311 research outputs found

    Large-Scale Light Field Capture and Reconstruction

    Get PDF
    This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. To overcome these three challenges, we propose: (i) a novel self-calibration method, which takes advantage of the geometric constraints from the scene and the cameras, for estimating the rigid transformations from the camera coordinate frame of one Kinect V2 to the camera coordinate frames of 12-nearest RGB cameras; (ii) a novel coarse-to-fine approach for recovering the rigid transformation from the coordinate system of one Kinect to the coordinate system of the other by means of local color and geometry information; (iii) several novel algorithms that can be categorized into two groups for reconstructing a DSLF from an input SSLF, including novel view synthesis methods, which are inspired by the state-of-the-art video frame interpolation algorithms, and Epipolar-Plane Image (EPI) inpainting methods, which are inspired by the Shearlet Transform (ST)-based DSLF reconstruction approaches

    Depth Enhancement and Surface Reconstruction with RGB/D Sequence

    Get PDF
    Surface reconstruction and 3D modeling is a challenging task, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. It is fundamental to many applications such as robot navigation, animation and scene understanding, industrial control and medical diagnosis. In this dissertation, I take advantage of the consumer depth sensors for surface reconstruction. Considering its limited performance on capturing detailed surface geometry, a depth enhancement approach is proposed in the first place to recovery small and rich geometric details with captured depth and color sequence. In addition to enhancing its spatial resolution, I present a hybrid camera to improve the temporal resolution of consumer depth sensor and propose an optimization framework to capture high speed motion and generate high speed depth streams. Given the partial scans from the depth sensor, we also develop a novel fusion approach to build up complete and watertight human models with a template guided registration method. Finally, the problem of surface reconstruction for non-Lambertian objects, on which the current depth sensor fails, is addressed by exploiting multi-view images captured with a hand-held color camera and we propose a visual hull based approach to recovery the 3D model

    Robotic Cameraman for Augmented Reality based Broadcast and Demonstration

    Get PDF
    In recent years, a number of large enterprises have gradually begun to use vari-ous Augmented Reality technologies to prominently improve the audiences’ view oftheir products. Among them, the creation of an immersive virtual interactive scenethrough the projection has received extensive attention, and this technique refers toprojection SAR, which is short for projection spatial augmented reality. However,as the existing projection-SAR systems have immobility and limited working range,they have a huge difficulty to be accepted and used in human daily life. Therefore,this thesis research has proposed a technically feasible optimization scheme so thatit can be practically applied to AR broadcasting and demonstrations. Based on three main techniques required by state-of-art projection SAR applica-tions, this thesis has created a novel mobile projection SAR cameraman for ARbroadcasting and demonstration. Firstly, by combining the CNN scene parsingmodel and multiple contour extractors, the proposed contour extraction pipelinecan always detect the optimal contour information in non-HD or blurred images.This algorithm reduces the dependency on high quality visual sensors and solves theproblems of low contour extraction accuracy in motion blurred images. Secondly, aplane-based visual mapping algorithm is introduced to solve the difficulties of visualmapping in these low-texture scenarios. Finally, a complete process of designing theprojection SAR cameraman robot is introduced. This part has solved three mainproblems in mobile projection-SAR applications: (i) a new method for marking con-tour on projection model is proposed to replace the model rendering process. Bycombining contour features and geometric features, users can identify objects oncolourless model easily. (ii) a camera initial pose estimation method is developedbased on visual tracking algorithms, which can register the start pose of robot to thewhole scene in Unity3D. (iii) a novel data transmission approach is introduced to establishes a link between external robot and the robot in Unity3D simulation work-space. This makes the robotic cameraman can simulate its trajectory in Unity3D simulation work-space and project correct virtual content. Our proposed mobile projection SAR system has made outstanding contributionsto the academic value and practicality of the existing projection SAR technique. Itfirstly solves the problem of limited working range. When the system is running ina large indoor scene, it can follow the user and project dynamic interactive virtualcontent automatically instead of increasing the number of visual sensors. Then,it creates a more immersive experience for audience since it supports the user hasmore body gestures and richer virtual-real interactive plays. Lastly, a mobile systemdoes not require up-front frameworks and cheaper and has provided the public aninnovative choice for indoor broadcasting and exhibitions

    Accurately scaled 3-D scene reconstruction using a moving monocular camera and a single-point depth sensor

    Get PDF
    Abstract: A 3-D reconstruction produced using only a single camera and Structure from Motion (SfM) is always up to scale i.e. without real world dimensions. Real-world dimensions are necessary for many applications that require 3-D reconstruction since decisions are made based on the accuracy of the reconstruction and the estimated camera poses. Current solutions to the absence of scale require prior knowledge of or access to the imaged environment in order to provide absolute scale to a reconstruction. It is often necessary to obtain a 3-D reconstruction of an inaccessible or unknown enviroment. This research proposes the use of a basic SfM pipeline for 3-D reconstruction with a single camera while augmenting the camera with a depth measurement for each image by way of a laser point marker. The marker is identified in the image and projected such that its location is determined as the point with highest point density along the projection in the up to scale reconstruction. The known distance to this point provides a scale factor that can be applied to the up to scale reconstruction. The results obtained show that the proposed augmentation does provide better scale accuracy. The SfM pipeline has room for improvement especially in terms of two-view geometry and structure estimations. A proof of concept is achieved that may open the door to improved algorithms for more demanding applications.M.Ing. (Electrical and Electronic Engineering

    A gaze-contingent framework for perceptually-enabled applications in healthcare

    Get PDF
    Patient safety and quality of care remain the focus of the smart operating room of the future. Some of the most influential factors with a detrimental effect are related to suboptimal communication among the staff, poor flow of information, staff workload and fatigue, ergonomics and sterility in the operating room. While technological developments constantly transform the operating room layout and the interaction between surgical staff and machinery, a vast array of opportunities arise for the design of systems and approaches, that can enhance patient safety and improve workflow and efficiency. The aim of this research is to develop a real-time gaze-contingent framework towards a "smart" operating suite, that will enhance operator's ergonomics by allowing perceptually-enabled, touchless and natural interaction with the environment. The main feature of the proposed framework is the ability to acquire and utilise the plethora of information provided by the human visual system to allow touchless interaction with medical devices in the operating room. In this thesis, a gaze-guided robotic scrub nurse, a gaze-controlled robotised flexible endoscope and a gaze-guided assistive robotic system are proposed. Firstly, the gaze-guided robotic scrub nurse is presented; surgical teams performed a simulated surgical task with the assistance of a robot scrub nurse, which complements the human scrub nurse in delivery of surgical instruments, following gaze selection by the surgeon. Then, the gaze-controlled robotised flexible endoscope is introduced; experienced endoscopists and novice users performed a simulated examination of the upper gastrointestinal tract using predominately their natural gaze. Finally, a gaze-guided assistive robotic system is presented, which aims to facilitate activities of daily living. The results of this work provide valuable insights into the feasibility of integrating the developed gaze-contingent framework into clinical practice without significant workflow disruptions.Open Acces

    Efficient Dense Registration, Segmentation, and Modeling Methods for RGB-D Environment Perception

    Get PDF
    One perspective for artificial intelligence research is to build machines that perform tasks autonomously in our complex everyday environments. This setting poses challenges to the development of perception skills: A robot should be able to perceive its location and objects in its surrounding, while the objects and the robot itself could also be moving. Objects may not only be composed of rigid parts, but could be non-rigidly deformable or appear in a variety of similar shapes. Furthermore, it could be relevant to the task to observe object semantics. For a robot acting fluently and immediately, these perception challenges demand efficient methods. This theses presents novel approaches to robot perception with RGB-D sensors. It develops efficient registration, segmentation, and modeling methods for scene and object perception. We propose multi-resolution surfel maps as a concise representation for RGB-D measurements. We develop probabilistic registration methods that handle rigid scenes, scenes with multiple rigid parts that move differently, and scenes that undergo non-rigid deformations. We use these methods to learn and perceive 3D models of scenes and objects in both static and dynamic environments. For learning models of static scenes, we propose a real-time capable simultaneous localization and mapping approach. It aligns key views in RGB-D video using our rigid registration method and optimizes the pose graph of the key views. The acquired models are then perceived in live images through detection and tracking within a Bayesian filtering framework. An assumption frequently made for environment mapping is that the observed scene remains static during the mapping process. Through rigid multi-body registration, we take advantage of releasing this assumption: Our registration method segments views into parts that move independently between the views and simultaneously estimates their motion. Within simultaneous motion segmentation, localization, and mapping, we separate scenes into objects by their motion. Our approach acquires 3D models of objects and concurrently infers hierarchical part relations between them using probabilistic reasoning. It can be applied for interactive learning of objects and their part decomposition. Endowing robots with manipulation skills for a large variety of objects is a tedious endeavor if the skill is programmed for every instance of an object class. Furthermore, slight deformations of an instance could not be handled by an inflexible program. Deformable registration is useful to perceive such shape variations, e.g., between specific instances of a tool. We develop an efficient deformable registration method and apply it for the transfer of robot manipulation skills between varying object instances. On the object-class level, we segment images using random decision forest classifiers in real-time. The probabilistic labelings of individual images are fused in 3D semantic maps within a Bayesian framework. We combine our object-class segmentation method with simultaneous localization and mapping to achieve online semantic mapping in real-time. The methods developed in this thesis are evaluated in experiments on publicly available benchmark datasets and novel own datasets. We publicly demonstrate several of our perception approaches within integrated robot systems in the mobile manipulation context.Effiziente Dichte Registrierungs-, Segmentierungs- und Modellierungsmethoden für die RGB-D Umgebungswahrnehmung In dieser Arbeit beschäftigen wir uns mit Herausforderungen der visuellen Wahrnehmung für intelligente Roboter in Alltagsumgebungen. Solche Roboter sollen sich selbst in ihrer Umgebung zurechtfinden, und Wissen über den Verbleib von Objekten erwerben können. Die Schwierigkeit dieser Aufgaben erhöht sich in dynamischen Umgebungen, in denen ein Roboter die Bewegung einzelner Teile differenzieren und auch wahrnehmen muss, wie sich diese Teile bewegen. Bewegt sich ein Roboter selbständig in dieser Umgebung, muss er auch seine eigene Bewegung von der Veränderung der Umgebung unterscheiden. Szenen können sich aber nicht nur durch die Bewegung starrer Teile verändern. Auch die Teile selbst können ihre Form in nicht-rigider Weise ändern. Eine weitere Herausforderung stellt die semantische Interpretation von Szenengeometrie und -aussehen dar. Damit intelligente Roboter unmittelbar und flüssig handeln können, sind effiziente Algorithmen für diese Wahrnehmungsprobleme erforderlich. Im ersten Teil dieser Arbeit entwickeln wir effiziente Methoden zur Repräsentation und Registrierung von RGB-D Messungen. Zunächst stellen wir Multi-Resolutions-Oberflächenelement-Karten (engl. multi-resolution surfel maps, MRSMaps) als eine kompakte Repräsentation von RGB-D Messungen vor, die unseren effizienten Registrierungsmethoden zugrunde liegt. Bilder können effizient in dieser Repräsentation aggregiert werde, wobei auch mehrere Bilder aus verschiedenen Blickpunkten integriert werden können, um Modelle von Szenen und Objekte aus vielfältigen Ansichten darzustellen. Für die effiziente, robuste und genaue Registrierung von MRSMaps wird eine Methode vorgestellt, die Rigidheit der betrachteten Szene voraussetzt. Die Registrierung schätzt die Kamerabewegung zwischen den Bildern und gewinnt ihre Effizienz durch die Ausnutzung der kompakten multi-resolutionalen Darstellung der Karten. Die Registrierungsmethode erzielt hohe Bildverarbeitungsraten auf einer CPU. Wir demonstrieren hohe Effizienz, Genauigkeit und Robustheit unserer Methode im Vergleich zum bisherigen Stand der Forschung auf Vergleichsdatensätzen. In einem weiteren Registrierungsansatz lösen wir uns von der Annahme, dass die betrachtete Szene zwischen Bildern statisch ist. Wir erlauben nun, dass sich rigide Teile der Szene bewegen dürfen, und erweitern unser rigides Registrierungsverfahren auf diesen Fall. Unser Ansatz segmentiert das Bild in Bereiche einzelner Teile, die sich unterschiedlich zwischen Bildern bewegen. Wir demonstrieren hohe Segmentierungsgenauigkeit und Genauigkeit in der Bewegungsschätzung unter Echtzeitbedingungen für die Verarbeitung. Schließlich entwickeln wir ein Verfahren für die Wahrnehmung von nicht-rigiden Deformationen zwischen zwei MRSMaps. Auch hier nutzen wir die multi-resolutionale Struktur in den Karten für ein effizientes Registrieren von grob zu fein. Wir schlagen Methoden vor, um aus den geschätzten Deformationen die lokale Bewegung zwischen den Bildern zu berechnen. Wir evaluieren Genauigkeit und Effizienz des Registrierungsverfahrens. Der zweite Teil dieser Arbeit widmet sich der Verwendung unserer Kartenrepräsentation und Registrierungsmethoden für die Wahrnehmung von Szenen und Objekten. Wir verwenden MRSMaps und unsere rigide Registrierungsmethode, um dichte 3D Modelle von Szenen und Objekten zu lernen. Die räumlichen Beziehungen zwischen Schlüsselansichten, die wir durch Registrierung schätzen, werden in einem Simultanen Lokalisierungs- und Kartierungsverfahren (engl. simultaneous localization and mapping, SLAM) gegeneinander abgewogen, um die Blickposen der Schlüsselansichten zu schätzen. Für das Verfolgen der Kamerapose bezüglich der Modelle in Echtzeit, kombinieren wir die Genauigkeit unserer Registrierung mit der Robustheit von Partikelfiltern. Zu Beginn der Posenverfolgung, oder wenn das Objekt aufgrund von Verdeckungen oder extremen Bewegungen nicht weiter verfolgt werden konnte, initialisieren wir das Filter durch Objektdetektion. Anschließend wenden wir unsere erweiterten Registrierungsverfahren für die Wahrnehmung in nicht-rigiden Szenen und für die Übertragung von Objekthandhabungsfähigkeiten von Robotern an. Wir erweitern unseren rigiden Kartierungsansatz auf dynamische Szenen, in denen sich rigide Teile bewegen. Die Bewegungssegmente in Schlüsselansichten werden zueinander in Bezug gesetzt, um Äquivalenz- und Teilebeziehungen von Objekten probabilistisch zu inferieren, denen die Segmente entsprechen. Auch hier liefert unsere Registrierungsmethode die Bewegung der Kamera bezüglich der Objekte, die wir in einem SLAM Verfahren optimieren. Aus diesen Blickposen wiederum können wir die Bewegungssegmente in dichten Objektmodellen vereinen. Objekte einer Klasse teilen oft eine gemeinsame Topologie von funktionalen Elementen, die durch Formkorrespondenzen ermittelt werden kann. Wir verwenden unsere deformierbare Registrierung, um solche Korrespondenzen zu finden und die Handhabung eines Objektes durch einen Roboter auf neue Objektinstanzen derselben Klasse zu übertragen. Schließlich entwickeln wir einen echtzeitfähigen Ansatz, der Kategorien von Objekten in RGB-D Bildern erkennt und segmentiert. Die Segmentierung basiert auf Ensemblen randomisierter Entscheidungsbäume, die Geometrie- und Texturmerkmale zur Klassifikation verwenden. Wir fusionieren Segmentierungen von Einzelbildern einer Szene aus mehreren Ansichten in einer semantischen Objektklassenkarte mit Hilfe unseres SLAM-Verfahrens. Die vorgestellten Methoden werden auf öffentlich verfügbaren Vergleichsdatensätzen und eigenen Datensätzen evaluiert. Einige unserer Ansätze wurden auch in integrierten Robotersystemen für mobile Objekthantierungsaufgaben öffentlich demonstriert. Sie waren ein wichtiger Bestandteil für das Gewinnen der RoboCup-Roboterwettbewerbe in der RoboCup@Home Liga in den Jahren 2011, 2012 und 2013

    Range images

    Get PDF
    This article gives an overview of range‐imaging techniques with an aim to let the reader better understand how the difficult issue, such as the registration of overlapping range images, can be approached and solved. It firstly introduces the characteristics of range images and highlights examples of 3D image visualizations, associated technical issues, applications, and the differences of range imaging with respect to the traditional digital broadband imaging. Subsequently, one of the most popular feature extraction and matching methods, the signature of histograms of orientations (SHOT) method, is then outlined. However, the “matched” points generated by SHOT usually generate high proportion of false positives due to various factors such as imaging noise, lack of features, and cluttered backgrounds. Thus, the article discusses more about image‐matching issues, particularly to emphasize how the widely employed range image alignment technique, the random sample consensus (RANSAC) method, is compared with a simple, yet effective, technique based on normalized error penalization (NEP). This simple NEP method utilizes a strategy to penalize point matches whose errors are far away from the majority. The capability of the method for the evaluation of point matches between overlapping range images is illustrated by experiments using real range image data sets. Interestingly enough, these range images appear to be easier to register than expected. Finally, some conclusions have been drawn and further readings for other fundamental techniques and concepts have been suggested
    corecore