8.8%, n = 70/97, 72.2%):
Beta = −1.3, p value = 0.009, Hazard risk = 0.3 (95% CI, 0.1–0.7). This means, on average, a
70% lower risk of death, and a 233% increase in survival time. When the overall survival
was compared using the Kaplan–Meier and the Log rank test, the group of high Caspase-8
expression was characterized by a favorable prognosis, with a 3, 5 and 10-year overall
survival of 85%, 85% and 75%. Conversely, the group of low expression had an unfavorable
prognosis, with a 3, 5 and 10-year survival of 56%, 52% and 40% (p value = 0.005).

Figure 5. Immunohistochemical expression of MYB, LMO2 and TNFAIP8 (Tokai series). MYB is
a transcriptional activator that binds the DNA and plays a role in the control of cell proliferation
and differentiation. LMO2 is a nuclear marker expressed by normal B lymphocytes in the germinal
centers. It also regulates hematopoietic stem cell differentiation. TNFAIP8 is a negative regulator
of apoptosis and play a role in tumor progression. It inhibits Caspase-8, subsequently resulting
in inhibiting the activation of Caspase-3 [31]. We have recently described that high expression of
TNFAIP8 correlates with poor survival of DLBCL patients [28]. MYB and LMO2 protein expression
is nuclear, TNFAIP8 is in the cytoplasm and perinuclear.

The protein expression of Caspase-8 was also correlated with the progression-free
survival of the patients. As a quantitative variable, Caspase-8 did not correlate with the
progression-free survival (p value = 0.251). Using the same cut-off as the overall survival
(8.8%), high Caspase-8 expression was associated with a more favorable progression-free
survival of the patients (Beta = −0.952, p value = 0.036, Hazard risk = 0.386 (95% CI, 0.2–0.9).

Using the same cut-off of the survival analysis (8.8%), a correlation was performed
with several clinicopathological characteristics of the series. Nevertheless, no significant
correlations were found (Table 3). Therefore, other factors that are not the conventionally
tested in DLBCL may be related to the Caspase-8 expression.

3.3. Correlation between Caspase-8 and the Related Markers in DLBCL (Tokai Series)

The immunohistochemical protein expression of Caspase-8-related markers was also
analyzed in the series of 97 cases of DLBCL from Tokai University Hospital. In the Table 4
the distribution of the markers, including cleaved Caspase-3, cleaved PARP, MDM2, BCL2,
TP53, MYC, Ki67, E2F1, CDK6, MYB, LMO2 and TNFAIP8 is shown in detail. The expres-
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sion of Caspase-8 correlated with these markers, and positive correlation was found for
cleaved Caspase-3 (correlation coefficient 0.435), MDM2 (0.389), E2F1 (0.324), TNFAIP8
(0.248), BCL2 (0.217), and Ki67 (0.204) (Table 5). Of note, cleaved Caspase-3 positively
correlated with cleaved PARP (correlation coefficient = 0.679, p = 0.003).

Figure 6. Overall and progression-free survival according to the Caspase-8 expression by immuno-
histochemistry (Tokai series, immunohistochemical data). High percentages of Caspase-8 associated
with a favorable prognosis of the patients with DLBCL, including both the overall survival and the
progression-free survival.

The correlation with overall survival and the progression-free survival of these mark-
ers is also shown in the Tables 6 and 7.

3.4. Predictive Modeling of Caspase-8 Protein Expression by the Rest of Caspase-8-Related Markers
(Tokai Series)

Predictive analytics was performed to model the immunohistochemical expression of
Caspase-8 as a dichotomic variable (high vs. low, using the same 8.7% cut-off) with all the
other Caspase-8-related markers, which were used as quantitative variables.

Twelve different models were executed, including the algorithms of C5.0 node that
builds a decision tree or a rule set, logistic regression, Bayesian Network, discriminant
analysis, k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Tree-AS decision
tree, Chi-squared Automatic Interaction Detection (CHAID) decision tree, Classification
and Regression (C&R) Tree and Neural Network.

Results of the analysis showed that 9 models predicted the Caspase-8 expression.
When ranked according to overall accuracy, they were as follows: CHAID (92%, 4 vari-
ables), Bayesian Network (88%, 12 variables), SVM (87%, 12 variables), Discriminant (86%,
12 variables), C5 (85%, 2 variables), Logistic regression (83%, 12 variables), Neural network
(80%, 12 variables), C&R Tree (72%, 12 variables), and KNN Algorithm (69%, 12 variables).

3.4.1. Chi-Squared Automatic Interaction Detection (CHAID) Decision Tree

The CHAID node graph is shown in Figure 7; this decision tree predicted the Caspase-
8 expression using cCASP3, BCL2, LMO2 and cPARP. The CHAID classification method
builds decision trees by using chi-square statistics to identify optimal cut-offs (splits).
Unlike the C&R Tree and the QUEST nodes, the CHAID method can generate non-binary
trees. Therefore, the splits can be of more than 2, and the trees are wider.
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Table 3. Correlation between the clinicopathological characteristics of the DLBCL cases and high
immunohistochemical expression of Caspase-8 (Tokai series).

Variable
Binary Logistic Regression

p Value Odds Ratio Lower Upper

Male 0.989 0.9 0.4 2.4
Age > 60 0.420 0.7 0.3 1.7

Ann Arbor stage III or IV 0.924 1.1 0.4 2.6
ECOG performance status ≥ 2 0.314 0.4 0.1 2.2

Serum LDH high (>219) 0.215 1.8 0.7 4.7
Extranodal sites > 1 0.845 1.1 0.3 3.7

IPI
Low Reference - - -

Low-intermediate 0.257 0.5 0.1 1.8
High-intermediate 0.655 1.4 0.4 5.2

High 0.209 0.2 0.0 2.2
sIL2R high (>530) 0.583 1.4 0.4 4.2

B symptoms 0.994 1.0 0.3 3.2
Treatment

RCHOP-like Reference - - -
CHOP-like 0.532 1.4 0.5 4.1

Location 0.769 1.3 0.2 7.8
Clinical response (CR) 0.199 2.2 0.7 7.3

Nodal (+spleen) Reference - - -
Waldeyer’s ring 0.431 0.5 0.1 2.7
Gastrointestinal 0.999 - - -

Other extranodal 0.298 0.6 0.2 1.7
Epstein-Barr virus (EBER+) 0.174 0.3 0.1 1.6

Cell-of-origin (non-CGB) 0.812 1.1 0.4 2.9
Immune Phenotype

CD5+ 0.968 1.0 0.3 3.6
CD10+ 0.938 0.9 0.4 2.6

MUM1+ (IRF4) 0.742 0.8 0.3 2.5
BCL2+ 0.814 1.2 0.4 3.6
BCL6+ 0.258 0.6 0.2 1.5

RGS1 high (>3%) 0.821 0.9 0.4 2.2
TNFAIP8 high 0.479 1.5 0.5 4.6

CD163+ M2-like TAMs 0.864 1.1 0.4 2.9
Molecular analysis

MYD88 L265P mutation 0.999 - - -
BCL2 translocation 0.999 - - -
MYC translocation 0.451 0.424 0.1 3.9

Table 4. Immunohistochemical expression of Caspase-8-related markers in DLBCL (Tokai series).

Marker Min (%) Max (%) Median (%) Mean (%) ± STD

Caspase-8 0.0 40.2 3.0 6.7 ± 8.3
Cleaved Caspase-3 0.013 6.1 0.4 0.9 ± 1.2

Cleaved PARP 0.0 6.1 0.4 0.9 ± 1.2
MDM2 0.5 36.2 8.8 10.9 ± 8.1
BCL2 0.0 46.9 2.1 6.7 ± 9.7
TP53 0.0 43.1 2.7 5.2 ± 8.0
MYC 0.0 26.9 3.5 5.5 ± 5.9
Ki67 0.1 54.2 11.8 16.1 ± 14.5
E2F1 0.1 11.2 1.2 1.8 ± 1.8

CDK6 0.0 39.2 2.1 5.1 ± 7.4
MYB 0.0 12.6 0.9 2.1 ± 2.9

LMO2 0.0 16.9 1.0 2.6 ± 3.5
TNFAIP8 3.2 87.9 38.3 41.5 ± 25.6



Biomedinformatics 2021, 1 32

Table 5. Correlation between Caspase-8 and the Caspase-8-related markers (Tokai series).

Spearman’s Rho Correlation Coefficient p Value

Cleaved Caspase-3 0.435 0.1 × 10−4

Cleaved PARP 0.055 0.605
MDM2 0.389 0.11 × 10−3

BCL2 0.217 0.035
TP53 -0.1 0.332
MYC 0.114 0.270
Ki67 0.204 0.047
E2F1 0.324 0.001

CDK6 0.035 0.737
MYB 0.120 0.255

LMO2 0.163 0.118
TNFAIP8 0.248 0.016

Spearman’s rho non-parametric correlation.

Table 6. Overall survival of the Caspase-8-related markers in DLBCL (Tokai series).

Variable
High Expression

(%)
Univariate Cox Regression for Overall Survival

p Value Hazard Risk Lower Upper

Caspase-8 30/96 (31.3) 0.009 0.285 0.1 0.7
Cleaved Caspase-3 30/96 (31.3) 0.816 1.1 0.6 2.1

Cleaved PARP 28/96 (29.2) 0.308 0.7 0.3 1.4
MDM2 28/96 (29.2) 0.089 *1 0.5 0.3 1.1
BCL2 20/97 (21.3) 0.084 *2 0.4 0.2 1.1
TP53 71/96 (74.0) 0.029 2.6 1.1 6.3
MYC 18/95 (18.9) 0.293 1.5 0.7 3.2
Ki67 57/96 (59.4) 0.113 1.7 0.9 3.3
E2F1 30/94 (31.9) 0.017 0.4 0.2 0.8

CDK6 65/94 (69.1) 0.161 0.6 0.3 1.2
MYB 27/92 (29.3) 0.043 0.4 0.2 0.9

LMO2 53/93 (57.0) 0.026 0.5 0.3 0.9
TNFAIP8 72/94 (76.6) 0.02 3.4 1.2 9.7

*1 Kaplan-Meier with Breslow (Generalized Wilcoxon) test, p = 0.047. *2 Kaplan-Meier with Breslow (Generalized
Wilcoxon) test, p = 0.045.

Table 7. Progression-free survival (PFS) of the Caspase-8-related markers in DLBCL (Tokai series).

Variable
High Expression

(%)
Univariate Cox Regression for PFS

p Value Hazard Risk Lower Upper

Caspase-8 27/91 (29.7) 0.036 0.4 0.2 0.9
Cleaved Caspase-3 30/91 (33.0) 0.694 1.2 0.6 2.3

Cleaved PARP 28/91 (30.8) 0.667 0.9 0.4 1.8
MDM2 74/89 (83.1) 0.015 0.4 0.2 0.8
BCL2 20/89 (22.5) 0.076 *1 0.4 0.1 1.1
TP53 66/90 (73.3) 0.141 1.9 0.8 4.7
MYC 17/90 (18.9) 0.297 1.5 0.7 3.4
Ki67 52/90 (57.8) 0.552 1.2 0.6 2.5
E2F1 30/89 (33.7) 0.01 0.3 0.1 0.7

CDK6 62/89 (69.7) 0.05 *2 0.5 0.3 1.0
MYB 27/87 (31.0) 0.019 0.3 0.1 0.8

LMO2 52/88 (59.1) 0.056 *3 0.5 0.3 1.0
TNFAIP8 68/89 (76.4) 0.078 2.6 0.9 7.3

*1 Kaplan-Meier with Breslow (Generalized Wilcoxon) test, p = 0.045. *2 Kaplan-Meier with Log Rank (Mantel-Cox)
test, p = 0.046. *3 Kaplan-Meier with Breslow (Generalized Wilcoxon) test, p = 0.035.
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Figure 7. CHAID node decision tree analysis (Tokai series, immunohistochemical data). The Chi-
squared automatic interaction detection (CHAID) is a classification method for building decision
trees that identify optimal splits by using chi-square statistics. CHAID examines the crosstabulations
between each input field and the outcome, and tests for significance. CHAID can generate nonbinary
trees (splits of more than two branches). In this analysis we aimed to predict the Caspase-8 expression
as low (1) versus high (2), which is the same cut-off used for the survival analysis. The Caspase-8
expression could be predicted using cleaved Caspase-3, BCL2, cleaved and PARP. This decision tree
is highlighting the Caspase-8, cCaspase-3, cPARP apoptosis pathway.

3.4.2. Bayesian Network

The bayesian network model is shown in Figure 8. A Bayesian network is a graphical
model that shows variables (i.e., nodes) in a dataset and the probabilistic, or conditional,
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independencies between them. Causal relationships between nodes may be represented,
but the links in the network (i.e., arcs) do not necessarily represent direct cause and effect.
The basic view contains a network graph of nodes that displays the relationship between
the target (dependent) variable and the predictor variables, and the relationship between
the predictors. The distribution view shows the conditional probabilities for each node in
the network as a mini graph, the corresponding tables for cleaved Caspase-3 and E2F1 are
shown below.

Figure 8. Bayesian Network (Tokai series, immunohistochemical data). The Bayesian network allows
to build a probabilistic model combining observed and recorded evidence with “common-sense” real-
world knowledge to establish the likelihood of occurrences by using seemingly unlinked attributes.
Therefore, Bayesian networks are used for making predictions. Each of the nodes is one of the markers
that have been analyzed by immunohistochemistry in the Tokai series of DLBCL. In this analysis we
aimed to predict the Caspase-8 expression (target) by the rest of the markers (predictors). Bayesian
networks are very robust where information is missing and make the best possible prediction using
whatever information is present. In this figure, the conditional probabilities of cCaspase-3 and E2F1
are also shown.

3.4.3. Discriminant Analysis

The discriminant analysis had 6 excluded cases due to having at least one missing
discriminant variable, so the valid cases were 91 of 97 (93.8%). The number of discriminant
functions was 1, with an eigen value (discriminating ability) of 0.612 (p = 0.83 × 10−4).
The standardized canonical discriminant function coefficients for the different markers
were Ki67 (−0.178), LMO2 (0.125), MYC (0.148), MDM2 (−0.329), CDK6 (0.035), E2F1
(0.569), BCL2 (0.190), MYB (0.109), TP53 (−0.328), cPARP (−0.345), cCASP3 (1.118) and
TNFAIP8 (0.180).
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3.4.4. C5.0 Decision Tree

The C5.0 algorithm builds a decision tree by splitting the sample based on the field
that provides the maximum information gain. The C5.0 node can predict only a categorical
target. In this model, the Caspase-8 expression (high vs. low) was predicted by cleaved
Caspase-3 and E2F1 variables as shown in the Figure 9.

Figure 9. C5.0 node decision tree analysis (Tokai series, immunohistochemical data). The C5.0
algorithm was used to predict the Caspase-8 expression as a categorical target (low versus high, same
cut-off for the survival analysis) by the rest of the markers (predictors). C5.0 models are quite robust
when missing data is present and there are large numbers of input fields. C5.0 models tend to be
easier to understand. In this analysis we found that Caspase-8 expression could be predicted by
cCaspase-3 and E2F1, highlighting the apoptosis pathway.

3.4.5. Logistic Regression

The logistic regression (i.e., nominal regression) classifies records based on values of input
fields. It is comparable to the linear regression, but the target variable is categorical instead of
a numeric one. The logistic regression equation for the High Caspase-8 expression was the
following: −0.02362*Ki67 + 0.01278*LMO2 + 0.1576*MYC + −0.2012*MDM2 + 0.009816*CDK6
+ 0.9908*E2F1 + 0.9499*BCL2 + 0.05347*MYB + −0.2845*TP53 + −1.631*cPARP + 3.21*cCASP3
+ −0.004535*TNFAIP8 + −2.65. The predictor importance, from most to less was the
following: cCASP3, E2F1, BCL2, TP53, MYC, MYOB, CDK6, LMO2, TNFAIP8, Ki69, cPARP
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and MDM2. As shown in Table 8, in this model the significant variables were cCASP3,
cPARP, MDM2 and E2F1.

Table 8. Logistic regression of Caspase-8 by the Caspase-8-related markers (Tokai series).

Variable Beta p Value Exp(B)
95% CI for Exp(B)

Lower Upper

Intercept −2.650 0.003 - - -
Cleaved Caspase-3 3.210 0.002 24.8 3.4 183.1

Cleaved PARP −1.631 0.037 0.2 0.0 0.9
MDM2 −0.201 0.047 0.8 0.7 0.9
BCL2 0.095 0.077 1.1 0.9 1.2
TP53 −0.284 0.063 0.8 0.6 1.0
MYC 0.158 0.065 1.2 0.9 1.4
Ki67 −0.024 0.575 0.9 0.9 1.1
E2F1 0.991 0.019 2.7 1.2 6.2

CDK6 0.010 0.888 1.0 0.9 1.2
MYB 0.053 0.779 1.1 0.7 1.5

LMO2 0.013 0.902 1.0 0.8 1.2
TNFAIP8 −0.005 0.798 0.9 0.9 1.0

When the logistic regression was repeated using the backward method, the predictor
importance rank was cCASP3 (most important), E2F1, TP53, BCL2, MYC, cPARP and
MDM2 (less). In this case, the equation for High Caspase-8 expression was 0.1527*MYC
+ −0.1942*MDM2 + 0.8855*E2F1 + 0.09246*BCL2 + −0.3098*TP53 + −1.666*cPARP +
3.114*cCASP3 + −2.697.

3.4.6. Artificial Neural Network

The Neural Network analysis predicted the Caspase-8 expression as a dichotomic
variable (high vs. low) with an overall accuracy of 80.4%, using the quantitative values
of the Caspase-8-related markers as predictors. This analysis was repeated with two
consecutive but independent multilayer perceptron (MLP) and radial basis function (RBF)
artificial neural network (ANN) analyses. The details of the neural networks and the results
are shown in Table 9 and Figure 10. In summary, the MLP was characterized by a better
“performance” because of a lower percent of incorrect predictions both in the training (9.4%
vs. 15.7%) and the testing (7.4% vs. 23.8), better overall % of correct classification of training
(90.6% vs. 84.3%) and testing (92.6% vs. 76.2%), and a slightly better area under the curve
(0.891 vs. 0.880). According to the MLP analysis, the most relevant markers for predicting
the Caspase-8 expression as a dichotomic variable were cleaved Caspase-3 (100%), E2F1
(93%), CDK6 (58.8%), TP53 (46.8%), MYC (42.5%), MYB (30.2%), Ki69 (30%), cleaved PARP
(12.7%), BCL2 (9%), TNFAIP8 (8.2%) and LMO2 (1.5%).

3.4.7. Integrated Analysis

The results of several tests were integrated to calculate the percentage of importance
for the association to Caspase-8. The most relevant markers were cCASP3, E2F1, TP53,
MDM2, BCL2 and TNFAIP8 (Table 10).

3.5. Gene Expression Analysis Based on CASP8 Expression in DLBCL (LLMPP Series)

The LLMPP DLBCL dataset that is comprised of 20,684 genes was used to identify in an
unsupervised manner which genes are associated with the CASP8 expression. A multilayer
perceptron analysis was performed, with CASP8 as dependent variable (quantitative
data) and the rest of 20,863 as predictors (also as quantitative variables). As a result
of the artificial neutral network, the genes were ranked according to their normalized
importance for prediction of the CASP8 expression. The neural network moderately
managed to predict the CASP8 expression. According to their normalized importance,
the top most relevant genes were: MED29 (1st), PRH1, YIPF3, PLEKHH1, PRB4, IKZF1,
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CYSRT1, ACTC1, FAM160B1, TBC1D10C, TMEM176B, ADAMTS10, CTSV, CEP20, AZGP1,
ZNF557, SDCCAG8, CSKMT, BGLAP and SRP54 (20th).

Table 9. Artificial Neural Network analysis for Caspase-8 prediction by the Caspase-8-related markers (Tokai series).

Variable Multilayer Perceptron Radial Basis Function

Sample
Training 64 (70.3%) 70 (76.9%)
Testing 27 (29.7%) 21 (23.1%)
Valid 91 91

Excluded 6 6
Total 97 97

Input layer
Covariates 12 12

Number of units 12 12
Rescaling Standardized Standardized

Hidden layers
Number 1 1

Units 1 10 *2

Activation function Hyperbolic tangent Softmax
Output Layer

Dependent variable 1 (Caspase-8) 1 (Caspase-8)
Number of units 2 2

Activation function Softmax Identity
Error function Cross-entropy Sum of Squares

Model summary
Training

Cross entropy error (MLP)Sum of
Squares Error (RBF) 19.9 7.059

Percent incorrect predictions 9.4% 15.7%
Stopping rule used 1 consecutive step(s) with no decrease in error *1 -

Training time 0:00:00.01 0:00:00.03
Testing

Cross entropy error (MLP)Sum of
Squares Error (RBF) 8.1 3.156

Percent incorrect predictions 7.4% 23.8%
Classification

Training Overall % correct 90.6% 84.3
Testing Overall % correct 92.6% 76.2

Area under the curve 0.891 0.880

*1 Error computations are based on the testing sample. *2 Determined by the testing data criterion: The “best” number of hidden units is
the one that yields the smallest error in the testing data.

Table 10. Integrated analysis, ranking of markers according to relevance of Caspase-8 association.

Marker Protein
Interaction

Survival
Cox

Bivariate
Correlation

CHAID
Tree Discriminant C5.0 tree Logistic

Regression
MLP
ANN

RBF
ANN Imp%

cCASP3 1 1 1 1 1 1 1 1 1 100.0
E2F1 0 1 1 0 1 1 1 1 1 77.8
TP53 1 1 0 0 1 0 0.5 1 1 61.1

cPARP 1 0 0 1 1 0 1 0 0 44.4
MDM2 1 0 1 0 1 0 1 0 0 44.4
BCL2 1 0 1 1 0 0 0.5 0 0 38.9

TNFAIP8 1 1 1 0 0 0 0 0 0 33.3
CDK6 0 0 0 0 0 0 0 1 1 22.2
LMO2 0 1 0 1 0 0 0 0 0 22.2
MYC 1 0 0 0 0 0 0.5 0 0 16.7
Ki67 0 0 1 0 0 0 0 0 0 11.1
MYB 0 1 0 0 0 0 0 0 0 11.1

1, highlighted in the model; 0, not highlighted. MLP, multilayer perceptron; RBF, radial basis function; ANN, artificial neural network.
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Figure 10. Artificial Neural Network analysis for the prediction of Caspase-8 by the Caspase-8-related markers (Tokai series,
immunohistochemical data). The neural network model determines how the network connects the predictors (our series of
12 markers, input layer) to the targets (the Caspase-8, output layer, as a dichotomic variable high versus low, same cutoff used
for the survival analysis) through the hidden layers. The multilayer perceptron (MLP) allows for more complex relationships.
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Conversely, the radial basis function (RBF) is generally faster and has only one hidden layer, but at the cost of reduced
predictive power. The hidden layer(s) contains unobservable units. The value of each hidden unit is some function of the
predictors. In this figure, the relevance of each marker for prediction of Caspase-8 is shown by the width of the node and by
the value of the normalized importance for prediction. The performance of the network can be checked by the area under
the curve ROC curve, of which the higher it is, the better the prediction of Caspase-8 expression. The synaptic weights from
the output of the network are available on request from the corresponding author (Carreras J).

To understand the relationship between CASP8 expression and the top 20 genes, the
expression of CASP8 was modeled using the top 20 genes. The analysis included the fol-
lowing model types: regression, generalized liner, linear-AS, LSVM, random trees, Tree-AS,
linear, CHAID, C&R tree and neural network. The most relevant models were the follow-
ing: CHAID (correlation 0.806), neural network (0.712), regression (0.668), generalized
linear (0.668), linear (0.667) and C&R tree (0.647).

A visualization of the CHAID and neural network is shown in Figure 11. The re-
gression output was the following: CASP8 = MED29*0.1483 + PRH1* − 0.1032 + YIPF3*
− 0.1555 + PLEKHH1*0.1117 + PRB4* − 0.001069 + IKZF1*0.1014 + CYSRT1*0.008583 +
ACTC1*0.04482 + FAM160B1*0.2315 + TBC1D10C*0.2088 + TMEM176B*0.1449 +
ADAMTS10*0.1131 + CTSV* − 0.0005433 + CEP20*0.1234 + AZGP1*0.06398 + ZNF5571*0.08978
+ SDCCAG8* − 0.04932 + CSKMT*0.05439 + BGLAP*0.08571 + SRP54*0.3457 − 6.131.

Further analysis was performed focusing on CASP8 as a dichotomic variable in the
DLBCL GEO GSE10846. Using a ROC curve analysis, the best cut-off of CASP8 for the
overall survival phenotype (dead/alive) was searched, and the value was 10.3805. Among
the 414 cases of the series, CASP8 was high in 180 (48.3%) and low in 234 (69.2%). We
confirmed the association of most of the previously identified 20 top genes of the neural
network analysis with a high CASP8 expression. The Gene Set Enrichment Analysis (GSEA)
is a biostatistical method that confirms if a defined set of genes correlates between two
biological states (e.g., phenotypes). We used GSEA to correlate the phenotype CASP8
high vs. low with several set of genes (pathways). The whole collection of the MSigDB
gene sets were used (23,677 genes sets in total, MSigDB database v7.3 updated March
2021), which include 9 major collections: H (hallmark genes), C1 (positional), C2 (curated),
C3 (regulatory target), C4 (computational), C5 (ontology), C6 (oncogenic signature), C7
(immunologic signature), and C8 (cell type signature). From the 23,677 tested genes sets,
843 gene sets were significantly enriched at nominal p value < 5%, either towards high or
low CASP8. For example, significantly enriched pathways of the oncogenic signature that
associated to high CASP8 were ALK, KRAS, PGF, P53 and CYCLIND1. Other correlations
included sets of the immunologic signature such as macrophages (Genes up-regulated in
bone marrow-derived macrophages treated with IL4, GSE25088). The complete results are
available on request from the corresponding author (Carreras J).
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Figure 11. Prediction of CASP8 by 20,683 genes of the LLMPP series and modeling using the top 20 most relevant genes
(gene expression data). The DLBCL gene expression data of the GEO dataset GSE10846 of the Lymphoma/Leukemia
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Molecular Profiling Project (LLMPP) was used to predict the expression of the CASP8 as a quantitative target variable. In
this analysis, the predictors were the 20,863 genes of the gene expression array. Conversely to the analysis of the Tokai
cases, in the LLMPP data analyses the CASP8 is predicted as a quantitative variable, which we have not performed in our
previous publications (thus the novelty). In neural networks, the predicted by observed chart is used for continuous targets
and displays a binned scatterplot of the predicted values on the vertical axis by the observed values on the horizontal axis.
The importance of each predictor in making the prediction is shown in the independent variable importance figure. The
synaptic weights from the output of the network and the normalized importance chart are available on request from the
corresponding author (Carreras J). Typically, the modelling will focus on the predictor fields that matter most and those that
matter least will be dropped or ignored. Therefore, the neural network was repeated only with the top 20 genes. In addition
to the neural network analysis, this figure also shown the result of the CHAID decision tree.

4. Discussion

This research focused on the analysis of Caspase-8 in DLBCL from Tokai University
Hospital. The protein expression of Caspase-8 was evaluated by immunohistochemistry,
followed by marker quantification by digital image analysis. We found that high Caspase-8
protein expression was associated with a favorable prognosis of the patients, including a
favorable overall and progression-free survival.

Apoptosis is a term to designate programmed cell death. The mechanism of cell
death has multiple roles, including a function in the pathogenesis, homeostasis, and
control of several types of infection, as well as in cancer [41]. Excessive cell damage results
in passive necrosis. On the other hand, the mechanism of cell death can be triggered
by several molecular programs including cellular stress, oncogenic changes that involve
tumor suppressor genes and oncogenes, several pathogens, and other immune mechanisms.
Apoptosis is one of the most known and studied types of programmed cell death [41];
other types of programmed cell death are necroptosis, pyroptosis, ferroptosis, mitotic
catastrophy and autophagic cell death, among others [41]. The pathway of apoptosis
includes an extrinsic (controlled death receptors of the TNFR superfamily) and an intrinsic
(mitochondrial) pathway. Interestingly, ligation of these death receptors induces both
activation of extrinsic apoptosis and necroptosis, and the balance between these two
pathways determines whether the cell lives. Caspase-8 has a role in initiating of extrinsic
apoptosis and inhibiting necroptosis [41]. Caspase-8 activates Caspase-3 by proteolytic
cleavage, and then Caspase-3 cleaves other vital cellular proteins or other caspases, which
result in activation of cPARP, which eventually leads to apoptosis [42–44].

In DLBCL, the mechanisms of cell survival are dysregulated [45]. Dysregulation of
an inhibitor of apoptosis proteins (IAPs) has been described in DLBCL [45]. For example,
overexpression of XIAP (an apoptosis inhibitor) was associated with a worse outcome in
DLBCL [46]. Another inhibitor, the Survivin, was also found overexpressed in DLBCL [47]
and in ABC molecular type DLBCL the overexpression was also associated to a poor
prognosis [47]. Besides, we recently described that high expression of another apoptosis
inhibitor (TNFAIP8) was associated with a poor prognosis of DLBCL [40]. In this project
the protein expression of Caspase-8 was analyzed in a series of Tokai University’s, and
we found that high expression was associated with a favorable survival of the patients.
Therefore, while anti-apoptosis seems to be associated to a poor prognosis of DLBCL, the
pro-apoptosis Caspase-8 associates to a favorable outcome of the patients.

In DLBCL there is also dysregulation of TP53 [45], which includes not only muta-
tions or deletions of TP53, but also alterations of TP53 pathways-related markers of BCL6,
MDM2, CDKN2A, etc. In this research some of these markers were analyzed by immuno-
histochemistry in the Tokai series, and the relationship between them as well as with
Caspase-8 was explored as shown in Figure 1. In addition, using several modeling anal-
yses, we showed how these markers correlated with the Caspase-8 expression, either as
positive or negative correlation, so a pathogenic model can be postulated. For example, the
Caspase-8 expression could be calculated as 0.2*MYC + −0.2*MDM2 + 0.9*E2F1 + 0.1*BCL2
+ −0.3*TP53 + −1.7*cPARP + 3.1*cCASP3 − 2.697.
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This research focused on the analysis of Caspase-8 in a series of Tokai University’s and
we found that high protein expression of Caspase-8 correlated with a favorable outcome of
the patients, both the overall survival and the progression-free survival. As shown in the
Figure 6, the 30% of the patients with high Caspase-8 expression had a favorable overall
survival. At the 10-years’ time, around 80% of the patients with high Caspase-8 expression
were still alive. Conversely, at that time only 40% were alive in the low expression group.
This finding was important and to the best of our knowledge, to date, this association
has not been reported in DLBCL. Nevertheless, the Caspase-8 did not correlate with the
conventional clinicopathological variables that are usually associated with the prognosis
of DLBCL such as the cell-of-origin molecular classifications (Hans’ algorithm) and the
International Prognostic Index (IPI) that integrates the clinical variables of age, performance
status, LDH, extranodal sites and stage. Therefore, a functional network association
analysis was performed, markers associated to Caspase-8 were identified (Figure 1), and
finally several types of predictive modeling were tested.

Predictive analytics was performed to model the immunohistochemical expression
of Caspase-8 as a dichotomic variable (high vs. low, using the same 8.7% cut-off for the
overall survival analysis) with the other Caspase-8-related markers, which were used as
quantitative variables.

Twelve different models were executed, including the algorithms of C5.0 node that
builds a decision tree or a rule set, logistic regression, Bayesian Network, discriminant
analysis, k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Tree-AS decision tree,
Chi-squared Automatic Interaction Detection (CHAID) decision tree, Classification and
Regression (C&R) Tree and Neural Network. All these models of data mining are tools that
enable to develop predictive models using the research experimental data. This data mining
process allowed better results and data interpretation, and integrated methods of machine
learning, artificial intelligence, and statistics. Of note, each method had certain strengths
and was best suited for particular types of problems. Among the 12 different models
that were executed, 9 models predicted the Caspase-8 protein expression as a dichotomic
variable (high vs. low). When ranked according to their overall accuracy for Caspase-8
prediction, the results were as follows: CHAID tree (92%, 4 variables), Bayesian Network
(88%, 12 variables), C5 tree (85%, 2 variables), Logistic regression (83%, 12 variables)
and Neural network (80%, 12 variables). The results of all these types of analysis were
compatible between them, and each model provided insights into the relationship between
Caspase-8 and the rest of the markers. Nevertheless, as previously stated, each method
had strengths and weaknesses. For example, the decision trees had an overall accuracy
that ranged from 92% for the CHAID tree to 85% of the C5 tree. This means that prediction
of Caspase-8 was successful, although variable. Nevertheless, in these models not all the
markers were used in the final model, so the relevance of some of the markers cannot be
properly assessed. The Bayesian Network built a probabilistic model and made use of all
the markers. Bayesian Networks are very robust where information is missing and make
the best possible prediction using whatever information is present. Causal relationships
between nodes may be represented but the links in the network (i.e., arcs) do not necessarily
represent direct cause and effect. The logistic regression (i.e., nominal regression) classifies
records based on values of input fields. It is comparable to the linear regression, but the
target variable is categorical instead of numeric. This method had the strength of allowing
us to know which were the most relevant markers for the prediction of Caspase-8, with
information of the direction of the association (increase or decrease) and the strength of that
association. Neural networks are simple models of the way the nervous system operates.
The basic units are neurons, which are typically organized into layers. There are three
parts in a neural network: the input, the hidden and the output layers. The network learns
thorough training. Since the output is known, as the training progresses the network
becomes increasingly accurate in replicating the known outcomes. Since the deep neural
networks have a multilayer non-linear structure (i.e., black box model), neural networks
are criticized to be non-transparent because their predictions are not traceable by humans.
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In our analysis we could rank the markers according to their normalized importance for
Caspase-8 prediction, but the reason for this association was elusive because the synaptic
weights are only sort of meaningful. In summary, we used a series of algorithms to create
classification models. Each model used the values of the input fields (our markers) to
predict the value of one output or target field (Caspase-8 as a dichotomic variable, high
vs. low), and the integration of all the information made the results more understandable
(explainable). As shown in Table 10, the most relevant markers associated with Caspase-8
were the following: cCASP3, E2F1, TP53, cPARP, MDM2, BCL2 and TNFAIP8. Caspase
3, PARP, BCL2 are known markers closely related to apoptosis. Therefore, it makes sense
that they were highly associated with Caspase-8. Nevertheless, some of the markers are
also associated with other pathways. MDM2 is a ligase that inhibits the p53 and p73-
mediated cell cycle arrest and apoptosis [31]. The p53 protein is a tumor suppressor that
also controls the cell cycle and induces apoptosis. MYC proto-oncogene is a transcription
factor that activates the transcription of growth-related genes and promotes angiogenesis.
Ki67 has a role in chromatin organization and it is a widely used marker of cell proliferation.
E2F1 is also involved in the cell cycle. CDK6 is a kinase that also controls the G1/S cell
cycle transition and the cell differentiation [31]. MYB also controls the cell cycle and cell
differentiation. LMO2 is a nuclear marker of normal B lymphocytes of the germinal centers,
and DLBCL is supposed to be developed from these lymphocytes. Finally, TNFAIP8 is a
negative regulator of apoptosis and plays a role in tumor progression [31]. In summary, the
most relevant markers that we have highlighted belonged to the apoptosis and the control
of cell cycle.

Finally, the Capase-8 gene expression as a quantitative variable was also analyzed in
an independent series of DLBCL of the LLMPP, as the relationship with other genes could
also be successfully explored. The most relevant gene was MED29, a component of the
Mediator complex that is involved in the regulation of transcription [31]. MED29 has been
related to prostate cancer [48].

Future research directions should include analyzing the same markers in larger series
of DLBCL to validate our findings. In addition, in-vitro or in-vivo analyses may also help
to clarify the pathological function of Caspase-8 in DLBCL.

5. Conclusions

In conclusion, high immunohistochemical protein expression of Caspase-8 is asso-
ciated with a favorable overall survival and progression-free survival of the patients in
a series of DLBCL from Tokai University Hospital. The relationship of Caspase-8 with
other related markers could also be confirmed by predictive analytics including decision
trees, Bayesian network, logistic regression and artificial neural networks. Therefore, the
immunohistochemical analysis of Caspase-8 could be implemented in the routine diagnosis
of DLBCL as a prognostic marker.
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