41 research outputs found

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Study of the best linear approximation of nonlinear systems with arbitrary inputs

    Get PDF
    System identification is the art of modelling of a process (physical, biological, etc.) or to predict its behaviour or output when the environment condition or parameter changes. One is modelling the input-output relationship of a system, for example, linking temperature of a greenhouse (output) to the sunlight intensity (input), power of a car engine (output) with fuel injection rate (input). In linear systems, changing an input parameter will result in a proportional increase in the system output. This is not the case in a nonlinear system. Linear system identification has been extensively studied, more so than nonlinear system identification. Since most systems are nonlinear to some extent, there is significant interest in this topic as industrial processes become more and more complex. In a linear dynamical system, knowing the impulse response function of a system will allow one to predict the output given any input. For nonlinear systems this is not the case. If advanced theory is not available, it is possible to approximate a nonlinear system by a linear one. One tool is the Best Linear Approximation (Bla), which is an impulse response function of a linear system that minimises the output differences between its nonlinear counterparts for a given class of input. The Bla is often the starting point for modelling a nonlinear system. There is extensive literature on the Bla obtained from input signals with a Gaussian probability density function (p.d.f.), but there has been very little for other kinds of inputs. A Bla estimated from Gaussian inputs is useful in decoupling the linear dynamics from the nonlinearity, and in initialisation of parameterised models. As Gaussian inputs are not always practical to be introduced as excitations, it is important to investigate the dependence of the Bla on the amplitude distribution in more detail. This thesis studies the behaviour of the Bla with regards to other types of signals, and in particular, binary sequences where a signal takes only two levels. Such an input is valuable in many practical situations, for example where the input actuator is a switch or a valve and hence can only be turned either on or off. While it is known in the literature that the Bla depends on the amplitude distribution of the input, as far as the author is aware, there is a lack of comprehensive theoretical study on this topic. In this thesis, the Blas of discrete-time time-invariant nonlinear systems are studied theoretically for white inputs with an arbitrary amplitude distribution, including Gaussian and binary sequences. In doing so, the thesis offers answers to fundamental questions of interest to system engineers, for example: 1) How the amplitude distribution of the input and the system dynamics affect the Bla? 2) How does one quantify the difference between the Bla obtained from a Gaussian input and that obtained from an arbitrary input? 3) Is the difference (if any) negligible? 4) What can be done in terms of experiment design to minimise such difference? To answer these questions, the theoretical expressions for the Bla have been developed for both Wiener-Hammerstein (Wh) systems and the more general Volterra systems. The theory for the Wh case has been verified by simulation and physical experiments in Chapter 3 and Chapter 6 respectively. It is shown in Chapter 3 that the difference between the Gaussian and non-Gaussian Bla’s depends on the system memory as well as the higher order moments of the non-Gaussian input. To quantify this difference, a measure called the Discrepancy Factor—a measure of relative error, was developed. It has been shown that when the system memory is short, the discrepancy can be as high as 44.4%, which is not negligible. This justifies the need for a method to decrease such discrepancy. One method is to design a random multilevel sequence for Gaussianity with respect to its higher order moments, and this is discussed in Chapter 5. When estimating the Bla even in the absence of environment and measurement noise, the nonlinearity inevitably introduces nonlinear distortions—deviations from the Bla specific to the realisation of input used. This also explains why more than one realisation of input and averaging is required to obtain a good estimate of the Bla. It is observed that with a specific class of pseudorandom binary sequence (Prbs), called the maximum length binary sequence (Mlbs or the m-sequence), the nonlinear distortions appear structured in the time domain. Chapter 4 illustrates a simple and computationally inexpensive method to take advantage this structure to obtain better estimates of the Bla—by replacing mean averaging by median averaging. Lastly, Chapters 7 and 8 document two independent benchmark studies separate from the main theoretical work of the thesis. The benchmark in Chapter 7 is concerned with the modelling of an electrical Wh system proposed in a special session of the 15th International Federation of Automatic Control (Ifac) Symposium on System Identification (Sysid) 2009 (Schoukens, Suykens & Ljung, 2009). Chapter 8 is concerned with the modelling of a ‘hyperfast’ Peltier cooling system first proposed in the U.K. Automatic Control Council (Ukacc) International Conference on Control, 2010 (Control 2010)

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    Moderne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensätzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe Linearität. Die Gewährleistung einer ausreichenden Linearität ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends für Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfügbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz über einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von Nichtlinearitäten in Empfängern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der Vorwärtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die Lücken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgeführt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender Empfänger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. Darüber hinaus wird die Leistungsfähigkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. Zusätzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen Domäne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive Linearität des HF-Frontends stark erhöht werden. Damit wird der zuverlässige Betrieb eines einfachen Funkmoduls unter dem Einfluss der Empfängernichtlinearität möglich. Aufgrund des flexiblen Designs ist der Algorithmus für breitbandige Empfänger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschränkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios

    System Engineering Applied to Fuenmayor Karst Aquifer (San Julián de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica)

    Get PDF
    La ingeniería de sistemas, definida generalmente como arte y ciencia de crear soluciones integrales a problemas complejos, se aplica en el presente documento a dos sistemas naturales, a saber, un sistema acuífero kárstico y un sistema glaciar, desde una perspectiva hidrológica. Las técnicas de identificación, desarrolladas típicamente en ingeniería para representar sistemas artificiales por medio de modelos lineales y no lineales, pueden aplicarse en el estudio de los sistemas naturales donde se producen fenómenos de acoplamiento entre el clima y la hidrosfera. Los métodos evolucionan para afrontar nuevos campos de identificación donde se requieren estrategias para encontrar el modelo idóneo adaptado a las peculiaridades del sistema. En este sentido, se han considerado especialmente las herramientas basadas en la transformada wavelet utilizadas en la preparación de series temporales, suavizado de señales, análisis espectral, correlación cruzada y predicción, entre otros. Bajo este enfoque, una aplicación a mencionar entre las tratadas en esta tesis, es la determinación analítica del núcleo efectivo estacional (SEC) a través del estudio de la coherencia wavelet entre temperatura del aire y la descarga del glaciar, que establece un conjunto de períodos de muestreo aceptablemente coherentes, a partir del cual se crearán los modelos del sistema glacial. El estudio está dirigido específicamente a estimar la influencia de la precipitación sobre la descarga del acuífero kárstico de Fuenmayor, en San Julián de Banzo, Huesca, España. De la misma manera, se ocupa de las consecuencias de la temperatura del aire en la fusión del hielo glaciar, que se manifiesta en la corriente de drenaje del glaciar Collins, isla King George, Antártida. En el proceso de identificación paramétrica y no paramétrica se buscan los modelos que mejor representen la dinámica interna del sistema. Eso conduce a pruebas iterativas, donde se van creando modelos que se verifican sistemáticamente con los datos reales del muestreo, de acuerdo a un criterio de eficiencia dado. La solución mejor valorada según los resultados obtenidos en los casos tratados apuntan a estructuras de modelos en bloques. Esta tesis significa una exposición formal de la metodología de identificación de sistemas propios de la ingeniería en el contexto de los sistemas naturales, que mejoran los resultados obtenidos en muchos casos de la hidrología kárstica que comúnmente usaban métodos ad hoc ocasionales de carácter estadístico; así mismo, los enfoques propuestos en los casos de glaciología con el análisis wavelet y los modelos orientados a datos raramente considerados en la literatura, revelan información esencial ante la imposibilidad de precisar la totalidad de la física que rige el sistema. Notables resultados se derivan en la caracterización de la respuesta del manantial de Fuenmayor y su correlación con la precipitación, desde la perspectiva de un sistema lineal, que se complementa con los métodos de identificación basados en técnicas no lineales. Así mismo, la implementación del modelo para el glaciar Collins, obtenido también mediante métodos de identificación de caja negra, puede revelar una inestabilidad de los límites de los periodos activos de la descarga, y consecuentemente la variabilidad en la tendencia actual en el cambio climático global

    Regularized System Identification

    Get PDF
    This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors’ reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. This is an open access book
    corecore