6 research outputs found

    A comparative study on polyp classification using convolutional neural networks

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Colorectal cancer is the third most common cancer diagnosed in both men and women in the United States. Most colorectal cancers start as a growth on the inner lining of the colon or rectum, called ‘polyp’. Not all polyps are cancerous, but some can develop into cancer. Early detection and recognition of the type of polyps is critical to prevent cancer and change outcomes. However, visual classification of polyps is challenging due to varying illumination conditions of endoscopy, variant texture, appearance, and overlapping morphology between polyps. More importantly, evaluation of polyp patterns by gastroenterologists is subjective leading to a poor agreement among observers. Deep convolutional neural networks have proven very successful in object classification across various object categories. In this work, we compare the performance of the state-of-the-art general object classification models for polyp classification. We trained a total of six CNN models end-to-end using a dataset of 157 video sequences composed of two types of polyps: hyperplastic and adenomatous. Our results demonstrate that the state-of-the-art CNN models can successfully classify polyps with an accuracy comparable or better than reported among gastroenterologists. The results of this study can guide future research in polyp classification.University of Kansas grant (2228901

    Fisher encoding of convolutional neural network features for endoscopic image classification

    Get PDF
    We propose an approach for the automated diagnosis of celiac disease (CD) and colonic polyps (CP) based on applying Fisher encoding to the activations of convolutional layers. In our experiments, three different convolutional neural network (CNN) architectures (AlexNet, VGG-f, and VGG-16) are applied to three endoscopic image databases (one CD database and two CP databases). For each network architecture, we perform experiments using a version of the net that is pretrained on the ImageNet database, as well as a version of the net that is trained on a specific endoscopic image database. The Fisher representations of convolutional layer activations are classified using support vector machines. Additionally, experiments are performed by concatenating the Fisher representations of several layers to combine the information of these layers. We will show that our proposed CNN-Fisher approach clearly outperforms other CNN- and non-CNN-based approaches and that our approach requires no training on the target dataset, which results in substantial time savings compared with other CNN-based approaches.(VLID)295911

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    image analysis and processing with applications in proteomics and medicine

    Get PDF
    This thesis introduces unsupervised image analysis algorithms for the segmentation of several types of images, with an emphasis on proteomics and medical images. Τhe presented algorithms are tailored upon the principles of deformable models and more specific region-based active contours. Two different objectives are pursued. The first is the core issue of unsupervised parameterization in image segmentation, whereas the second is the formulation of a complete model for the segmentation of proteomics images, which is the first to exploit the appealing attributes of active contours. The first major contribution of this thesis is a novel framework for the automated parameterization of region-based active contours. The presented framework aims to endow segmentation results with objectivity and robustness as well as to set domain users free from the cumbersome and time-consuming process of empirical adjustment. It is applicable on various medical imaging modalities and remains insensitive on alterations in the settings of the acquisition devices. The experimental results demonstrate that the presented framework maintains a segmentation quality which is comparable to the one obtained with empirical parameterization. The second major contribution of this thesis is an unsupervised active contour-based model for the segmentation of proteomics images. The presented model copes with crucial issues in 2D-GE image analysis including streaks, artifacts, faint and overlapping spots. In addition, it provides an alternate to the laborious, error-prone process of manual editing, which is required in state-of-the-art 2D-GE image analysis software packages. The experimental results demonstrate that the presented model outperforms 2D-GE image analysis software packages in terms of detection and segmentation quantity metrics

    Image Analysis and Processing With Applications in Proteomics and Medicine

    Get PDF
    Στην παρούσα διατριβή παρουσιάζονται αυτόματοι αλγόριθμοι ανάλυσης εικόνας για την κατάτμηση διαφόρων τύπων εικόνων, με έμφαση στις εικόνες πρωτεομικής και στις ιατρικές εικόνες. Οι προτεινόμενοι αλγόριθμοι βασίζονται στις αρχές των παραμορφώσιμων μοντέλων. Η διατριβή εστιάζει σε δύο κυρίως στόχους: 1) στην επίλυση του σημαντικού προβλήματος της αυτόματης παραμετροποίησης στην κατάτμηση εικόνας, 2) στην διατύπωση ενός ολοκληρωμένου μοντέλου κατάτμησης εικόνων πρωτεομικής. Η πρώτη συνεισφορά είναι ένα πρωτότυπο πλαίσιο αυτόματης παραμετροποίησης των ενεργών περιγραμμάτων περιοχής. Το πλαίσιο εμπλουτίζει τα αποτελέσματα με αντικειμενικότητα και απελευθερώνει τους τελικούς χρήστες από την επίπονη διαδικασία της εμπειρικής ρύθμισης. Εφαρμόζεται σε διάφορους τύπους ιατρικών εικόνων και παραμένει ανεπηρέαστο στις τροποποιήσεις των ρυθμίσεων των συσκευών λήψης των εικόνων αυτών. Τα πειραματικά αποτελέσματα καταδεικνύουν ότι το προτεινόμενο πλαίσιο διατηρεί υψηλή την ποιότητα κατάτμησης, συγκρίσιμη με εκείνη που επιτυγχάνεται με εμπειρική παραμετροποίηση. Η δεύτερη συνεισφορά είναι ένα αυτόματο μοντέλο βασιζόμενο στα ενεργά περιγράμματα για την κατάτμηση εικόνων πρωτεομικής. Το μοντέλο αντιμετωπίζει σημαντικά προβλήματα συμπεριλαμβανομένων των γραμμών, τεχνουργημάτων, αχνών και επικαλυπτομένων κηλίδων. Ακόμη, παρέχει εναλλακτική λύση στην επιρρεπή σε σφάλματα διαδικασία της χειρωνακτικής επεξεργασίας που απαιτείται στα υπάρχοντα πακέτα λογισμικού. Τα πειραματικά αποτελέσματα καταδεικνύουν ότι το προτεινόμενο μοντέλο υπερτερεί των υπαρχόντων πακέτων λογισμικού σε ποσοτικές μετρικές εντοπισμού και κατάτμησης.This thesis introduces unsupervised image analysis algorithms for the segmentation of several types of images, with an emphasis on proteomics and medical images. Τhe presented algorithms are tailored upon the principles of deformable models. Two objectives are pursued: 1) the core issue of unsupervised parameterization in image segmentation, 2) the formulation of a complete model for the segmentation of proteomics images. The first contribution is a novel framework for automated parameterization of region-based active contours. The presented framework endows segmentation results with objectivity and sets domain users free from the cumbersome process of empirical adjustment. It is applicable on various medical imaging modalities and remains insensitive on alterations in the settings of acquisition devices. The experimental results demonstrate that the presented framework maintains a high segmentation quality, comparable to the one obtained with empirical parameterization. The second contribution is an unsupervised active contour-based model for the segmentation of proteomics images. The presented model copes with crucial issues including streaks, artifacts, faint and overlapping spots. Moreover, it provides an alternate to the error-prone process of manual editing, required in state-of-the-art software packages. The experimental results demonstrate that the proposed model outperforms software packages in terms of detection and segmentation quantity metrics
    corecore