9 research outputs found

    Wireless sensor platform for harsh environments

    Get PDF
    Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna

    System and circuitry to provide stable transconductance for biasing

    Get PDF
    An amplifier system can include an input amplifier configured to receive an analog input signal and provide an amplified signal corresponding to the analog input signal. A tracking loop is configured to employ delta modulation for tracking the amplified signal, the tracking loop providing a corresponding output signal. A biasing circuit is configured to adjust a bias current to maintain stable transconductance over temperature variations, the biasing circuit providing at least one bias signal for biasing at least one of the input amplifier and the tracking loop, whereby the circuitry receiving the at least one bias signal exhibits stable performance over the temperature variations. In another embodiment the biasing circuit can be utilized in other applications

    System and circuit design for a capacitive MEMS gyroscope

    Get PDF
    In this thesis, issues related to the design and implementation of a micro-electro-mechanicalangular velocity sensor are studied. The work focuses on a system basedon a vibratory microgyroscope which operates in the low-pass mode with a moderateresonance gain and with an open-loop configuration of the secondary (sense) resonator.Both the primary (drive) and the secondary resonators are assumed to have a high qualityfactor. Furthermore, the gyroscope employs electrostatic excitation and capacitivedetection. The thesis is divided into three parts. The first part provides the background informationnecessary for the other two parts. The basic properties of a vibratory microgyroscope,together with the most fundamental non-idealities, are described, a shortintroduction to various manufacturing technologies is given, and a brief review of publishedmicrogyroscopes and of commercial microgyroscopes is provided. The second part concentrates on selected aspects of the system-level design of amicro-electro-mechanical angular velocity sensor. In this part, a detailed analysis isprovided of issues related to different non-idealities in the synchronous demodulation,the dynamics of the primary resonator excitation, the compensation of the mechanicalquadrature signal, and the zero-rate output. The use of ΣΔ modulation to improveaccuracy in both primary resonator excitation and the compensation of the mechanicalquadrature signal is studied. The third part concentrates on the design and implementation of the integratedelectronics required by the angular velocity sensor. The focus is primarily on the designof the sensor readout circuitry, comprising: a continuous-time front-end performingthe capacitance-to-voltage (C/V) conversion, filtering, and signal level normalization;a bandpass ΣΔ analog-to-digital converter, and the required digital signal processing(DSP). The other fundamental circuit blocks, which are a phase-locked loop requiredfor clock generation, a high-voltage digital-to-analog converter for the compensationof the mechanical quadrature signal, the necessary charge pumps for the generationof high voltages, an analog phase shifter, and the digital-to-analog converter used togenerate the primary resonator excitation signals, together with other DSP blocks, areintroduced on a more general level. Additionally, alternative ways to perform the C/Vconversion, such as continuous-time front ends either with or without the upconversionof the capacitive signal, various switched-capacitor front ends, and electromechanicalΣΔ modulation, are studied. In the experimental work done for the thesis, a prototype of a micro-electro-mechanicalangular velocity sensor is implemented and characterized. The analog partsof the system are implemented with a 0.7-µm high-voltage CMOS (ComplimentaryMetal-Oxide-Semiconductor) technology. The DSP part is realized with a field-programmablegate array (FPGA) chip. The ±100°/s gyroscope achieves 0.042°/s/√H̅z̅spot noise and a signal-to-noise ratio of 51.6 dB over the 40 Hz bandwidth, with a100°/s input signal. The implemented system demonstrates the use of ΣΔ modulation in both the primaryresonator excitation and the quadrature compensation. Additionally, it demonstratesphase error compensation performed using DSP. With phase error compensation,the effect of several phase delays in the analog circuitry can be eliminated, andthe additional noise caused by clock jitter can be considerably reduced

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    A novel fully-differential switched capacitor chopper stabilized cascade sigma-delta modulator for MEMS gyroscope

    No full text

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore