3,842 research outputs found

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Exploring signature multiplicity in microarray data using ensembles of randomized trees

    Get PDF
    A challenging and novel direction for feature selection research in computational biology is the analysis of signature multiplicity. In this work, we propose to investigate the eect of signature multiplicity on feature importance scores derived from tree-based ensemble methods. We show that looking at individual tree rankings in an ensemble could highlight the existence of multiple signatures and we propose a simple post-processing method based on clustering that can return smaller signatures with better predictive performance than signatures derived from the global tree ranking at almost no additional cost

    Assessing similarity of feature selection techniques in high-dimensional domains

    Get PDF
    Recent research efforts attempt to combine multiple feature selection techniques instead of using a single one. However, this combination is often made on an ā€œad hocā€ basis, depending on the specific problem at hand, without considering the degree of diversity/similarity of the involved methods. Moreover, though it is recognized that different techniques may return quite dissimilar outputs, especially in high dimensional/small sample size domains, few direct comparisons exist that quantify these differences and their implications on classification performance. This paper aims to provide a contribution in this direction by proposing a general methodology for assessing the similarity between the outputs of different feature selection methods in high dimensional classification problems. Using as benchmark the genomics domain, an empirical study has been conducted to compare some of the most popular feature selection methods, and useful insight has been obtained about their pattern of agreement

    Robustness of Random Forest-based gene selection methods

    Full text link
    Gene selection is an important part of microarray data analysis because it provides information that can lead to a better mechanistic understanding of an investigated phenomenon. At the same time, gene selection is very difficult because of the noisy nature of microarray data. As a consequence, gene selection is often performed with machine learning methods. The Random Forest method is particularly well suited for this purpose. In this work, four state-of-the-art Random Forest-based feature selection methods were compared in a gene selection context. The analysis focused on the stability of selection because, although it is necessary for determining the significance of results, it is often ignored in similar studies. The comparison of post-selection accuracy in the validation of Random Forest classifiers revealed that all investigated methods were equivalent in this context. However, the methods substantially differed with respect to the number of selected genes and the stability of selection. Of the analysed methods, the Boruta algorithm predicted the most genes as potentially important. The post-selection classifier error rate, which is a frequently used measure, was found to be a potentially deceptive measure of gene selection quality. When the number of consistently selected genes was considered, the Boruta algorithm was clearly the best. Although it was also the most computationally intensive method, the Boruta algorithm's computational demands could be reduced to levels comparable to those of other algorithms by replacing the Random Forest importance with a comparable measure from Random Ferns (a similar but simplified classifier). Despite their design assumptions, the minimal optimal selection methods, were found to select a high fraction of false positives

    A cDNA Microarray Gene Expression Data Classifier for Clinical Diagnostics Based on Graph Theory

    Get PDF
    Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine clinical diagnostics is still a challenge. Current practices in the classification of microarrays' data show two main limitations: the reliability of the training data sets used to build the classifiers, and the classifiers' performances, especially when the sample to be classified does not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification algorithm based on graph theory and is able to overcome most of the limitations of known classification methodologies. The classifier works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithm
    • ā€¦
    corecore