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Abstract: Due to the curse of dimensionality caused by the increasing number of objectives, it is very 

challenging to tackle many-objective optimization problems (MaOPs). Aiming to alleviate the loss of selection 

pressure in the fitness evaluation for MaOPs, this paper proposes a novel evolutionary optimization framework, 

called Tk-MaOEA, based on transfer learning assisted by Kriging model. In this approach, in order to achieve 

global space optimization, transfer learning is used as a map tool to reduce the objective space, i.e., devising 

transfer matrix to simplify the optimization process. For the objective optimization, the Kriging model is 

appropriately incorporated in order to further reduce computation cost. Accordingly, any EA-based paradigm or 

search strategy can be integrated into this framework. Fast non-dominated sorting and farthest-candidate 

selection (FCS) methods are used to guarantee the diversity of non-dominated solutions. Comprehensive 

evaluations on a set of benchmark functions have been conducted to show that the proposed Tk-MaOEA is 

efficietive for solving complex MaOPs. 
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1. Introduction 

Multi-objective optimization problems (MOPs) occur in many real-world applications, in which multiple 

conflicting objectives need to be solved in order to find a set of optimal [1, 2]. Accordingly, the solutions to these 

MOPs, referred as Pareto-optimal solutions (PS), denote a possible reasonable trade-off between all involved 

objectives. And the image of PS in the objective space is known as Pareto front (PF) [3, 4]. When MOPs have 

more than three objectives, they are called as many-objective optimization problems (MaOPs) [5-7]. As an 

effective optimization paradigm for MOPs, the multi-objective evolutionary algorithms (MOEAs) have been 

widely developed, being endowed with a powerful search ability to approximate the PF. However, most MOEAs, 
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especially inevitably suffer from severe degradation in performance on MaOPs [5-9]. This is caused by the 

called curse of dimensionality w.r.t the difficulty of optimizing large number of objectives. 

Experimental results [8, 9] have shown that traditional Pareto-dominance-based approaches, e.g., NSGA-II 

[10] and SPEA2 [11], encounter several serious difficulties when dealing with MaOPs as following. 

First, compared with 2- or 3-objective MOPs, the high-dimensional MaOPs would render the Pareto 

optimality, which is unable to provide enough selection pressure to evolve the solutions towards the true PF. As 

the number of objectives increases, most of the obtained solutions become non-dominated to each other very 

quickly, resulting in the loss of selection pressure to drive the solutions to approximate the PF, which have been 

reported well in the literatures [12,13]. When the number of objectives rises over five, the proportion of 

non-dominated solutions in the population will reach more than 90% [14]. Thus, it is difficult to differentiate 

preferred solutions from innumerable non-dominated solutions obtained during the search process. Moreover, the 

many-objective optimization inevitably encounters the inability of exploring both convergence and diversity for 

the approximation of the true PF.  

Second, the extensive search in a high-dimensional space would seriously undermine the efficiency of 

algorithmic operators, such as mating selection and variation [15]. As confirmed in [16, 17], in a variation 

process, the new offspring produced by two nearly converged solutions, which are required to approach along its 

original direction, would contrarily move far away the true PF. This causes the failure of the final population to 

converge to the PF, despite spreading all over the objective space. As a result, the EAs for MaOPs (also called 

MaOEAs) can only explore a limited region in a large search space, whereas being trapped in local segments of 

the PF due to the invalid evolutionary operators. 

In addition, due to the large search space, the diversity based selection criterion would be harmful to 

facilitate the convergence of the obtained solutions, when it is activated in the selection process of 

non-dominated solutions. For example, experimental results in [13] show that the diversity maintenance 

mechanism in NSGA-II plays a negative role in the convergence performance on the 5-, and 10-objective 

DTLZ2 instances. 

There are also some other problems, such as visualization of multi-dimensional objectives, high computation 

expense, and determination of an appropriate population size. Even if the PF is attainable, there are no effective 

methods to visualize the front. A large number of solutions in the high-dimensional objective space need to be 

selected and measured as the representations of PF, which is of computation cost.  

In order to overcome the above difficulties, the dimensionality reduction scheme is naturally considered, to 

reduce the number of objectives while trying to maintain the information of the objectives as much as possible. 
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For example, an effective approach, which uses the principle component analysis approach, has been proposed to 

determine the correlation between lower dimensions of each objective [18]. This approach relies on iterative 

progresses from the interior of the objective space towards the PF.  A preset approximated front of 

non-dominated solutions is used to determine the redundant objectives [19]. However, in many real-world 

conditions, the problem's objectives sometimes cannot be reduced only according to the order of importance. 

This causes the ineffectiveness of above methods. Furthermore, even if a relatively small number of objectives 

can be reduced, it is not helpful to tackle the problem effectively in some specific cases. 

This paper presents a new transfer learning method with Kriging model based MaOEA (Tk-MaOEA) without 

any reference vectors or points in advance, in order to alleviate effect of the curse of dimensionality in MaOPs. 

One of our main ideas is to reduce the complexity of large search space by using multi-dimensional compression 

based on transfer learning. At the global space optimization level, a new transfer learning approach is proposed 

to reduce the number of objectives, while the property of the objectives in the high-dimensional search space is 

still kept during the transferring process. In the proposed approach, the redundant dimensions are compressed 

using a transfer matrix with Gram-Schmidt orthogonalization. At the objective optimization level, Kriging 

models are utilized to reduce the number of expensive evaluations by approximating each objective value. By 

using these mechanisms, we can follow the idea of improving the effectiveness of Pareto optimality and 

overcoming the difficulty of the extremely large search space. 

In Tk-MaOEA, the primary principle is to use transfer matrix for dimensionality reduction to enforce the 

population evolution to be limited in a low-dimensional search space. As a result, the simplified optimization in 

the small objective space not only guarantees the effectiveness of conventional evolutionary operators, but also 

facilitates improving the performance of Pareto optimality. Afterward, when optimizing the simplified 

low-dimensional MaOP, the Kriging model is constructed for each objective to enhance the objective 

optimization, by using the Latin hypercube sampling (LHS) method. In this proposed design, the transfer 

learning and Kriging model with FCS strategy perform distinctly, yet complementarily. Transfer learning offers 

the convergence power, while the FCS assisted by Kriging model enhances the primary diversity power.  

Generally, the conventional work only focuses on the monotonous combination of surrogate models into 

conventional EA algorithms. In contrary, our design focuses the importance of the combinational contribution of 

the Kriging and transfer learning to the optimization goal. Tk-MaOEA utilizes and maximizes the benefits of 

Kriging model to assist the dimensionality reduction scheme for complex many-objective optimization. Our 

contributions mainly include: 

1) At the global space optimization level, a new transfer learning approach is developed to reduce a large 
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number of objectives while the original property of the problem is kept well. The proposed approach uses a 

specific transfer matrix to compress the search space, which is simple yet effective to handle with the curse of 

dimensionality in MaOPs. 

2) At the objective optimization level, the Kriging model is devised for each objective to further reduce 

computational cost. This Bayesian based surrogate model is to measure not only the objective value itself but 

also stochastic error of the approximation, which is essentially conductive to improve the accuracy of the 

optimization. 

3) The multi-scale normalization approach is employed so as to avoid the distortion caused by conventional 

normalization in the high-dimensional objective space. This is a significant operation for the MaOEA to keep 

unchanged spatial distribution when the original population are normalized. 

4) The FCS approach is incorporated instead of the traditional crowding distance method in the 

environmental selection. This approach is more effective to select a set of representative non-dominated 

solutions in a single run. 

The remainder of this paper is organized as follows. Section 2 elucidates related works. In Section 3 the 

proposed algorithm is given in detail. In Section 4, the experiment is conducted on a serial of well-defined test 

functions. Finally, Section 5 outlines the conclusions. 

2. Related works 

2.1 Many-objective optimization 

An MOP with only box constraints is defined as follows: 

                         (1) 

where x=(x1,…,xn) is n-dimensional decision vector from the decision space Rn; F: Rn→Rm is a mapping function 

from Rn to an objective space Rm, involving m objectives; k and q are the number of inequality and equality 

constraints, respectively. If m >3, the problem is also referred as a MaOP. 

1) Given two solutions X1, X2 Rn, X1 dominates X2, i.e., X1 X2, if i {1,2,...,m}, fi(X1) fi(X2) and 

i {1,2,...,m}, fi(X1)<fi(X2).  

2) Any solution x Rn can be referred as a Pareto-optimal solution or non-dominated solution if no other 

feasible solutions dominate x in Rn. 

3) The set of all Pareto-optimal solutions in the objective space is said to be the Pareto set (PS), and the 
plotted non-dominated solutions or PS is called the Pareto front (PF), i.e., . 

To tackle these MaOPs, many MaOEAs have been developed deliberately, including the following classes. 
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First, decomposition-based algorithms divide a complex MaOP into a set of scalar sub-problems and solve 

them in a cooperative manner. For example, MOEA/D [20] uses the weighted sum or Chebyshev method to 

select individuals for next generation, while the neighborhood of subproblems are incorporated. Then, several 

variants have been proposed [17, 21, 22]. Reference [17] develops a new double-level archive mechanism based 

on the framework of MOEA/D to maintain both convergence and diversity of solutions, and reference [11] 

proposes an improved MOEA/D variant called MOEA/D-EGO to reduce the computation cost. 

The second approach is based on the idea of quality indicators. These indicators can be directly used as the 

fitness assignment to guide the evolutionary process. IBEA [23] has exhibited a prominent ability of converging 

to PF at a high pace. However, the diversity of population is not maintained appropriately [23]. Accordingly,  a 

novel indicator S is used to improve the convergence and diversity simultaneously [24]. Likewise, in [25] an 

effective indicator R2 is proposed in MOMBI. Another interesting approach, the hypervolume (HV), can measure 

both the convergence and diversity, but it consumes much computation cost [26]. 

The third one is the relaxed dominance based approach. Those algorithms strike to alleviate the inefficiency 

of Pareto dominance via enhancing the selection pressure, such as Pareto ε-dominance [27], Pareto α-dominance 

[28] and controlling Pareto dominance area [29]. It has been validated experimentally that these approaches are 

more effective than traditional Pareto dominance. Furthermore, for the augment of selection pressure, several 

new strategies are developed to make a solution be dominated by others more probably. The prominent examples 

include fuzzy-Pareto dominance [30], L-optimality [31], and ranking method [32]. Among those, one excellent 

approach GrEA [33] uses a grid-based measurement to differentiate and select the non-dominated solutions. In 

[34], a new farthest-candidate approach is proposed to replace the crowding distance mechanism in NSGA-II, 

and it is more effective to maintain the diversity of population. 

There are also some other hybrid algorithms, such as NSGA-III [35] and the improved two-archive MaOEA 

[36]. In NSGA-III, a number of well-distributed reference points are initialized to guide the population along 

specific directions for maintaining good diversity [35]. The improved two-archive cooperation mechanism 

proposed in [36] respectively assigns two different indicators to the two archives in order to handle with the 

convergence and diversity separately. Other approaches based on reference vectors or preference information 

have been proposed and developed well [37-40]. 

2.2 Dimensionality reduction 

In many-objective optimization, the dimensionality reduction technique aims to identify the potentially least 

amount of objectives to characterize the original optimization problem adequately [41-45]. Up to now, a variety 
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of valuable dimensionality reduction approaches have been developed. 

The first one is based on the idea of dominance relation preservation. Reference [41] proposes an effective 

objective reduction approach by preserving the dominance relations in the obtained PS. Specifically, given an 

objective f F (i.e., the objective set), if the dominance relations between objectives keep constant when f is 

deleted, then f is regarded to be non-conflicting with the other members in F. Furthermore, a novel greedy 

algorithm is developed to resolve δ-MOSS and k-EMOSS problems [41]. In [42], the conflict and non-conflict 

dominance relations between each pair of objectives are fist analyzed and then the non-conflicting ones are 

identified and amalgamated into one objective. 

The second class is unsupervised feature selection. In [43], the objective correlation is analyzed, and then 

the objectives with more distance to each other are processed as the more conflicting ones. In this approach, the 

objective set is grouped into a set of neighborhood subsets with the size q near each objective, and the 

neighborhood with the most compact structure is selected preferentially, whose central node is acquired and the 

corresponding neighbors are removed. Based on above paradigms, two algorithms have been developed to 

tackleδ-MOSS and k-EMOSS problems [43].  

The third one is the called Pareto corner search. Based on this principle, the algorithm in [44] explores only 

the corner segmentation of the PF, instead of searching for the entire PF. In this approach, the obtained 

non-dominated solutions are supposed to properly acquire the feature of the PF on each objective. Then the 

dimensionality reduction is accomplished with the assumption that it is acceptable to eliminating a redundant 

and an essential objective. 

The forth type is machine learning based dimensionality reduction. The new approaches in [45,46] take 

advantage of machine learning mechanism including principal component analysis (PCA) and maximum 

variance unfolding (MVU) to determine the priority of the dependences in the non-dominated solutions. 

Essentially, this scheme is based on the principle that high-dimensional solution structure can be well captured 

via minimizing the effect of noise and dependencies. 

Furthermore, several nonlinear dimensionality reduction approaches have been developed, such as kernel 

PCA [47] and graph-based algorithm [48]. Reference [49] introduces a graph-based method into the MVU 

mechanism, within which the low-dimensional representation is tackled by gradually unfolding the 

high-dimensional information manifold. In this method, the unfolding is accomplished according to the 

Euclidean distances between points while the distances, with the preservation of distances and angles between 

adjacent points. 

Î
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2.3 Surrogate models 

Recently many surrogate models have been employed to assist EAs as state-of-the-art search strategies 

[50-54]. For example, reference [51] proposes a surrogate model-aware search mechanism for medium scale 

computationally optimization problems, i.e., 20-50 decision variables, and a comparative study about 

surrogate-assisted multi-objective EA framework is conducted in [53]. These surrogate-assisted algorithms are 

able to effectively seek multiple optima and reduce the number of function evaluations by using information 

provided by surrogate models, e.g., Kriging methods [55–58]. These surrogate models may need additional 

computation costs and high usage of memory. It is stressed that these methods are increasingly useful as the 

problem complexity increases, because the computational cost caused by Kriging models is much less than that 

for function evaluations [59,60]. Hence, the surrogate models have significant potential to assist the 

dimensionality reduction scheme for many-objective optimization. 

Algorithm 1 Main Framework of Tk-MaOEA 

Input: N (population size), Max_Gen ( the maximum number of generations), TN(after transfer objectives number ) 

Output: P (final population) 

1: /* Initialization */ 

2: Randomly initialize a population P0 with N individuals 

3: Trt = zeros(N, TN) 

4: /* Main Loop */ 

5: While t ≤ Max_Gen do 

6: P't = Mating Selection(P,B) 

7: Qt = Variation(P't) 

8: S = Pt � Qt 

9: T=Transfer matrix(Pt, TN) 

10: Trt = St * T 

11: Multi-scale normalization(Trt)   

12: Totalt=[Pt, Trt] 

13: P = Environmental Selection (Totalt)  

12: t + + 

13:  End While 

 

3. Proposed algorithm 

3.1 Basic idea 

Our approach uses transfer matrix based space reduction to drive the population to move in a relatively low 
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dimensional search space, and then utilizes Kriging-assisted mechanism for each objective to enhance the 

exploration ability, based on the Latin hypercube sampling (LHS) method. In order to retain fast convergence as 

well as even distribution of the solutions, the farthest-candidate selection (FCS) is incorporated based on the fast 

non-dominated sorting approach in the environmental selection. As shown in Algorithm 1, the main framework 

of Tk-MaOEA is composed of the following components. First, in the initialization, N individuals are initialized 

randomly to form a parent population (Lines 1-2 in Algorithm 1). Second, a binary tournament strategy is 

adopted to select solutions from the parent population to generate an offspring population Q with N individuals 

using a variation operation (Lines 6-8 in Algorithm 1). The variation operation employs conventional crossover 

and mutation used in [10]. Then, the combined population is transformed via transfer matrix to low dimensional 

objective space (Lines 9-12 in Algorithm1). Finally, N solutions are selected from the combined population in 

the environmental selection procedure (Line 10 in Algorithm 1). In this procedure, the FCS method is employed 

to select elite individuals to maintain diversity of solutions for the next generation. These procedures repeat until 

a termination condition is me. The following subsections will show their details. 

Algorithm 2. Transfer matrix 

Input: P(population), TN(after transfer objectives number ) 

Output: transfer Matrix T 

1:  /*find the best individual */ 

2:  p*={p|best(P)}, p P 

3:  p*=normalization(p*) 

4:
 
While i< TN do 

5:  /* find the linearly independent unit vectors et with p* */ 

6:  p*= p*  et 

7:  i++ 

8:  End While
  

9:  p*T =Gram-Schmidt Orthogonalization(p*T) 

10:  T=[p*T] 

11: Return T. 

 

3.2.Transfer Matrix 

Algorithm 2 shows the main principle of transfer matrix. For each generation, the best Pbest is firstly selected 

(Lines 1-3 in Algorithm2). Then, the TN-1 linearly independent unit vectors are determined according to the Pbest 

(Lines 4--7 in Algorithm2). As a result, the transfer matrix is constructed to makes up with TN linearly 

independent column vectors. Next, the Gram-Schmidt Orthogonalization method is adopted for the 

Î
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orthogonalization of each column vector in the matrix, as shown in Algorithm 3. Accordingly, the first column in 

the transfer matrix is the best individual direction and other columns are the orthogonal direction with best 

individual, and each column is an unit. Theoretically, this transfer matrix can guide the other members in the 

population to learn from the best individual (refer to the proof of Theorem1 and Theorem 2 in Appendix). 

That is, the map lengths in the best individual direction and in the vertical individual direction can be used in the 

transfer learning. Therefore, a large number of objectives can be represented by a relatively small number of 

objectives, in virtue of the map length in the best individual direction and the map length of the other vertical 

individual direction. 

In Euclidean space, it is desired that linearly independent vectors are transformed to orthogonal vectors. For 

this purpose, the Gram-Schmidt Orthogonalization (GSO) operation is devised as shown in Algorithm 3. First, 

each vector in the orthogonal vector group should be normalized (Lines 2 and 5 in Algorithm 3). Next, the GSO 

operation is implemented by using a linear combination of the inner product (Line 4 in Algorithm 3). Finally, the 

orthogonalized vector group is obtained, which will play a positive role on the algorithm. 

Algorithm 3. Gram-Schmidt Orthogonalization 

Input: X(matrix) 

Output: Matrix X* 

1:  x1
*=x1   /* X=[x1,x2,...,xTN] */ 

2:    x1
*=normalization(x1

*) 

3:  While i< TN do 

4:  x1
*=xi -  

5:  xi
*= normalization(xi

*) 

6:   i++ 

7: End While
  

8: X*=[x1
*,x*

2,...,xTN
*]  

9: Return X*. 

 

3.3 Multi-scale nomination 

In the algorithm, it is desired to map them from a scaled objective space onto a normalized objective space. 

Note that, in many MaOPs such as WFG problems [50] and scaled DTLZ problems [51], their objective values 

are usually scaled disparately. In this case, the conventional normalization will generate a set of distorted 

solutions, whose spatial distribution is not consistent with the original ones. Therefore, as suggested in [52], 

1

1

,
,

i
i j

j
j j j

x x
x

x x

*-
*

* *
=
å



 

 10 

instead of normalizing the objectives, we use the Schur product to translate fi*(x) to Fi(x) according to the 

boundary range of the objective values, as 

                            (2) 

where fi'(x)=f(x)- zimin is the ith translated objective value, zimin and zimax are the ith ideal point and the ith nadir 

point, respectively. The binary operator  denotes the Schur product, which takes two matrices of the same 

dimensions, and produces another matrix where each element is the product of elements of the original two 

matrices. 

Algorithm 4 Environmental selection 

Input: P (combined population) 

Output: P' (new population) 

1: P =∅, i=1; 

3: (F1,F2,...) = Non-dominated-sorting (P)       

4:  While |P|+|Fi|<N+1 

5:     P= P  Fi and i=i+1 

6:    End While 

7:    The last front to be included Fl=Fi 

8:    If |P| = N 

9:      return P 

10:    Else  

11:     /* Apply FCS strategy */ 

12:       Solutions to be selected from Fl: K=N-|P| 

13:       Choose K solutions one by one from Fl to form the final P'.  

14:    End If 

15: Return P' 

 

3.4 Environmental selection 

Algorithm 4 illustrates the framework of environmental selection. Intuitively, this framework takes into 

consideration both the convergence and diversity of solutions, which are obtained by the Kriging-assisted 

mechanism and the FCS method, respectively. First, the traditional fast nondominated sorting is utilized to 

divide current solutions into different layers, and then the last layer Fl is determined (lines 3–6 in Algorithm 4). 

If the population size is equal to N, then return P. Otherwise, K (N −|P|) solutions from Fl are selected into P one 

by one by using the called FCS approach (lines 11-13 in Algorithm 4), as presented as below in details. 

3.4.1 The FCS approach 

*

*

'( ) ( - )( )
|| '( ) ( - ) ||

nad
i

i nad
i

f x z zF x
f x z z

=
!
!

!

!



 

 11 

In Tk-MaOEA, instead of the traditional crowded distance method [10], an improved selection approach FCS, 

is devised, as suggested in [64]. Its main procedures is shown in Algorithm 5. In principle, the unselected 

individuals with farthest Euclidean distance from current selected solutions are selected preferentially as 

candidates. Specifically, in order to select K elite individuals from the population, the boundary individuals with 

the smallest and largest fitness values are selected into the group of selected individuals (Lines 1-4 in 

Algorithm5). Then, the Euclidean distance between each solution and unselected ones are calculated and the 

minimum values of Euclidean distance are memorized (Lines 5-7 in Algorithm5). Finally, the farthest solutions 

are selected into Saccept (Lines 8-11 in Algorithm5). 

Algorithm 5. The FCS method 

1:  Saccept = ;  

2:       D[xi]=0, i=1,2…, N;    

3:  For each objective function fj(x), j=1,2…,m    

4:       Saccept = Saccept (fj(x)) (fj(x)); 

5:  Let Sm[x]=P-Saccept, for each individual x Sm, 

6:      D[xi] (dis(x,x’)); 

7:   For i=1 to K-|Saccept| 

8:     x1= (D[x]); 

9:       For each x2 P-Saccept 

10:        D[x2] min(D[x2],dis(x,x’)); 

11:         Saccept Saccept x1  

12:      End For 

13:     End For   

 

 

Fig. 1. Reference point definition using a ideal point of solutions on the Kriging models 
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Fig. 2. Illustration of solutions selection by FCS and CD 

The aim of the FCS method is to solve difficulties encountered by the crowded distance (CD) mechanism in 

particular situations where the solutions are not well-distributed. Take an example to illustrate, Fig. 2 shows 12 

solutions to be proceeded by optimizers, and most of them are very close to each other whereas the others are not. 

In this case, optimizers need to select 5 solutions from 12 solutions. These selection results obtained by FCS and 

CD are identified by red and green, respectively. It is apparent that the spread of solutions obtained by FCS is 

significantly better than that obtained by CD. This is because in the CD selection, the solution with a high 

density has a low chance to be selected, which may damage the spread of selected solutions. Fortunately, the 

FCS method can avoid this dilemma by using the principle of best-candidate sampling theory. 

3.4.2 Enhanced objective optimization based on Kriging model 

In Tk-MaOEA, the Kriging model is used for each objective function when the initial population is generated. 

Especially, following the approach in [65], the Kriging model is constructed by interpolating a number of 

uniformly-distributed individuals, initialized by Latin hypercube sampling (LHS) method [65]. Then, in the 

environmental selection process, the preferred solutions are selected from the Kriging model according to the 

estimated objective functions, as shown in Fig.1.  

The ordinary Kriging model represents the unknown function f (x), which is formulated as 

                               (3) 

where x is an m-dimensional decision vector, a(x) is a global model, and b(x) is a Gaussian process with N(0, σ2), 

which represents a local error with the global model. The correlation between b(xi) and b(xj) is strongly 

correlated to the distance between xi and xj. Here, we use the Gaussian function with a weighted distance to 

define the correlation as 

                      (4) 

where (0 ≤ < ∞) is the weight factor of the kth element of an m-dimensional weight vector . These 

weights maintain the anisotropy of the Kriging model and improve its accuracy. The predictor and uncertainty of 
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the Kriging are expressed as 

                               (5) 

                    (6) 

where  is the approximated value of b(x), R expresses the matrix whose (i, j) element is 

Corr(b(xi),b(xj)), r(x) is an n-dimensional vector whose ith element is Corr(b(xi),b(xj)), and then f and  are 

formulized as follows when there are n solutions 

                                        (7) 

                                         (8) 

and ,  and  (approximated ) are the unknown parameters in the Kriging model. By maximizing 

the likelihood function, the unknown parameters are obtained [65].  

Based on the Kriging model, the EI value, which is the expected objective function improvement from the 

current non-domination solution, is calculated according to the improvement value I(x), expressed as 

                                      (8) 

                                  (9) 

where  is the probability of f, whose density function is , fref is the reference value of f, i.e., 

minimum value of f(x). Accordingly, EI(x) can be treated as the approximated value of the objective function. 

Finally, the Kriging model is easily incorporated and implemented on each objective function in Tk-MaOEA. 

4. Experimental results 

In this section, the experimental study is conducted to evaluate the performance of the proposed Tk-MaOEA. 

Tk-MaOEA is benchmarked against a set of test functions including DTLZs [70] and WFGs[61], with several 

popular MaOEAs, namely MOEA/D [20], NSGA-III [35], MOMBII [25] and VaEA [7]. These algorithms have 

been verified to be effective on MaOPs, and they can be grouped into three classes: 1) the reference points or 

weight vectors based algorithms (MOEA/D and NSGA-III), 2) indicator based algorithm (MOMBII) and 3) 

Pareto dominance based algorithm (VaEA). The principal description of MOEA/D, NSGA-III, and VaEA can be 

referred in Sections I or their original literature [8, 35, 7]. MOMBII, as a recently proposed indicator based 

algorithm, takes a less-computation indicator called R2 as the selection criterion, which essentially weakens the 

Pareto compatibility [66]. Detailed presentation can be referred in reference [66]. 
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4.1 Test Problems and Performance Measures  

The first 4 instances (DTZL1 to DTLZ4) are taken from DTLZ [70]. where the number of decision variables is 

set to n = M + r − 1, where M is the objective number, r = 5 for DTLZ1, and r = 10 for DTLZ2 to DTLZ4. The 

other 9 test instances (WFG1 to WFG9) are taken from WFG [61], where the number of decision variables is set 

to n = k+l−1. As recommended in [61], the distance-related parameter l is set ot10 and the position-related 

parameter k is set to 4, 10, 7, and 9 for test instances with M = 3, 5, 8, 10, respectively. The attributes of involved 

problems include separability or nonseparability, unimodality or multimodality, unbiased or biased parameters, 

and convex or concave geometries. In order to quantitatively evaluate the performance of our proposed 

algorithm, two performance metrics are adopted: 1) convergence metric-IGD metric [67]; 2) hypervolume 

metric- Hv [57]. The further information about the two performance metrics can be referred in [67, 68]. Note that, 

as stated in [67], the number of reference points for computing IGD should be large enough so as to cover the 

complete PF as well as possible. Thus, the numbers of divisions for different numbers of objectives for DTLZs 

and WFGs are respectively listed in Table 1 and Table 2, where the last column shows the number of reference 

points for the problems. In addition, in order to indentify the significance of performance difference between 

those results obtained by Tk-MaOEA and its counterparts, Wilcoxon’s rank sum test [69] is applied to obtained 

results with a level of significance a=0.05. 

Table 1 Number of reference points for DTLZs 

M h1(P) h2 Number of reference points 

3 25 - 351 

5 13 - 2380 

8 7 6 5148 

10 6 5 7007 

 
Table 2 Number of reference points for WFGs 

M WFG1 WFG2 WFG3 WFG4-9 

3 421 148 5000 351 

5 2801 1601 17000 2380 

8 5464 4690 15000 5148 

10 20705 13634 26000 7007 

 

4.2 Experimental Configuration 

 The recommended parameter values for the algorithms that have obtained the best performance are 

configured as below. 
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 1) Population size: for MOEA/D and NSGA-III, the population size is set empirically according to the 

simplex-lattice design factor H together with the objective number M. For VaEA, as recommended in [7], its 

population size keeps the same as that of NSGA-III. For the other two algorithms, Tk-MaOEA and MOMBII, 

the population sizes are set to the same as that of NSGA-III and MOEA/D, with respect to different objective 

numbers M. 

 2) Crossover and mutation: The SBX and polynomial mutation are used and the distribution indexes of 

crossover and mutation are set to nc = 20 and nm = 20, respectively. The crossover probability pc = 1.0 and 

mutation probability pm = 1/D, where D is the number of decision variables. 

 3) Number of runs and termination condition: Each algorithm is performed for 20 independent runs on 

each test instance and the maximum function evaluations (MFEs) is set to 400000. For VaEA, the termination 

condition can be determined by Gmax = MFE/N, where N is the population size. 

 4) Other parameters: For MOEA/D, the Tchebycheff approach is used with neighborhood range set to 

N/10 where N is the population size. For MOMBII, involved parameters are set as =1e-3 andα = 0.5. For 

Tk-MaOEA and VaEA, their parameters are set to the same as that of NSGA-III [10]. 

4.3 Results and Analysis  

The experimental results of all algorithms over 3-, 5-, 8-, 10-objective test benchmarks are given in Table 3, 

Table 4 and Table 5. In these tables, the mean and standard deviation (SD) values in terms of the HV and IGD 

metrics obtained by the MaOEAs over 20 independent runs are reported. The significance of difference between 

Tk-MaOEA and the compared algorithms is evaluated by Wilcoxon’s rank sum test. 

4.3.1 Results in terms of HV metric 

As shown in Table 3, Tk-MaOEA is the most effective performer, which achieves the first or second ranks on 

most of DTLZ test instances. NSGA-III and VaEA also obtain satisfactory performance. Specifically, NSGA-III 

obtains the first ranks on 8-, 10-objective DTLZ1, 5- and 8-objective DTLZ2, while VaEA is ranked the first on 

5-objective DTLZ3 and 8-objective DTLZ4. MOMBII and MOEA/D obtain similar performance, doing well on 

low-dimensional instances, such as 3-objective DTLZ1 and DTLZ4. In fact, the statistical results in terms of 

IGD values for all the algorithms are close to each other. 

As for the WFG instances, it can be observed from Table 4 that Tk-MaOEA performs very powerfully, 

retaining the first or second ranks on most of test instances. As shown, both Tk-MaOEA and NSGA-III perform 

powerfully, exhibiting an obvious superiority to other involved algorithms on the majority of the WFG test 

instances. Specifically, Tk-MaOEA obtains the first and second ranks in terms of HV values on 17 and 6 out of 

e
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the 36 test instances, respectively. At the same time, NSGA-III obtains 10 first-rank results on all test instances 

while MOMBII and VaEA also retains the fist ranks on 6 out of the 36 test instances. On 8-objective WFG3 and 

8-objective WFG8, MOEA/D does very competently, ranked the first. For 5-objective WFG3, 3-objective 

WFG7 and 8-objective WFG7, VaEA performs only slightly better than Tk-MaOEA. 

For WFG1, NSGA-III performs the best, but just only a little better than Tk-MaOEA. In fact, the difference 

between their mean results are very close. On WFG2, Tk-MaOEA does the best on 8- and 10-objective instances 

while NSGA-III performs best on 5-objective instances. In fact, on 10-objecitve WFG2 instance, the 

performance of Tk-MaOEA is significantly better than that of NSGA-III. It should be stressed that the 

performance of Tk-MaOEA is not deteriorated when the number of objectives increases, unlike other algorithms. 

MOMBII also achieves the best performance on 3-objective WFG2. On WFG3, all the involved algorithms 

except NSGA-III obtain similar performance on 3- and 8-objective instances. Tk-MaOEA obtains the first rank 

on the 10-objective instance, while MOEA/D also performs very powerfully on this instance. As the number of 

objectives becomes large (i.e., M=8 and M=10), the performance of MOMBII seem somewhat worse than that of 

NSGA-III and Tk-MaOEA . 

For WFG4, whose PF has many local optima to be difficult to optimized. Tk-MaOEA obtains the first or 

second results on 3 out of the 4 test instances, which are 8- and 10-objective, and MOMBII also finds the best 

result on the 3-objective instance, but struggle on the higher-dimensional cases. For WFG5, Tk-MaOEA 

performs most powerfully, ranked first on most of the test instances. For nonseparable WFG6, Tk-MaOEA 

obtains a satisfactory performance, only worse than that of NSGA-III on 8-objective instance. Similar 

observation are obtained on WFG7, which is the separable and unimodal problem, Tk-MaOEA does better or at 

least comparably to VaEA, yet superior to other algorithms. On nonseparable WFG8, similar to the WFG6 case, 

Tk-MaOEA is the best performer on most of test instances, and only slightly worse than NSGA-III on 

3-objecitve instances. On WFG9, NSGA-III obtains satisfactory performance, only worse than Tk-MaOEA on 

the 3- and 10-objective instances, while VaEA does best on 8-objective instance. These results show the 

effectiveness of the proposed strategies in Tk-MaOEA 
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Table 3 Mean and standard deviation results of HV obtained by Tk-MaOEA, MOEA/D, MOMBII, VaEA and NSGA-III on DTLZs1-4 (The best items are in bold). 

Problem M Tk-MaOEA MOEA/D MOMBII VaEA NSGA-III 

DTLZ1 

3 8.793e-01/4.175e-02 8.417e-01/8.374e-06+ 8.416e-01/3.096e-05+ 8.300e-01/4.906e-03+ 8.413e-01/2.375e-04+ 

5 8.793e-01/1.416e-01 9.704e-01/8.132e-05- 9.706e-01/1.117e-04- 8.833e-01/3.778e-02- 9.705e-01/4.808e-05- 

8 9.752e-01/1.003e-02 9.753e-01/8.447e-04- 6.285e-01/2.276e-01+ 8.799e-01/2.585e-02+ 9.896e-01/7.156e-04- 

10 9.194e-01/3.035e-02 9.951e-01/4.759e-04- 7.575e-01/2.841e-02+ 9.280e-01/5.252e-02- 9.983e-01/1.817e-02- 

DTLZ2 

3 5.233e-01/5.110e-02 5.596e-01/1.265e-06- 5.595e-01/5.118e-05- 5.558e-01/1.409e-03- 5.596e-01/2.708e-06- 

5 7.075e-01/8.613e-02 7.743e-01/4.455e-04- 7.745e-01/3.373e-04- 7.634e-01/1.895e-04- 7.746e-01/2.899e-05- 

8 8.133e-01/1.053e-01 8.849e-01/6.477e-04- 7.832e-01/2.307e-03+ 8.847e-01/8.236e-03- 8.942e-01/1.436e-01- 

10 9.552e-01/1.146e-03 9.371e-01/7.707e-05+ 7.626e-01/3.253e-05+ 9.150e-01/2.980e-03+ 7.884e-01/3.131e-03+ 

DTLZ3 

3 7.908e-01/1.837e-02 5.537e-01/8.033e-04+ 5.561e-01/4.224e-03+ 5.511e-01/8.692e-03+ 5.558e-01/3.306e-03+ 

5 6.356e-01/8.989e-02 7.661e-01/9.294e-03- 7.720e-01/1.232e-03- 7.954e-01/2.764e-01- 7.728e-01/4.731e-04- 

8 4.122e-01/5.098e-02 1.247e-01/4.035e-02+ 4.392e-01/1.790e-03- 1.568e-01/1.156e-02+ 4.373e-01/6.184e-01- 

10 5.647e-01/5.778e-03 5.568e-01/5.245e-01+ 4.037e-01/2.316e-02+ 1.687e-01/5.231e-01+ 3.569e-01/3.256e-01+ 

DTLZ4 

3 5.407e-01/7.038e-02 4.472e-01/1.497e-01+ 5.595e-01/1.653e-05- 5.548e-01/4.160e-03- 4.499e-01/1.551e-01+ 

5 7.813e-01/1.279e-01 7.268e-01/6.589e-02+ 6.452e-01/1.824e-01+ 7.670e-01/4.093e-03+ 7.188e-01/7.797e-02+ 

8 8.129e-01/2.198e-02 7.377e-01/6.152e-02+ 8.338e-01/7.319e-02- 8.861e-01/2.270e-03- 7.218e-01/5.799e-03+ 

10 9.849e-01/1.461e-01 7.585e-01/2.204e-03+ 8.313e-01/1.877e-03+ 9.146e-01/6.859e-05+ 7.872e-01/3.563e-02+ 
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Table 4 Mean and standard deviation results of HV obtained by Tk-MaOEA, MOEA/D, MOMBII, VaEA and NSGA-III on WFGs 1-9 (The best items are in bold). 

Problem M Tk-MaOEA MOEA/D MOMBII VaEA NSGA-III 

WFG1 

3 9.224e-01/5.801e-03 9.180e-01/1.751e-03+ 9.205e-01/6.694e-04+ 9.391e-01/2.087e-04- 9.447e-01/1.736e-03- 
5 9.402e-01/2.960e-02 9.327e-01/1.469e-03+ 9.917e-01/8.952e-04- 9.192e-01/3.843e-02+ 9.976e-01/1.067e-04- 
8 9.498e-01/2.281e-02 8.741e-01/6.866e-02+ 8.294e-01/1.145e-01+ 9.471e-01/6.239e-02+ 9.995e-01/2.770e-04- 
10 9.230e-01/3.710e-02 5.946e-01/4.291e-02+ 8.851e-01/7.744e-05+ 8.734e-01/5.009e-02+ 9.944e-01/7.769e-03- 

WFG2 

3 6.013e-01/3.745e-02 9.156e-01/9.312e-04- 9.463e-01/9.287e-04- 9.256e-01/5.235e-03- 9.312e-01/8.426e-04- 
5 7.872e-01/9.812e-04 9.515e-01/6.935e-03- 9.742e-01/2.560e-02- 9.894e-01/1.167e-03- 9.956e-01/1.273e-04- 
8 9.911e-01/2.720e-02 9.021e-01/6.911e-03+ 8.935e-01/4.877e-02+ 9.857e-01/2.150e-03+ 9.908e-01/1.988e-03+ 

10 9.963e-01/6.456e-03 9.248e-01/1.394e-02+ 9.588e-01/2.715e-03+ 9.960e-01/1.192e-04+ 9.941e-01/2.000e-03+ 

WFG3 

3 4.516e-01/3.306e-03 3.626e-01/2.510e-03+ 4.029e-01/2.343e-03+ 3.684e-01/1.338e-02+ 3.886e-01/4.755e-03+ 
5 1.883e-01/3.542e-02 1.042e-01/4.313e-02+ 1.854e-01/2.220e-02+ 1.971e-01/6.574e-03- 1.886e-01/7.917e-03≈ 

8 8.362e-02/3.247e-03 8.923e-02/1.123e-02- 8.630e-02/3.709e-03- 7.342e-02/1.705e-03+ 6.165e-02/3.932e-03+ 

10 8.464e-02/1.4563e-02 7.842e-02/1.842e-02+ 6.514e-02/1.412e-02+ 5.763e-02/1.618e-02+ 8.112e-02/1.573e-02+ 

WFG4 

3 5.198e-01/2.600e-02 5.450e-01/1.029e-03- 5.595e-01/2.365e-04- 5.511e-01/1.941e-03- 5.591e-01/2.210e-04- 
5 7.637e-01/3.124e-02 6.561e-01/1.345e-02+ 7.568e-01/1.136e-02+ 7.552e-01/4.417e-03+ 7.721e-01/1.394e-03- 
8 9.147e-01/1.987e-02 3.351e-01/3.913e-03+ 6.681e-01/1.662e-01+ 8.697e-01/1.860e-02+ 8.816e-01/6.595e-04+ 

10 9.070e-01/3.626e-02 3.564e-01/7.592e-02+ 4.296e-01/1.039e-01+ 8.971e-01/2.591e-04+ 8.710e-01/9.506e-02+ 

WFG5 

3 5.909e-01/9.890e-02 5.087e-01/6.013e-04+ 5.059e-01/5.489e-03+ 5.156e-01/2.759e-04+ 5.184e-01/8.397e-05+ 
5 7.887e-01/3.057e-02 6.178e-01/2.998e-02+ 6.965e-01/2.422e-03+ 7.123e-01/3.946e-04+ 7.238e-01/6.525e-04+ 

8 8.735e-01/2.172e-01 3.657e-01/6.155e-02+ 4.718e-01/3.179e-01+ 8.178e-01/1.021e-03+ 8.235e-01/2.687e-03+ 

10 8.125e-01/4.642e-02 3.387e-01/4.715e-02+ 2.284e-01/1.667e-02+ 8.315e-01/5.996e-03- 8.748e-01/2.691e-04- 

WFG6 

3 7.153e-01/3.097e-02 4.719e-01/1.281e-02+ 4.864e-01/1.501e-02+ 4.989e-01/1.434e-02+ 5.142e-01/1.682e-02+ 
5 7.020e-01/1.299e-02 5.037e-01/1.170e-03+ 6.091e-01/2.726e-02+ 6.952e-01/2.995e-02+ 6.938e-01/2.098e-02+ 

8 7.468e-01/2.537e-02 2.451e-01/4.539e-02+ 7.245e-01/1.170e-01+ 8.160e-01/4.098e-02- 8.296e-01/8.089e-02- 
10 8.815e-01/8.172e-03 1.433e-01/5.667e-02+ 7.127e-01/1.283e-01+ 7.883e-01/1.877e-02+ 8.188e-01/2.407e-04+ 

WFG7 
3 5.076e-01/8.466e-03 5.338e-01/2.111e-03- 5.592e-01/3.608e-05- 5.605e-01/3.228e-03- 5.587e-01/4.260e-05- 
5 7.157e-01/1.232e-02 5.470e-01/1.196e-03+ 7.741e-01/4.737e-04- 7.605e-01/1.972e-03- 7.813e-01/3.638e-04- 
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8 8.288e-01/3.769e-02 2.718e-01/7.078e-03+ 8.298e-01/7.905e-02≈ 8.782e-01/2.994e-03- 8.223e-01/8.025e-02≈ 

10 9.769e-01/3.904e-02 2.117e-01/6.828e-02+ 5.479e-01/1.673e-02+ 9.131e-01/7.131e-03+ 9.140e-01/3.421e-02+ 

WFG8 

3 4.685e-01/1.564e-03 4.670e-01/2.009e-04≈ 4.515e-01/4.559e-03+ 4.653e-01/1.879e-03≈ 4.745e-01/1.505e-03- 
5 6.674e-01/2.764e-02 2.734e-01/3.825e-02+ 4.641e-01/2.884e-03+ 6.230e-01/4.084e-03+ 6.589e-01/2.196e-03+ 

8 7.125e-01/2.341e-02 7.333e-01/1.221e-02- 4.718e-01/3.947e-02+ 7.195e-01/1.273e-03≈ 6.611e-01/2.335e-02+ 

10 7.854e-01/9.329e-02 6.842e-01/5.619e-02+ 3.837e-01/6.862e-02+ 7.533e-01/1.922e-02+ 7.754e-01/9.837e-02+ 

WFG9 

3 5.561e-01/2.200e-02 5.075e-01/8.088e-03+ 5.075e-01/6.579e-03+ 5.254e-01/6.211e-04+ 5.406e-01/1.114e-03+ 
5 6.430e-01/3.995e-02 6.082e-01/2.899e-02+ 5.737e-01/1.151e-02+ 7.079e-01/3.113e-04- 7.509e-01/9.322e-02- 
8 5.259e-01/4.295e-02 2.861e-01/7.858e-02+ 8.067e-01/8.315e-03- 7.928e-01/2.112e-03- 7.237e-01/1.069e-01- 

10 9.393e-01/5.137e-02 1.585e-01/1.369e-02+ 1.459e-01/3.442e-02+ 7.911e-01/1.653e-02+ 8.058e-01/2.346e-02+ 

 

Table 5 Mean and standard deviation results of IGD obtained by Tk-MaOEA, MOEA/D, MOMBII, VaEA and NSGA-III on WFGs 1-9 (The best items are in bold). 

Problem M Tk-MaOEA MOEA/D MOMBII VaEA NSGA-III 

WFG1 

3 1.760e-01/5.277e-03 3.080e-01/3.297e-03+ 1.704e-01/1.121e-02≈ 1.717e-01/1.515e-03≈ 1.460e-01/3.706e-03- 

5 5.407e-01/4.968e-02 1.232e+00/6.811e-03+ 6.556e-01/1.699e-02+ 5.231e-01/3.733e-02- 4.981e-01/1.562e-02- 

8 1.127e-01/8.786e-02 2.092e+00/5.591e-02+ 2.280e+00/8.718e-01+ 1.082e+00/1.861e-02+ 1.060e+00/7.159e-02+ 

10 2.174e-01/3.023e-02 2.402e+00/1.310e-01+ 3.154e+00/6.767e-02+ 1.437e+00/4.106e-03- 1.973e+00/1.257e-01- 

WFG2 

3 1.350e-01/4.138e-01 9.901e-01/6.738e-03+ 2.626e-01/3.454e-02+ 2.327e-01/9.639e-03+ 1.862e-01/2.258e-03+ 

5 2.032e-01/4.317e-01 5.141e+00/3.820e-02+ 1.017e+00/2.392e-01+ 8.232e-01/1.523e-02+ 7.926e-01/3.736e-02+ 

8 7.341e+00/2.133e+00 8.706e+00/4.979e-02+ 1.698e+00/2.264e-02- 2.728e+00/8.891e-02- 4.553e+00/5.976e-01- 

10 1.169e+00/7.871e+00 1.647e+01/8.062e-02+ 2.569e+00/2.132e-02+ 2.823e+00/7.782e-02+ 5.943e+00/8.279e-02+ 

WFG3 

3 2.143e-01/8.795e-02 1.581e-01/8.019e-04- 9.327e-02/5.548e-03- 1.374e-01/2.980e-02- 1.042e-01/4.523e-03- 

5 4.861e-01/2.223e-01 8.676e-01/7.252e-03+ 6.518e-01/2.447e-01+ 6.412e-01/5.700e-02+ 6.102e-01/8.503e-02+ 

8 8.740e+00/2.059e-02 3.808e+00/5.686e-02- 8.648e+00/8.009e-04- 1.711e+00/8.502e-02- 1.363e+00/7.676e-01- 

10 9.731e+00/2.807e-02 5.701e+00/6.046e-02- 1.093e+01/2.134e-03+ 2.321e+00/5.243e-02- 2.696e+00/1.418e-01- 

WFG4 3 1.894e-01/2.149e-01 2.423e-01/5.531e-04+ 2.214e-01/1.893e-04+ 2.207e-01/7.216e-03+ 2.210e-01/1.228e-04+ 
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5 3.331e+00/5.437e-01 1.821e+00/4.664e-02- 1.316e+00/1.248e-02- 1.187e+00/9.580e-03- 1.226e+00/5.037e-04- 

8 6.011e+00/1.686e-01 7.126e+00/3.023e-03+ 5.082e+00/1.916e+00- 3.375e+00/1.257e-01- 3.547e+00/1.260e-02- 

10 4.793e+00/2.823e-01 9.599e+00/2.649e-01+ 1.125e+01/1.575e+00+ 5.013e+00/6.821e-02+ 6.066e+00/2.834e-01+ 

WFG5 

3 2.458e-01/4.052e-01 2.461e-01/1.470e-03≈ 2.402e-01/2.681e-03≈ 2.325e-01/4.141e-03- 2.298e-01/4.884e-05- 

5 4.009e+00/3.617e-01 1.672e+00/6.596e-02- 1.319e+00/1.743e-02- 1.172e+00/1.202e-03- 1.215e+00/3.882e-05- 

8 3.142e+00/9.949e-01 6.901e+00/7.500e-02+ 7.348e+00/5.070e+00+ 3.404e+00/2.216e-02+ 3.522e+00/6.983e-03+ 

10 4.524e+00/8.001e-01 9.409e+00/1.910e-01+ 1.473e+01/6.683e-01+ 5.029e+00/7.102e-02+ 5.827e+00/1.797e-02+ 

WFG6 

3 3.392e-01/8.254e-01 2.791e-01/1.516e-02- 2.557e-01/1.600e-02- 2.507e-01/9.128e-03- 2.339e-01/1.075e-02- 

5 5.393e+00/2.229e-01 2.007e+00/1.464e-01- 1.522e+00/6.483e-02- 1.192e+00/8.777e-04- 1.214e+00/3.967e-04- 

8 2.870e+00/5.296e-01 7.474e+00/8.822e-02+ 3.676e+00/1.123e-01+ 3.467e+00/4.930e-02+ 3.989e+00/6.283e-01+ 

10 1.078e+01/1.165e-02 1.068e+01/7.492e-02- 6.547e+00/8.831e-01- 5.062e+00/1.513e-02- 5.874e+00/3.739e-02- 

WFG7 

3 3.432e-01/4.365e-01 2.574e-01/3.499e-03- 2.210e-01/1.542e-04- 2.218e-01/8.593e-03- 2.211e-01/3.630e-05- 

5 5.350e+00/4.979e-01 1.958e+00/1.410e-01- 1.238e+00/7.903e-03- 1.184e+00/1.038e-02- 1.229e+00/1.192e-03- 

8 3.013e+00/4.567e-01 7.436e+00/2.039e-01+ 3.652e+00/8.816e-02+ 3.406e+00/3.566e-02+ 4.098e+00/7.650e-01+ 

10 4.300e+00/3.529e-01 1.025e+01/5.878e-01+ 7.881e+00/2.916e-01+ 4.976e+00/6.704e-02+ 5.950e+00/6.381e-02+ 

WFG8 

3 3.544e-01/2.724e-01 2.916e-01/3.475e-04- 3.212e-01/9.175e-04- 2.972e-01/5.659e-03- 2.797e-01/2.997e-03- 

5 5.569e+00/9.027e-02 1.940e+00/2.267e-02- 1.867e+00/1.029e-02- 1.256e+00/4.158e-03- 1.232e+00/1.371e-03- 

8 8.104e+00/6.591e-01 6.712e+00/3.112e-01- 6.787e+00/4.186e-01- 3.504e+00/8.002e-03- 4.452e+00/2.208e-02- 

10 4.775e+00/7.688e-01 6.553e+00/4.670e-01+ 1.010e+01/8.070e-01+ 5.204e+00/2.600e-02+ 6.263e+00/3.764e-01+ 

WFG9 

3 1.093e-01/1.751e-01 2.423e-01/5.682e-03- 2.647e-01/1.665e-03- 2.208e-01/1.041e-03- 2.211e-01/1.854e-04- 

5 3.070e+00/2.262e-01 1.790e+00/2.385e-01- 1.771e+00/2.086e-02- 1.150e+00/1.491e-04- 1.213e+00/1.639e-02- 

8 3.245e+00/5.305e-01 6.970e+00/7.205e-02+ 3.738e+00/2.064e-02+ 3.310e+00/5.061e-02+ 3.570e+00/1.802e-02+ 

10 7.816e+00/1.944e+00 1.017e+01/3.305e-01+ 1.700e+01/1.597e-01+ 4.916e+00/2.970e-02- 5.681e+00/2.369e-01- 
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(a) Tk-MaOEA 

 
(b) MOEA/D 

 
(c) MOMBII 

 

(d) VaEA 

 

(e) NSGA-III 

Fig.3. Final solution set of involved algorithms on the 10-objective DTLZ1, shown by parallel coordinates 

 

 
(a) Tk-MaOEA 

 
(b) MOEA/D 

 

(c) MOMBII 

 

(d) VaEA 

 

(e) NSGA-III 

Fig.4. Final solution set of involved algorithms on the 10-objective DTLZ4, shown by parallel coordinates 
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(a) Tk-MaOEA 

 

(b) MOEA/D 

 

(c) MOMBII 

 

(d) VaEA 

 

(e) NSGA-III 

Fig.5. Final solution set of involved algorithms on the 10-objective WFG1, shown by parallel coordinates 

 

 

(a) Tk-MaOEA 

 

(b) MOEA/D 

 

(c) MOMBII 

 

(d) VaEA 

 

(e) NSGA-III 

Fig.6. Final solution set of involved algorithms on the 10-objective WFG8, shown by parallel coordinates 
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(a) WFG1 

 
(b) WFG2 

 
(c) WFG3 

 
(d) WFG4 

 
(e) WFG5 

 
(f) WFG6 

 
(g) WFG7 

 
(h) WFG8 

 
(i) WFG9 

Fig.7. Evolutionary trajectories of IGD on all the 10-objective WFG test problems 

 

4.3.2 Results in terms of IGD metric 

Comparative results in terms of IGD values on WFGs obtained by each algorithm are given in Table 5. It can 

be observed from this table that Tk-MaOEA obtains the first ranks on 15 of the 36 test instances, while 

NSGA-III does best on 7 of the 36 instances. For VaEA, it also performs best on 10 test instances, including 

10-objective WFG1, 10-objective WFG3, 5- and 8-objective WFG4, 5-objective WFG5, 5- and 10-objective 

WFG6, 5-objecitve WFG7, 8-objective WFG8 and 5-objective WFG9. MOMBII and MOEA/D obtains 

satisfactory results on 5-objective WFG2, 3-objective WFG3, 3-objective WFG7 and 10-objective WFG9. It is 

stressed that for test instances with complicated PFs such as WFG1 and WFG2, and with larger number of 
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objectives such as 10-objective WFG7 and WFG8, the performance of Tk-MaOEA is more competent than that 

of other algorithms. 

Figs. 3-6 respectively give the plot of final solution set obtained by involved algorithms on the 10-objective 

DTLZ1, DTLZ4, WFG1 and WFG8, shown by parallel coordinates. From these figures, we can see final 

solutions found by Tk-MaOEA are superior in terms of both convergence and distribution to other algorithms. 

For 10-objective WFG3, it can observed from Fig. 5 that the distribution of solutions obtained by Tk-MaOEA 

exhibits excellent convergence and diversity, while other algorithms do relatively poor. Especially, for 

10-objective WFG8, we can see from Fig.6 that NSGA-III also achieves satisfactory performance, but still 

slightly concentres on the middle part of several objectives. This example also indicates that Tk-MaOEA is 

capable of working effectively on difficult multimodal problems. 

Fig.7 shows the plot of evolutionary process of involved algorithm in terms of IGD values versus the number 

of generations. From the figure, it can be observed that Tk-MaOEA has a faster convergence speed than other 

algorithms and finds the best IGD value on most of test instances, which shows evidence to support the 

discussion of the proposed scheme in Section III-I. To be specific, On WFG1, the convergence of Tk-MaOEA is 

obviously superior to other algorithms, and MOMBII performs the worst. On WFG2, Tk-MaOEA and VaEA 

exhibits promising performance. For WFG3, WFG5 and WFG6, Tk-MaOEA performs a little worse than other 

algorithms. However, for WFG4, WFG7-WFG9, Tk-MaOEA performs better or at least comparably with 

NSGA-III, better than other algorithms, which experimentally verifies the efficiency of the proposed scheme in 

Tk-MaOEA. 

4.3.3 Statistical result analysis 

Performance comparisons between algorithms are conducted based on a rigorous nonparametric statistical 

method, i.e., Friedman test [71], which is used to detect differences in treatments across multiple test attempts. 

For each benchmark instance, the performance metric values (IGD and HV) of each algorithm are calculated as 

shown in Tables 4 and 5. Then the statistical test is used with the performance metric values. We first test the 

hypothesis that all algorithms perform equally using the Friedman test. If this hypothesis is rejected at the 95% 

confidence level, we then consider pair-wise comparisons between the algorithms using the Wilcoxon’s s rank 

sum test at the 95% confidence level.  

Tables 6 and 7 show the results of the Friedman test, where p is the probability for the chi-square statistic, to 

determine whether the hypothesis is rejected (if p<0.05), and the meanings of other parameters such as SS (sum 

of squares), df (degrees of freedom), MS (the ratio SS/df), columns and errors can be referred to Friedman 
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function declarations in Matlab. From these tables, the initial Friedman test breaks the hypothesis that all five 

algorithms are equivalent. Therefore, the outcomes of pair-wise statistical comparisons for IGD and HV are 

shown in Tables 8 and 9, respectively. Here R+ represents the sum of ranks for the test instances on which the 

first algorithm outperforms the latter one, and R− means the sum of ranks for the opposite. As shown in Table 8, 

we can that that all p-values are less than 0.05, which strongly indicates that the performance of Tk-MaOEA is 

statistically superior to other algorithms on the DTLZ and WFG test instances in terms of IGD metric. Likewise, 

computation results in Table 9 with aspect to the HV metric, show that the performance of Tk-MaOEA on these 

WFG instances is statistically more powerful than the compared algorithms. 

Table 6. Statistical results by Friedman ranking for HV-metric considering DTLZs and WFGs 

Source SS df MS Chi-sq p 

Columns 113.635 4 28.4087 45.72 2.81967E-09 

Error 403.365 204 1.9773   

Total 517 259    

Table 7. Statistical results by Friedman ranking for IGD-metric considering WFGs 

Source SS df MS Chi-sq p 

Columns 144.5 4 36.375 57.67 8.9648E-12 

Error 215.5 140 1.5893   

Total 360 179    

Table 8. Statistical results by Wilcoxon test for HV-metric considering DTLZs and WFGs 

Tk-MaOEA vs. R+ R- p-value 

MOEA/D 46 3 5.634E-4 

MOMBII 35 13 1.534E-3 

VaEA 36 9 1.782E-3 

NSGA-III 28 14 4.034E-3 

Table 9. Statistical results by Wilcoxon test for IGD-metric considering WFGs 

Tk-MaOEA vs. R+ R- p-value 

MOEA/D 30 6 1.034E-3 

MOMBII 28 8 4.374E-3 

VaEA 24 12 6.723E-3 

NSGA-III 20 16 1.116E-2 
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4.4 Further Analysis 

4.4.1 Effect of transfer learning and Kriging model 

In order to further investigate the effectiveness of algorithm components, three variants, namely Tk-MOEA, 

Tk-MOEA-TL (only with transfer learning), and Tk-MOEA-K (only with Kriging model) are tested on the 

DTLZ and WFG problems with 10 objectives. Table 10 shows the results of the three variants, regarding the 

mean and SD values in terms of IGD metric, where the better results are highlighted in bold. 

As can be seen from Table 10, when transfer learning is incorporated into the algorithm, the performance of 

Tk-MOEA-TL has a clear improvement over that of Tk-MOEA-K, achieving a better value on 3-, 5-, and 

8-objective DTLZ1, 8-objective DTLZ3, and 3-objective WFG4 while Tk-MOEA-K performs better than 

Tk-MOEA-TL on 10-objective DTLZ1, 3-objective DTLZ2 and 8-objective WFG4. The PF shape of DTLZ3 is 

composed of a set of discontinuous segments, and the distribution of the points on PF of DTLZ4 is strongly 

nonuniform. 

Generally, these two benchmarks are more difficult to be tackled compared with DTLZ1 and DTLZ2. This 

implies that both transfer learning and Kriging model can affect the performance of the algorithm, while transfer 

learning may be more effective in complex test functions. For most of the problems, Tk-MOEA shows an 

advantage over its competitors, which means that the proposed two mechanisms can work together effectively. 

 

4.4.2 Incorporating transfer learning into NSGA-III 

In this section, we apply transfer learning to the classical NSGA-III, namely Tk-NSGA-III. NSGA-III is 

known for its nondominated sorting and reference-based guidance strategies. The improved algorithm is 

compared with its original version and a Kriging-based algorithm called GeDEA-II-K [57]. The GeDEA-II is a 

multi-objective real-coded evolutionary algorithm based on a Pareto-like evaluation method [72]. GeDEA-II-K 

is to improve the GeDEA-II’s reproduction operator with the integration of a Kriging filter [73]. Table 11 shows 

the comparative results of the three algorithms on the DTLZ and WFG problems with 10 objectives. 

Tk-NSGA-III outperforms the original NSGA-III on most of the selected benchmarks. Tk-NSGA-III achieves a 

better value on 10-objective DTLZ1, DTLZ2, DTLZ3, DTLZ4, WFG1, WFG2 and WFG8, and with better SD 

values on 11 test instances. NSGA-III obtains a better value on the majority of DTLZ1, DTLZ2 and WFG9. In 

addition, GeDEA-II-K also obtains a satisfactory result on WFG2 and WFG4. From these results, it can be 

observed that the transfer learning approach can play a positive effect on the performance of NSGA-III. 
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Table 10 Mean and standard deviation results of IGD obtained by Tk-MaOEA, Tk-MaOEA-TL, Tk-MaOEA-K 

Problem M Tk-MaOEA Tk-MaOEA-TL MaOEA-K 

DTLZ1 

3 1.634e-02/9.257e-03 1.517e-02/2.870e-02- 1.714e-02/1.928e-01+ 

5 1.682e-02/7.574e-03 1.621e-02/9.298e-03- 9.329e-02/4.658e-01+ 

8 1.851e-01/1.077e-03 1.794e-01/3.932e-03- 1.919e-01/4.018e-03+ 

10 1.795e-01/2.166e-03 1.707e-01/1.987e-04- 1.547e-01/1.283e-03- 

DTLZ2 

3 6.371e-02/3.864e-02 4.720e-02/6.150e-02- 1.324e-02/4.311e-03- 

5 1.838e-01/1.781e-01 5.869e-01/8.540e-02+ 2.435e-01/3.284e-02+ 

8 2.131e-01/2.210e-01 7.211e-01/2.503e-02+ 2.552e-01/2.264e-02+ 

10 1.083e-01/3.899e-02 8.313e-01/5.503e-02+ 2.619e-01/7.383e-03+ 

DTLZ3 

3 1.076e-02/6.160e-01 3.809e-02/2.546e-02+ 7.633e-02/3.629e-02+ 

5 9.215e-01/2.894e-02 7.025e-01/1.213e-01- 4.971e-01/8.148e-01- 

8 9.365e-01/1.251e-02 7.103e-01/8.305e-03- 1.487e+00/2.113e-02+ 

10 9.425e-01/1.734e-01 8.413e-01/1.060e-01- 1.551e+00/1.060e-02+ 

DTLZ4 

3 5.665e-01/1.727e-02 9.459e-01/9.557e-10+ 3.336e-01/2.960e-01- 

5 8.686e-01/6.550e-04 9.890e-01/1.684e-01+ 2.435e-01/1.051e-01- 

8 1.057e-01/5.477e-03 8.931e-01/2.045e-01+ 2.600e-01/2.303e-02+ 

10 1.197e-01/1.970e-02 9.157e-01/7.183e-02+ 2.647e-01/1.057e-02+ 

WFG1 

3 1.760e-01/5.277e-03 1.994e-01/1.014e-02+ 1.832e-01/2.929e-01+ 

5 5.407e-01/4.968e-02 2.297e-01/8.330e-03- 1.316e-01/1.535e-01- 

8 1.127e-01/8.786e-02 2.932e-01/2.824e-03+ 1.697e-01/1.503e-01+ 

10 2.174e-01/3.023e-02 3.067e-01/2.563e-02+ 2.201e-01/9.423e-02+ 

WFG4 

3 1.894e-01/2.149e-01 1.619e-01/1.150e-01- 3.552e-01/1.829e-02+ 

5 3.331e+00/5.437e-01 3.747e+00/4.016e-01+ 1.396e+00/7.857e-03- 

8 6.011e+00/1.686e-01 6.214e+00/4.963e-03+ 3.415e+00/5.298e-02- 

10 4.793e+00/2.823e-01 8.406e+00/4.290e-01+ 5.093e+00/7.764e-02+ 

 

4.4.3 Comparison results with surrogates-based algorithm 

In this section, the proposed algorithm is experimentally compared with an art-of-the-state surrogates-based 

algorithm, called K-RVEA [74]. In K-RVEA, the Kriging models are used to approximate each objective 

function to reduce the computational cost. In addition, based on a set of adaptive reference vectors for selection, 

the convergence and diversity in K-RVEA can be balanced by using the uncertainty information provided by the 

Kriging models. 
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Table 11 Mean and standard deviation results of IGD obtained by Tk-MaOEA (i.e., Tk-NSGA-III), GeDEA-II-K, and 

NSGA-III 

Problem M Tk-MaOEA (Tk-NSGA-III) GeDEA-II-K NSGA-III. 

DTLZ1 

3 1.634e-01/9.257e-03 1.750e-01/2.015e-01+ 2.059e-02/1.926e-05- 

5 1.682e-01/7.574e-03 1.681e+00/1.790e-01+ 6.810e-02/1.085e-07- 

8 1.551e-01/1.077e-03 1.315e+02/8.312e+01+ 1.584e-01/4.088e-04- 

10 1.795e-01/2.166e-03 1.624e+02/4.387e+00+ 2.451e-01/2.266e-03+ 

DTLZ2 

3 6.371e-01/3.864e-02 1.347e-01/9.174e-03- 5.446e-02/4.256e-07- 

5 6.038e-01/1.781e-01 2.254e+00/3.483e-01+ 6.122e-01/5.786e-06- 

8 9.131e-01/2.210e-01 2.545e+00/3.143e-02+ 5.263e-01/1.969e-01- 

10 1.083e-01/3.899e-02 2.602e+00/1.752e-02+ 6.884e-01/1.474e-02+ 

DTLZ3 

3 1.076e+00/6.160e-01 2.210e+00/1.586e+00+ 5.469e-02/2.515e-04- 

5 9.215e-01/2.894e-02 5.051e+01/1.237e+01+ 2.126e-01/3.097e-04- 

8 9.365e-01/1.251e-02 1.489e+03/2.775e+02+ 1.514e+00/1.589e+00+ 

10 9.425e-01/1.734e-01 1.655e+03/1.664e+02+ 5.013e+00/7.685e-02+ 

DTLZ4 

3 5.665e-01/1.727e-02 2.595e-01/1.961e-01- 2.980e-01/3.444e-01- 

5 5.686e-01/6.550e-04 2.491e+00/1.863e-02+ 3.214e-01/1.544e-01- 

8 6.057e-01/5.477e-03 2.596e+00/2.815e-02+ 6.156e-01/4.415e-03+ 

10 6.997e+00/1.970e-02 2.636e+00/7.526e-03+ 7.006e-01/1.008e-02+ 

WFG1 

3 2.032e-01/3.044e-02 1.161e-01/3.519e-01- 1.460e-01/3.706e-03- 

5 2.484e-01/1.987e-01 1.373e-01/8.909e-02- 4.981e-01/1.562e-02+ 

8 3.132e+00/2.768e-01 2.650e+00/1.652e-01- 1.060e+00/7.159e-02- 

10 1.048e+00/9.798e-03 2.291e+00/3.834e-03+ 1.973e+00/1.257e-01+ 

WFG2 

3 1.353e-01/4.114e-01 3.556e-01/5.634e-02- 1.862e-01/2.258e-03- 

5 5.442e-01/1.337e+00 1.147e-01/8.682e-02- 7.926e-01/3.736e-02+ 

8 5.253e+00/1.112e+00 2.489e+00/2.413e-01- 4.553e+00/5.976e-01- 

10 1.136e+00/3.490e+00 3.863e+00/1.679e+00+ 5.943e+00/8.279e-02+ 

WFG4 

3 1.504e-01/2.917e-01 3.595e-01/6.572e-03+ 2.210e-01/1.228e-04+ 

5 3.559e+00/2.788e-01 1.381e+00/5.951e-02- 1.226e+00/5.037e-04- 

8 5.699e+00/6.429e-04 3.524e+00/1.321e-01- 3.547e+00/1.260e-02- 

10 7.940e+00/3.364e-01 5.038e+00/4.985e-02- 6.066e+00/2.834e-01- 

WFG9 

3 9.152e-01/3.478e-01 4.558e-01/6.338e-02- 2.211e-01/1.854e-04- 

5 1.296e+00/6.456e-01 1.691e+00/2.735e-02- 1.213e+00/1.639e-02- 

8 4.750e+00/1.342e-01 3.754e+00/3.412e-02- 3.570e+00/1.802e-02- 

10 5.310e+00/7.865e-01 5.513e+00/5.554e-02+ 5.681e+00/2.369e-01+ 
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Table 12 Mean and standard deviation results of IGD obtained by Tk-MaOEA and K-RVEA. 

Problem DTLZ1 DTLZ2 

M 3 5 8 10 3 5 8 10 

Tk-MaOEA 1.635e-02 

/9.332e-03 

1.682e-02 

/7.609e-03 

1.854e-01 

/1.062e-03 

1.796e-01 

/2.221e-03 

6.370e-02 

/3.803e-02 

1.840e-01 

/1.712e-01 

2.133e-01 

/2.244e-01 

1.086e-01 

/3.867e-02 

K-RVEA 
1.7453e+01 

/8.69e+00+ 

2.5972e+01 

/4.11e+00+ 

2.3388e+01 

/4.08e+00+ 

2.0353e+01 

/9.87e+00+ 

6.7543e-02 

/3.08e-03+ 

2.4301e-01 

/2.48e-02+ 

4.2209e-01 

/1.06e-02+ 

5.8058e-01 

/4.17e-02+ 

Problem DTLZ3 DTLZ4 

M 3 5 8 10 3 5 8 10 

Tk-MaOEA 1.075e-02 

/6.121e-01 

9.216e-01 

/2.885e-02 

9.365e-01 

/1.242e-02 

9.425e-01 

/1.755e-01 

5.656e-01 

/1.711e-02 

8.686e-01 

/6.566e-04 

1.056e-01 

/5.472e-03 

1.197e-01 

/1.950e-02 

K-RVEA 
2.3148e+02 

/1.72e+01+ 

2.4395e+02 

/1.71e+01+ 

2.3285e+02 

/3.15e+01+ 

2.2871e+02 

/1.29e+01+ 

9.6446e-02 

/1.11e-02 

3.5125e-01 

/4.29e-02- 

5.3281e-01 

/7.47e-02+ 

6.1738e-01 

/4.70e-02+ 

Problem WFG1 WFG4 

M 3 5 8 10 3 5 8 10 

Tk-MaOEA 1.760e-01 

/5.230e-03 

5.407e-01 

/4.966e-02 

1.126e-01 

/8.790e-02 

2.175e-01 

/3.111e-02 

1.896e-01 

/2.134e-01 

3.332e+00 

/5.442e-01 

6.010e+00 

/1.690e-01 

4.793e+00 

/2.844e-01 

K-RVEA 
1.5153e+00 

/8.22e-03+ 

2.1045e+00 

/4.37e-03+ 

2.8107e+00 

/1.38e-01+ 

3.0985e+00 

/3.32e-02+ 

3.6579e-01 

/2.62e-02+ 

9.4829e-01 

/2.09e-02- 

2.4612e+00 

/4.30e-02- 

3.6256e+00 

/2.33e-02- 

 

Table 12 shows the comparative results obtained by Tk-MaOEA and K-RVEA on the DTLZ and WFG 

problems with 3, 5, 8 and 10 objectives. From this table, it can be observed that, TkMaOEA outperforms 

K-RVEA on most of the test functions. To be specific, TkMaOEA achieves the first rank on DTLZ1, DTLZ2, 

DTLZ3 and WFG1, respectively. On DTLZ3 and WFG1, TkMaOEA exhibits an obvious performance advantage, 

obtaining better IGD results with several orders of magnitude than that of K-RVEA. Only on DTLZ4 and WFG4, 

K-RVEA obtains better results than TkMaOEA. However, TkMaOEA still obtains satisfactory results on 

high-dimensional DTLZ4 instances, e.g., DTLZ4 with 8, and 10 objectives. Generally, TkMaOEA performs the 

best on 19 out of the 24 test instances, while K-RVEA does the best only on 5 test instances. 
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Table 13 Mean and standard deviation results of HV obtained by Tk-MaOEA, TEMO-MPS and ParEGO 

  500 Generations 

Problems Bound ParEGO TEMO-MPS TkMaOEA 

  Mean Std Mean Std Mean Std 

DTLZ1b - 10,1 75,75 0.6214  0.0114  0.6822  0.0115  0.6994  0.0010  

DTLZ1b - 20,1 75,75 0.5720  0.0128  0.6263  0.0090  0.6391  0.0031  

DTLZ1b - 30,1 75,75 0.5201  0.0106  0.5628  0.0090  0.5787  0.0067  

DTLZ1b - 10,2 120, 120 0.4996  0.0075  0.5291  0.0069  0.5327  0.0043  

DTLZ1b - 20,2 120, 120 0.4263  0.0074  0.4475  0.0061  0.4458  0.0040  

DTLZ1b - 30,2 120, 120 0.3528  0.0070  0.3705  0.0064  0.3652  0.0049  

DTLZ1b - 10,3 200, 200 0.5830  0.0107  0.6070  0.0067  0.6211  0.0040  

DTLZ1b - 20,3 200, 200 0.5206  0.0075  0.5397  0.0067  0.5509  0.0031  

DTLZ1b - 30,3  200, 200  0.4509  0.0071  0.4695  0.0070  0.4765  0.0053  

DTLZ3b - 10,1 150,150,150 0.5187  0.0320  0.5825  0.0307  0.6974  0.0032  

DTLZ3b - 20,1 150,150,150 0.4174  0.0350  0.4868  0.0304  0.6049  0.0094  

DTLZ3b - 30,1 150,150,150 0.3204  0.0201  0.3748  0.0249  0.5008  0.0060  

DTLZ3b - 10,2 300,300,300 0.5562  0.0362  0.6016  0.0274  0.7064  0.0045  

DTLZ3b - 20,2 300,300,300 0.4613  0.0241  0.4949  0.0269  0.6155  0.0094  

DTLZ3b - 30,2 300,300,300 0.3420  0.0249  0.3590  0.0196  0.5133  0.0047  

DTLZ3b - 10,3 450,450,450 0.5871  0.0325  0.5667  0.0353  0.7075  0.0032  

DTLZ3b - 20,3 450,450,450 0.4694  0.0290  0.4524  0.0249  0.6181  0.0084  

DTLZ3b - 30,3  450,450,450 0.3636  0.0261  0.3596  0.0203  0.5097  0.0083  

 

4.4.4 Comparison results with transfer-learning-based algorithms 

In order to further investigate the algorithm's effectiveness, we employ two transfer-learning-based algorithms 

TEMO-MPS [75] and ParEGO [76] to compared with Tk-MaOEA. TEMO-MPS [75], an improved ParEGO 

algorithm, exploits multi-problem surrogates to achieve knowledge transfer for MOPs. In principle, TEMO-MPS 

is an adaptive knowledge-reuse-based MOEA. ParEGO [76] aims to utilize the probabilistic nature of Gaussian 

process regression models to enhance the search in multi-objective objective space. More details can refer to [76]. 

In this experiment, the parameter setting of Tk-MaOEA follows that of Section 4.2. 

The statistical results in terms of mean and standard deviation of HV values obtained by Tk-MaOEA, 

TEMO-MPS and ParEGO, are given in Table 13. Note that, reference [75] has reported the statistical HV results 

of TEMO-MPS and ParEGO on the DTLZ1 and DTLZ3 variants, thereby these results are directly listed in Table 

13. The detailed formulations regarding the DTLZ1 and DTLZ3 variants, as shown in [75], have two major 

modifications: a) the number of local fronts is reduced, and the value 20π within the cosine term of the original 
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DTLZ1 is replaced by 2π, and b) the function is combined with two variables to create a suite of related 

optimization tasks. The two test function sets are respectively denoted by DTLZ1b−δ1, δ2 or DTLZ3b−δ1, δ2. It 

is clear that the larger difference between δ1 and δ2 means the lower similarity. In this experiment, 

δ1 {10,20,30} and δ2 {1,2,3} are set to generate 18 synthetic multimodal DTLZ functions, as shown in Table 

13.  

From Table 13, it is observed that TkMaOEA shows a performance superiority to other algorithms. For 

DTLZ1b, TEMO-MPS obtains the first ranks on DTLZ1b-20, 2 and DTLZ1b-30, 2. In fact, the statistical results 

in terms of HV values of Tk-MaOEA are very close to that of TEMO-MPS on DTLZ1b-20, 2 and DTLZ1b-30, 2. 

For other test functions, e.g., DTLZ1b-10, 1-3, DTLZ1b-20, 1, 3, DTLZ1b-30, 1, 3, and all DTLZ3b instances, 

Tk-MaOEA obtains the first ranks, performing better than TEMO-MPS. This may be due to the fact that 

TEMO-MPS aggregates all objective functions into a single objective function, which causes the inaccurate 

identification of new candidate solutions during the search. For DTLZ3b, TkMaOEA outperforms ParEGO and 

TEMO-MPS on all the test instances. This can be explained that Tk-MaOEA can accelerate the convergence of 

solutions by using the transfer matrix, while TEMO-MPS only aggregates the objective values only through a 

random vector, resulting in an inaccurate representation for the corresponding solution. 

 

5. Conclusions 

In order to alleviate the effect of the curse of dimensionality in MaOPs, this paper develops a novel 

evolutionary optimization framework, called Tk-MaOEA, based on transfer learning assisted by Kriging model. 

The aim of Tk-MaOEA is to enhance the selection pressure in fitness evaluation in MaOPs. At the global space 

optimization level, transfer learning is used to reduce the number of redundant objectives, by the means of the 

deliberately designed transfer matrix. At the objective optimization level,  Kriging model is incorporated for 

each objective to further reduce the optimization complexity during the evolutionary process. In addition, the fast 

non-dominated sorting and FCS strategies are incorporated in environmental selection to save and retrieve the 

final non-dominated solutions. 

The proposed Tk-MaOEA has been experimentally compared with several popular MaOEAs including 

NSGA-III, MOEA/D, MOMBII and VaEA on a set of well-defined test benchmarks. Experimental results show 

that Tk-MaOEA is significant superior or at least comparable to its compared algorithms in terms of two 

commonly used metrics IGD and HV. It should be noted that Tk-MaOEA sometimes encounters the dilemma of 

being easily trapped into local many-objective optima on some test problems Accordingly, we do not declare that 

Î Î
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Tk-MaOEA is always superior to other MaOEAs. The strengths and weaknesses of Tk-MaOEA need to be 

investigated further, especially according to the specific features of the problems. A comprehensive sensitivity 

analysis of the algorithm's parameters, and the research on real-world applications will be highlighted in our 

future work. 

APPENDIX 

The process of transfer learning that aims to reduce the number of objectives, is based on an important 

premise that the properties of original objectives should be maintained as much as possible. Thus, the following 

definitions are given and the proposed theorems with respects to the transfer matrix are proven mathematically. 

Definition 1: for a population matrix P, the transferred matrix Tr can be transformed from P based on the best 

individual in P, by using a transfer matrix T, then  

                                 (10) 

Theorem 1: In Definition 1, the size of matrix Tr should be (N*TN),where N is the number of individuals in 

population P, and TN is the number of objectives that has been reduced. 

Proof: Considering that the size of matrix P is (N*M), the size of matrix T should be (M*TN). According to 

the matrix multiplication in Definition 1, we can get that Tr=PN*M*TM*TN, and the size of Tr is (N*TN). 

Therefore, Theorem 1 is proven. 

Definition 2: Given an individual ptm in population Pt, , m=1,2,...N, for a column 

vector in the transfer matrix, , j=1,2,...N, and an individual trij in the population Tr,  

, j=1,2,...N, according to Definition 1, there exists a relation between them as 

                                (11) 

Theorem 2: for an individual trij in the population Tr , j=1,2,...N, each set of 

coordinates is the map length in direction of the each column vector in transfer matrix . 

Proof: In the implementation of matrix multiplication, the row of previous matrix multiplies the column of 

the matrix, as depicted in Definition 2. According to the formula related to the inner product (i.e., Eq.(12)) and 

the function cos related to the angle between two vectors (i.e., Eq.(13)), if the length of tk is 1, the formula of 

inner product (i.e., Eq.(14)) is the map length in the direction of the tk.. Therefore, the Theorem 2 is proven. 
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