31,037 research outputs found

    Eye-tracking as a measure of cognitive effort for post-editing of machine translation

    Get PDF
    The three measurements for post-editing effort as proposed by Krings (2001) have been adopted by many researchers in subsequent studies and publications. These measurements comprise temporal effort (the speed or productivity rate of post-editing, often measured in words per second or per minute at the segment level), technical effort (the number of actual edits performed by the post-editor, sometimes approximated using the Translation Edit Rate metric (Snover et al. 2006), again usually at the segment level), and cognitive effort. Cognitive effort has been measured using Think-Aloud Protocols, pause measurement, and, increasingly, eye-tracking. This chapter provides a review of studies of post-editing effort using eye-tracking, noting the influence of publications by Danks et al. (1997), and O’Brien (2006, 2008), before describing a single study in detail. The detailed study examines whether predicted effort indicators affect post-editing effort and results were previously published as Moorkens et al. (2015). Most of the eye-tracking data analysed were unused in the previou

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Automated drowsiness detection for improved driving safety

    Get PDF
    Several approaches were proposed for the detection and prediction of drowsiness. The approaches can be categorized as estimating the fitness of duty, modeling the sleep-wake rhythms, measuring the vehicle based performance and online operator monitoring. Computer vision based online operator monitoring approach has become prominent due to its predictive ability of detecting drowsiness. Previous studies with this approach detect driver drowsiness primarily by making preassumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learning-based classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy drivin

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Content-prioritised video coding for British Sign Language communication.

    Get PDF
    Video communication of British Sign Language (BSL) is important for remote interpersonal communication and for the equal provision of services for deaf people. However, the use of video telephony and video conferencing applications for BSL communication is limited by inadequate video quality. BSL is a highly structured, linguistically complete, natural language system that expresses vocabulary and grammar visually and spatially using a complex combination of facial expressions (such as eyebrow movements, eye blinks and mouth/lip shapes), hand gestures, body movements and finger-spelling that change in space and time. Accurate natural BSL communication places specific demands on visual media applications which must compress video image data for efficient transmission. Current video compression schemes apply methods to reduce statistical redundancy and perceptual irrelevance in video image data based on a general model of Human Visual System (HVS) sensitivities. This thesis presents novel video image coding methods developed to achieve the conflicting requirements for high image quality and efficient coding. Novel methods of prioritising visually important video image content for optimised video coding are developed to exploit the HVS spatial and temporal response mechanisms of BSL users (determined by Eye Movement Tracking) and the characteristics of BSL video image content. The methods implement an accurate model of HVS foveation, applied in the spatial and temporal domains, at the pre-processing stage of a current standard-based system (H.264). Comparison of the performance of the developed and standard coding systems, using methods of video quality evaluation developed for this thesis, demonstrates improved perceived quality at low bit rates. BSL users, broadcasters and service providers benefit from the perception of high quality video over a range of available transmission bandwidths. The research community benefits from a new approach to video coding optimisation and better understanding of the communication needs of deaf people

    Perception and Orientation in Minimally Invasive Surgery

    No full text
    During the last two decades, we have seen a revolution in the way that we perform abdominal surgery with increased reliance on minimally invasive techniques. This paradigm shift has come at a rapid pace, with laparoscopic surgery now representing the gold standard for many surgical procedures and further minimisation of invasiveness being seen with the recent clinical introduction of novel techniques such as single-incision laparoscopic surgery and natural orifice translumenal endoscopic surgery. Despite the obvious benefits conferred on the patient in terms of morbidity, length of hospital stay and post-operative pain, this paradigm shift comes at a significantly higher demand on the surgeon, in terms of both perception and manual dexterity. The issues involved include degradation of sensory input to the operator compared to conventional open surgery owing to a loss of three-dimensional vision through the use of the two-dimensional operative interface, and decreased haptic feedback from the instruments. These changes have led to a much higher cognitive load on the surgeon and a greater risk of operator disorientation leading to potential surgical errors. This thesis represents a detailed investigation of disorientation in minimally invasive surgery. In this thesis, eye tracking methodology is identified as the method of choice for evaluating behavioural patterns during orientation. An analysis framework is proposed to profile orientation behaviour using eye tracking data validated in a laboratory model. This framework is used to characterise and quantify successful orientation strategies at critical stages of laparoscopic cholecystectomy and furthermore use these strategies to prove that focused teaching of this behaviour in novices can significantly increase performance in this task. Orientation strategies are then characterised for common clinical scenarios in natural orifice translumenal endoscopic surgery and the concept of image saliency is introduced to further investigate the importance of specific visual cues associated with effective orientation. Profiling of behavioural patterns is related to performance in orientation and implications on education and construction of smart surgical robots are drawn. Finally, a method for potentially decreasing operator disorientation is investigated in the form of endoscopic horizon stabilization in a simulated operative model for transgastric surgery. The major original contributions of this thesis include: Validation of a profiling methodology/framework to characterise orientation behaviour Identification of high performance orientation strategies in specific clinical scenarios including laparoscopic cholecystectomy and natural orifice translumenal endoscopic surgery Evaluation of the efficacy of teaching orientation strategies Evaluation of automatic endoscopic horizon stabilization in natural orifice translumenal endoscopic surgery The impact of the results presented in this thesis, as well as the potential for further high impact research is discussed in the context of both eye tracking as an evaluation tool in minimally invasive surgery as well as implementation of means to combat operator disorientation in a surgical platform. The work also provides further insight into the practical implementation of computer-assistance and technological innovation in future flexible access surgical platforms

    Measuring cognitive load and cognition: metrics for technology-enhanced learning

    Get PDF
    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive load theory has become established as one of the most successful and influential theoretical explanations of cognitive processing during learning. Despite this success, attempts to obtain direct objective measures of the theory's central theoretical construct – cognitive load – have proved elusive. This obstacle represents the most significant outstanding challenge for successfully embedding the theoretical and experimental work on cognitive load in empirical data from authentic learning situations. Progress to date on the theoretical and practical approaches to cognitive load are discussed along with the influences of individual differences on cognitive load in order to assess the prospects for the development and application of direct empirical measures of cognitive load especially in technology-rich contexts

    Annotated Bibliography: Anticipation

    Get PDF
    corecore