499 research outputs found

    Coding local and global binary visual features extracted from video sequences

    Get PDF
    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.Comment: submitted to IEEE Transactions on Image Processin

    Sensor-Assisted Global Motion Estimation for Efficient UAV Video Coding

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In this paper, we propose a novel video coding scheme to significantly reduce the coding complexity and enhance overall coding efficiency in videos acquired by high mobility devices such as unmanned aerial vehicles (UAVs). In order to reduce the encoded data bits and encoding time to facilitate real-time data transmission, as well as minimize the image distortion caused by the jitter of onboard camera, a sensor-assisted global motion estimation (GMV) algorithm is designed to calculate perspective transformation model and global motion vectors, which are used in both the inter-frame coding to improve the coding efficiency and intra-frame coding to reduce block search complexity. We conducted comprehensive simulation experiments on official HM-16.10 codec and the performance results show the proposed method can achieve faster block search by 50% to 60% speedup and lower bitrate by 15% to 30% compared with standard HEVC coding software

    Selected topics in video coding and computer vision

    Get PDF
    Video applications ranging from multimedia communication to computer vision have been extensively studied in the past decades. However, the emergence of new applications continues to raise questions that are only partially answered by existing techniques. This thesis studies three selected topics related to video: intra prediction in block-based video coding, pedestrian detection and tracking in infrared imagery, and multi-view video alignment.;In the state-of-art video coding standard H.264/AVC, intra prediction is defined on the hierarchical quad-tree based block partitioning structure which fails to exploit the geometric constraint of edges. We propose a geometry-adaptive block partitioning structure and a new intra prediction algorithm named geometry-adaptive intra prediction (GAIP). A new texture prediction algorithm named geometry-adaptive intra displacement prediction (GAIDP) is also developed by extending the original intra displacement prediction (IDP) algorithm with the geometry-adaptive block partitions. Simulations on various test sequences demonstrate that intra coding performance of H.264/AVC can be significantly improved by incorporating the proposed geometry adaptive algorithms.;In recent years, due to the decreasing cost of thermal sensors, pedestrian detection and tracking in infrared imagery has become a topic of interest for night vision and all weather surveillance applications. We propose a novel approach for detecting and tracking pedestrians in infrared imagery based on a layered representation of infrared images. Pedestrians are detected from the foreground layer by a Principle Component Analysis (PCA) based scheme using the appearance cue. To facilitate the task of pedestrian tracking, we formulate the problem of shot segmentation and present a graph matching-based tracking algorithm. Simulations with both OSU Infrared Image Database and WVU Infrared Video Database are reported to demonstrate the accuracy and robustness of our algorithms.;Multi-view video alignment is a process to facilitate the fusion of non-synchronized multi-view video sequences for various applications including automatic video based surveillance and video metrology. In this thesis, we propose an accurate multi-view video alignment algorithm that iteratively aligns two sequences in space and time. To achieve an accurate sub-frame temporal alignment, we generalize the existing phase-correlation algorithm to 3-D case. We also present a novel method to obtain the ground-truth of the temporal alignment by using supplementary audio signals sampled at a much higher rate. The accuracy of our algorithm is verified by simulations using real-world sequences

    A sensor aided H.264 encoder tested on aerial imagery for SFM

    Get PDF
    Email Print Request Permissions Standard video coding systems currently employed in UAV (Unmanned Aerial Vehicle) and aerial drone applications do not rely on some peculiarities in terms of scene 3D model and correlation among successive frames. In particular, the observed scene is static, i.e. the camera movement is dominant, and it can often be well approximated with a plane. Moreover, camera position and orientation can be obtained from the navigation system. Therefore, correspondent points on two video frames are linked by a simple homography. This paper presents novel results obtained by a low-complexity sensor aided H.264 encoder, recently developed at CIRA and yet tested on simulated data. The proposed encoder employs a new motion estimation scheme which make use of the global motion information provided by the onboard navigation system. The homography is used in order to initialize the block matching algorithm allowing a more robust motion estimation and a smaller search window, and hence reducing the complexity. The tests are made coding real aerial imagery, captured to be used for 3D scene reconstruction. The images are acquired by an high resolution camera mounted on a small drone, flying at low altitude

    System architecture for free-viewpoint video and 3D-TV

    Full text link

    Nouvelles méthodes de prédiction inter-images pour la compression d’images et de vidéos

    Get PDF
    Due to the large availability of video cameras and new social media practices, as well as the emergence of cloud services, images and videosconstitute today a significant amount of the total data that is transmitted over the internet. Video streaming applications account for more than 70% of the world internet bandwidth. Whereas billions of images are already stored in the cloud and millions are uploaded every day. The ever growing streaming and storage requirements of these media require the constant improvements of image and video coding tools. This thesis aims at exploring novel approaches for improving current inter-prediction methods. Such methods leverage redundancies between similar frames, and were originally developed in the context of video compression. In a first approach, novel global and local inter-prediction tools are associated to improve the efficiency of image sets compression schemes based on video codecs. By leveraging a global geometric and photometric compensation with a locally linear prediction, significant improvements can be obtained. A second approach is then proposed which introduces a region-based inter-prediction scheme. The proposed method is able to improve the coding performances compared to existing solutions by estimating and compensating geometric and photometric distortions on a semi-local level. This approach is then adapted and validated in the context of video compression. Bit-rate improvements are obtained, especially for sequences displaying complex real-world motions such as zooms and rotations. The last part of the thesis focuses on deep learning approaches for inter-prediction. Deep neural networks have shown striking results for a large number of computer vision tasks over the last years. Deep learning based methods proposed for frame interpolation applications are studied here in the context of video compression. Coding performance improvements over traditional motion estimation and compensation methods highlight the potential of these deep architectures.En raison de la grande disponibilité des dispositifs de capture vidéo et des nouvelles pratiques liées aux réseaux sociaux, ainsi qu’à l’émergence desservices en ligne, les images et les vidéos constituent aujourd’hui une partie importante de données transmises sur internet. Les applications de streaming vidéo représentent ainsi plus de 70% de la bande passante totale de l’internet. Des milliards d’images sont déjà stockées dans le cloud et des millions y sont téléchargés chaque jour. Les besoins toujours croissants en streaming et stockage nécessitent donc une amélioration constante des outils de compression d’image et de vidéo. Cette thèse vise à explorer des nouvelles approches pour améliorer les méthodes actuelles de prédiction inter-images. De telles méthodes tirent parti des redondances entre images similaires, et ont été développées à l’origine dans le contexte de la vidéo compression. Dans une première partie, de nouveaux outils de prédiction inter globaux et locaux sont associés pour améliorer l’efficacité des schémas de compression de bases de données d’image. En associant une compensation géométrique et photométrique globale avec une prédiction linéaire locale, des améliorations significatives peuvent être obtenues. Une seconde approche est ensuite proposée qui introduit un schéma deprédiction inter par régions. La méthode proposée est en mesure d’améliorer les performances de codage par rapport aux solutions existantes en estimant et en compensant les distorsions géométriques et photométriques à une échelle semi locale. Cette approche est ensuite adaptée et validée dans le cadre de la compression vidéo. Des améliorations en réduction de débit sont obtenues, en particulier pour les séquences présentant des mouvements complexes réels tels que des zooms et des rotations. La dernière partie de la thèse se concentre sur l’étude des méthodes d’apprentissage en profondeur dans le cadre de la prédiction inter. Ces dernières années, les réseaux de neurones profonds ont obtenu des résultats impressionnants pour un grand nombre de tâches de vision par ordinateur. Les méthodes basées sur l’apprentissage en profondeur proposéesà l’origine pour de l’interpolation d’images sont étudiées ici dans le contexte de la compression vidéo. Des améliorations en terme de performances de codage sont obtenues par rapport aux méthodes d’estimation et de compensation de mouvements traditionnelles. Ces résultats mettent en évidence le fort potentiel de ces architectures profondes dans le domaine de la compression vidéo

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C
    • …
    corecore