1,515 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Single and Multiresponse Adaptive Design of Experiments with Application to Design Optimization of Novel Heat Exchangers

    Get PDF
    Engineering design optimization often involves complex computer simulations. Optimization with such simulation models can be time consuming and sometimes computationally intractable. In order to reduce the computational burden, the use of approximation-assisted optimization is proposed in the literature. Approximation involves two phases, first is the Design of Experiments (DOE) phase, in which sample points in the input space are chosen. These sample points are then used in a second phase to develop a simplified model termed as a metamodel, which is computationally efficient and can reasonably represent the behavior of the simulation response. The DOE phase is very crucial to the success of approximation assisted optimization. This dissertation proposes a new adaptive method for single and multiresponse DOE for approximation along with an approximation-based framework for multilevel performance evaluation and design optimization of air-cooled heat exchangers. The dissertation is divided into three research thrusts. The first thrust presents a new adaptive DOE method for single response deterministic computer simulations, also called SFCVT. For SFCVT, the problem of adaptive DOE is posed as a bi-objective optimization problem. The two objectives in this problem, i.e., a cross validation error criterion and a space-filling criterion, are chosen based on the notion that the DOE method has to make a tradeoff between allocating new sample points in regions that are multi-modal and have sensitive response versus allocating sample points in regions that are sparsely sampled. In the second research thrust, a new approach for multiresponse adaptive DOE is developed (i.e., MSFCVT). Here the approach from the first thrust is extended with the notion that the tradeoff should also consider all responses. SFCVT is compared with three other methods from the literature (i.e., maximum entropy design, maximin scaled distance, and accumulative error). It was found that the SFCVT method leads to better performing metamodels for majority of the test problems. The MSFCVT method is also compared with two adaptive DOE methods from the literature and is shown to yield better metamodels, resulting in fewer function calls. In the third research thrust, an approximation-based framework is developed for the performance evaluation and design optimization of novel heat exchangers. There are two parts to this research thrust. First, is a new multi-level performance evaluation method for air-cooled heat exchangers in which conventional 3D Computational Fluid Dynamics (CFD) simulation is replaced with a 2D CFD simulation coupled with an e-NTU based heat exchanger model. In the second part, the methods developed in research thrusts 1 and 2 are used for design optimization of heat exchangers. The optimal solutions from the methods in this thrust have 44% less volume and utilize 61% less material when compared to the current state of the art microchannel heat exchangers. Compared to 3D CFD, the overall computational savings is greater than 95%

    ONLINE APPROXIMATION ASSISTED MULTIOBJECTIVE OPTIMIZATION WITH HEAT EXCHANGER DESIGN APPLICATIONS

    Get PDF
    Computer simulations can be intensive as is the case in Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). The computational cost can become prohibitive when using these simulations with multiobjective design optimization. One way to address this issue is to replace a computationally intensive simulation by an approximation which allows for a quick evaluation of a large number of design alternatives as needed by an optimizer. This dissertation proposes an approach for multiobjective design optimization when combined with computationally expensive simulations for heat exchanger design problems. The research is performed along four research directions. These are: (1) a new Online Approximation Assisted Multiobjective Optimization (OAAMO) approach with a focus on the expected optimum region, (2) a new approximation assisted multiobjective optimization with global and local metamodeling that always produces feasible solutions, (3) a framework that integrates OAAMO with multiscale simulations (OAAMOMS) for design of heat exchangers at the segment and heat exchanger levels, and (4) applications of OAAMO combined with CFD for shape design of a header for a new generation of heat exchangers using Non-Uniform Rational B-Splines (NURBS). The approaches developed in this thesis are also applied to optimize a coldplate used in electronic cooling devices and different types of plate heat exchangers. In addition many numerical test problems are solved by the proposed methods. The results of these studies show that the proposed online approximation assisted multiobjective optimization is an efficient approach that can be used to predict optimum solutions for a wide class of problems including heat exchanger design problems while reducing significantly the computational cost when compared with existing methods

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Optimal frequency control in microgrid system using fractional order PID controller using Krill Herd algorithm

    Get PDF
    This paper investigates the use of fractional order Proportional, Integral and Derivative (FOPID) controllers for the frequency and power regulation in a microgrid power system. The proposed microgrid system composes of renewable energy resources such as solar and wind generators, diesel engine generators as a secondary source to support the principle generators, and along with different energy storage devices like fuel cell, battery and flywheel. Due to the intermittent nature of integrated renewable energy like wind turbine and photovoltaic generators, which depend on the weather conditions and climate change this affects the microgrid stability by considered fluctuation in frequency and power deviations which can be improved using the selected controller. The fractional-order controller has five parameters in comparison with the classical PID controller, and that makes it more flexible and robust against the microgrid perturbation. The Fractional Order PID controller parameters are optimized using a new optimization technique called Krill Herd which selected as a suitable optimization method in comparison with other techniques like Particle Swarm Optimization. The results show better performance of this system using the fractional order PID controller-based Krill Herd algorithm by eliminates the fluctuations in frequency and power deviation in comparison with the classical PID controller. The obtained results are compared with the fractional order PID controller optimized using Particle Swarm Optimization. The proposed system is simulated under nominal conditions and using the disconnecting of storage devices like battery and Flywheel system in order to test the robustness of the proposed methods and the obtained results are compared.У статті досліджено використання регуляторів пропорційного, інтегрального та похідного дробового порядку (FOPID) для регулювання частоти та потужності в електромережі. Запропонована мікромережева система складається з поновлюваних джерел енергії, таких як сонячні та вітрогенератори, дизельних генераторів як вторинного джерела для підтримки основних генераторів, а також з різних пристроїв для накопичування енергії, таких як паливна батарея, акумулятор і маховик. Через переривчасту природу інтегрованої відновлювальної енергії, наприклад, вітрогенераторів та фотоелектричних генераторів, які залежать від погодних умов та зміни клімату, це впливає на стабільність мікромережі, враховуючи коливання частоти та відхилення потужності, які можна поліпшити за допомогою вибраного контролера. Контролер дробового порядку має п’ять параметрів порівняно з класичним PID-контролером, що робить його більш гнучким та надійним щодо збурень мікромережі. Параметри PID-контролера дробового порядку оптимізовані за допомогою нової методики оптимізації під назвою «зграя криля», яка обрана як підходящий метод оптимізації порівняно з іншими методами, такими як оптимізація методом рою частинок. Результати показують кращі показники роботи цієї системи за допомогою алгоритму «зграя криля», заснованого на PID-контролері дробового порядку, виключаючи коливання частоти та відхилення потужності порівняно з класичним PID-контролером. Отримані результати порівнюються з PID-контролером дробового порядку, оптимізованим за допомогою оптимізації методом рою частинок. Запропонована система моделюється в номінальному режимі роботи та використовує відключення накопичувальних пристроїв, таких як акумулятор та маховик, щоб перевірити надійність запропонованих методів та порівняти отримані результати

    A review of design optimization methods for electrical machines

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Electrical machines are the hearts of many appliances, industrial equipment and systems. In the context of global sustainability, they must fulfill various requirements, not only physically and technologically but also environmentally. Therefore, their design optimization process becomes more and more complex as more engineering disciplines/domains and constraints are involved, such as electromagnetics, structural mechanics and heat transfer. This paper aims to present a review of the design optimization methods for electrical machines, including design analysis methods and models, optimization models, algorithms and methods/strategies. Several efficient optimization methods/strategies are highlighted with comments, including surrogate-model based and multi-level optimization methods. In addition, two promising and challenging topics in both academic and industrial communities are discussed, and two novel optimization methods are introduced for advanced design optimization of electrical machines. First, a system-level design optimization method is introduced for the development of advanced electric drive systems. Second, a robust design optimization method based on the design for six-sigma technique is introduced for high-quality manufacturing of electrical machines in production. Meanwhile, a proposal is presented for the development of a robust design optimization service based on industrial big data and cloud computing services. Finally, five future directions are proposed, including smart design optimization method for future intelligent design and production of electrical machines
    corecore