12 research outputs found

    A high speed fault-tolerant multimedia network and connectionless gateway for ATM networks.

    Get PDF
    by Patrick Lam Sze Fan.Thesis (M.Phil.)--Chinese University of Hong Kong, 1997.Includes bibliographical references (leaves 163-[170]).Chapter 1 --- Introduction --- p.1Chapter 2 --- Fault-tolerant CUM LAUDE NET --- p.7Chapter 2.1 --- Overview of CUM LAUDE NET --- p.7Chapter 2.2 --- Network architecture of CUM LAUDE NET --- p.8Chapter 2.3 --- Design of Router-node --- p.10Chapter 2.3.1 --- Architecture of the Router-node --- p.10Chapter 2.3.2 --- Buffers Arrangement of the Router-node --- p.12Chapter 2.3.3 --- Buffer transmission policies --- p.13Chapter 2.4 --- Protocols of CUM LAUDE NET --- p.14Chapter 2.5 --- Frame Format of CUM LAUDE NET --- p.15Chapter 2.6 --- Fault-tolerant (FT) and Auto-healing (AH) algorithms --- p.16Chapter 2.6.1 --- Overview of the algorithms --- p.16Chapter 2.6.2 --- Network Failure Scenarios --- p.18Chapter 2.6.3 --- Design and Implementation of the Fault Tolerant Algorithm --- p.19Chapter 2.6.4 --- Design and Implementation of the Auto Healing Algorithm --- p.26Chapter 2.6.5 --- Network Management Signals and Restoration Times --- p.27Chapter 2.6.6 --- Comparison of fault-tolerance features of other networks with the CUM LAUDE NET --- p.31Chapter 2.7 --- Chapter Summary --- p.31Chapter 3 --- Overview of the Asynchronous Transfer Mode (ATM) --- p.33Chapter 3.1 --- Introduction --- p.33Chapter 3.2 --- ATM Network Interfaces --- p.34Chapter 3.3 --- ATM Virtual Connections --- p.35Chapter 3.4 --- ATM Cell Format --- p.36Chapter 3.5 --- ATM Address Formats --- p.36Chapter 3.6 --- ATM Protocol Reference Model --- p.38Chapter 3.6.1 --- The ATM Layer --- p.39Chapter 3.6.2 --- The ATM Adaptation Layer --- p.39Chapter 3.7 --- ATM Signalling --- p.44Chapter 3.7.1 --- ATM Signalling Messages and Call Setup Procedures --- p.45Chapter 3.8 --- Interim Local Management Interface (ILMI) --- p.47Chapter 4 --- Issues of Connectionless Gateway --- p.49Chapter 4.1 --- Introduction --- p.49Chapter 4.2 --- The Issues --- p.50Chapter 4.3 --- ATM Internetworking --- p.51Chapter 4.3.1 --- LAN Emulation --- p.52Chapter 4.3.2 --- IP over ATM --- p.53Chapter 4.3.3 --- Comparing IP over ATM and LAN Emulation --- p.59Chapter 4.4 --- Connection Management --- p.61Chapter 4.4.1 --- The Indirect Approach --- p.62Chapter 4.4.2 --- The Direct Approach --- p.63Chapter 4.4.3 --- Comparing the two approaches --- p.64Chapter 4.5 --- Protocol Conversion --- p.65Chapter 4.5.1 --- Selection of Protocol Converter --- p.68Chapter 4.6 --- Packet Forwarding Modes --- p.68Chapter 4.7 --- Bandwidth Assignment --- p.70Chapter 4.7.1 --- Bandwidth Reservation --- p.71Chapter 4.7.2 --- Fast Bandwidth Reservation --- p.72Chapter 4.7.3 --- Bandwidth Advertising --- p.72Chapter 4.7.4 --- Bandwidth Advertising with Cell Drop Detection --- p.73Chapter 4.7.5 --- Bandwidth Allocation on Source Demand --- p.73Chapter 4.7.6 --- The Common Problems --- p.74Chapter 5 --- Design and Implementation of the Connectionless Gateway --- p.77Chapter 5.1 --- Introduction --- p.77Chapter 5.1.1 --- Functions Definition of Connectionless Gateway --- p.79Chapter 5.2 --- Hardware Architecture of the Connectionless Gateway --- p.79Chapter 5.2.1 --- Imposed Limitations --- p.82Chapter 5.3 --- Software Architecture of the Connectionless Gateway --- p.83Chapter 5.3.1 --- TCP/IP Internals --- p.84Chapter 5.3.2 --- ATM on Linux --- p.85Chapter 5.4 --- Network Architecture --- p.88Chapter 5.4.1 --- IP Addresses Assignment --- p.90Chapter 5.5 --- Internal Structure of Connectionless Gateway --- p.90Chapter 5.5.1 --- Protocol Stacks of the Gateway --- p.90Chapter 5.5.2 --- Gateway Operation by Example --- p.93Chapter 5.5.3 --- Routing Table Maintenance --- p.97Chapter 5.6 --- Additional Features --- p.105Chapter 5.6.1 --- Priority Output Queues System --- p.105Chapter 5.6.2 --- Gateway Performance Monitor --- p.112Chapter 5.7 --- Setup an Operational ATM LAN --- p.117Chapter 5.7.1 --- SVC Connections --- p.117Chapter 5.7.2 --- PVC Connections --- p.119Chapter 5.8 --- Application of the Connectionless Gateway --- p.120Chapter 6 --- Performance Measurement of the Connectionless Gateway --- p.121Chapter 6.1 --- Introduction --- p.121Chapter 6.2 --- Experimental Setup --- p.121Chapter 6.3 --- Measurement Tools of the Experiments --- p.123Chapter 6.4 --- Descriptions of the Experiments --- p.124Chapter 6.4.1 --- Log Files --- p.125Chapter 6.5 --- UDP Control Rate Test --- p.126Chapter 6.5.1 --- Results and analysis of the UDP Control Rate Test --- p.127Chapter 6.6 --- UDP Maximum Rate Test --- p.138Chapter 6.6.1 --- Results and analysis of the UDP Maximum Rate Test --- p.138Chapter 6.7 --- TCP Maximum Rate Test --- p.140Chapter 6.7.1 --- Results and analysis of the TCP Maximum Rate Test --- p.140Chapter 6.8 --- Request/Response Test --- p.144Chapter 6.8.1 --- Results and analysis of the Request/Response Test --- p.144Chapter 6.9 --- Priority Queue System Verification Test --- p.149Chapter 6.9.1 --- Results and analysis of the Priority Queue System Verifi- cation Test --- p.150Chapter 6.10 --- Other Observations --- p.153Chapter 6.11 --- Solutions to Improve the Performance --- p.154Chapter 6.12 --- Future Development --- p.157Chapter 7 --- Conclusion --- p.158Bibliography --- p.163A List of Publications --- p.17

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    A novel interworking configuration to protect gateways in between survivable sub-networks

    No full text
    The first part of this paper discusses interworking between survivable sub-networks in transport networks. The second part then presents a novel generic interworking configuration To protect gateways in between survivable sob-networks. A gateway comprises the network resources interconnecting neighbouring survivable sub-networks. The issue of gateway failures is relevant to both public as well as private networks where traffic may cross multiple sub-networks operated by different organisations. The proposed configuration is simple, achieves fast recovery of any single failure and requires only minimal coordination. The configuration has been simulated for a mesh-mesh and a ring-mesh structured survivable ATM layer network

    Design and optimization of optical grids and clouds

    Get PDF

    Quality of service and security in future mobile technologies

    Get PDF
    Future networks will comprise a wide variety of wireless networks. Users will expect to be always connected from any location, and, as users move, connections will be switched to available networks using vertical handover techniques. The current approach of the operators is a centralized network, and the mobility management is done at the infrastructure level. The decentralized mobility management is another approach developed in many researches, however, not widely deployed. We are interested in this type of decentralized mobility management, especially in a highly dynamic environment when the network topology changes frequently. We choose a particular case study, Vehicular Ad-hoc Networks (VANETs), which are a new emerging network technology derived from ad-hoc networks and are an example of future networks. In the field of Intelligent Transportation Systems (ITS), communications without a wire between vehicles (V2V) appear as an accident prevention solution offering a wider vision than conventional sensors. By linking vehicles to telecommunications network (V2I), new perspectives are offered both passengers and driver with conventional communication applications such as access Internet, e-learning, games or chat. This means that future mobile networks like VANETs will have to integrate communications, mobility, Quality of Service (QoS) and security. We mainly interested in three issues: mobility, QoS and security. These three issues are intrinsic to vehicles on motorway networks. We need to simultaneously manage QoS and security while taking into account users mobility. In this thesis, we propose to contribute on how to improve security without degrading the quality of service QoS in a highly mobile environment as VANETs networks. To answer this research question, we use simulations and experiments. Simulation using Network Simulator 2 (NS2) will be used to show that security schemes have significant impacts on the throughput QoS, and our proposed schemes can substantially improve the effective secure throughput with cooperative communications

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore