39 research outputs found

    Practical and Context-Aware Resource Adaptation in Mobile Networks

    Get PDF
    With the proliferation of various portable devices such as smart phones, netbooks and tablets, it becomes more important to design and implement effective resource management schemes with (i) the increasing number of users in the network and (ii) the expectation of frequent and fast mobility of network users. In this dissertation, we conclude that the key to solve the problem in mobile networks is adaptive resource allocation, which requires the system to behave in an adaptive manner considering the dynamic network conditions and various context of mobile users. Specifically, we study the following critical resource allocation issues in this dissertation: (i) rate adaptation; (ii) station handoff; (iii) load balancing; and (iv) power saving, for each we have proposed an adaptive scheme, implemented it in the MadWifi device driver, and demonstrated its effectiveness via experiments

    Towards Optimizing WLANs Power Saving: Context-Aware Listen Interval

    Get PDF
    Despite the rapid growth of Wireless Local Area Networks (WLANs), the energy consumption caused by wireless communication remains a significant factor in reducing the battery life of power-constrained wireless devices. To reduce the energy consumption, static and adaptive power saving mechanisms have been deployed in WLANs. However, some inherent drawbacks and limitations remain. We have developed the concept of Context-Aware Listen Interval (CALI), in which the wireless network interface, with the aid of a Machine Learning (ML) classification model, sleeps and awakes based on the level of network activity of each application. In this paper we develop the power saving modes of CALI. The experimental results show that CALI consumes up to 75% less power when compared to the currently deployed power saving mechanism on the latest generation of smartphones, and up to 14% less energy when compared to Pyles’ et al. SAPSM power saving approach, which also employs an ML classifier

    Micro power management of active 802.11 network interfaces

    Get PDF
    Micro power management (muPM), a standard-compliant MAC level solution to save power for active 802.11 interfaces is developed. muPM enables an 802.11 interface to enter unreachable power-saving modes even between MAC frames, without noticeable impact on the traffic flow. To control data loss, muPM leverages the retransmission mechanism in 802.11 and controls frame delay to adapt to demanded network throughput with minimal cooperation from the access point. Extensive simulation has been conducted to systematically investigate an effective and efficient implementation of muPM. A prototype muPM on an open-access wireless hardware platform has been presented. Measurements show that more than 30% power reduction for the wireless transceiver can be achieved with muPM for various applications without perceptible quality degradation

    Towards Secure, Power-Efficient and Location-Aware Mobile Computing

    Get PDF
    In the post-PC era, mobile devices will replace desktops and become the main personal computer for many people. People rely on mobile devices such as smartphones and tablets for everything in their daily lives. A common requirement for mobile computing is wireless communication. It allows mobile devices to fetch remote resources easily. Unfortunately, the increasing demand of the mobility brings many new wireless management challenges such as security, energy-saving and location-awareness. These challenges have already impeded the advancement of mobile systems. In this dissertation we attempt to discover the guidelines of how to mitigate these problems through three general communication patterns in 802.11 wireless networks. We propose a cross-section of a few interesting and important enhancements to manage wireless connectivity. These enhancements provide useful primitives for the design of next-generation mobile systems in the future.;Specifically, we improve the association mechanism for wireless clients to defend against rogue wireless Access Points (APs) in Wireless LANs (WLANs) and vehicular networks. Real-world prototype systems confirm that our scheme can achieve high accuracy to detect even sophisticated rogue APs under various network conditions. We also develop a power-efficient system to reduce the energy consumption for mobile devices working as software-defined APs. Experimental results show that our system allows the Wi-Fi interface to sleep for up to 88% of the total time in several different applications and reduce the system energy by up to 33%. We achieve this while retaining comparable user experiences. Finally, we design a fine-grained scalable group localization algorithm to enable location-aware wireless communication. Our prototype implemented on commercial smartphones proves that our algorithm can quickly locate a group of mobile devices with centimeter-level accuracy

    Optimising WLANs Power Saving: Context-Aware Listen Interval

    Get PDF
    Energy is a vital resource in wireless computing systems. Despite the increasing popularity of Wireless Local Area Networks (WLANs), one of the most important outstanding issues remains the power consumption caused by Wireless Network Interface Controller (WNIC). To save this energy and reduce the overall power consumption of wireless devices, a number of power saving approaches have been devised including Static Power Save Mode (SPSM), Adaptive PSM (APSM), and Smart Adaptive PSM (SAPSM). However, the existing literature has highlighted several issues and limitations in regards to their power consumption and performance degradation, warranting the need for further enhancements. This thesis proposes a novel Context-Aware Listen Interval (CALI), in which the wireless network interface, with the aid of a Machine Learning (ML) classification model, sleeps and awakes based on the level of network activity of each application. We focused on the network activity of a single smartphone application while ignoring the network activity of applications running simultaneously. We introduced a context-aware network traffic classification approach based on ML classifiers to classify the network traffic of wireless devices in WLANs. Smartphone applications’ network traffic reflecting a diverse array of network behaviour and interactions were used as contextual inputs for training ML classifiers of output traffic, constructing an ML classification model. A real-world dataset is constructed, based on nine smartphone applications’ network traffic, this is used firstly to evaluate the performance of five ML classifiers using cross-validation, followed by conducting extensive experimentation to assess the generalisation capacity of the selected classifiers on unseen testing data. The experimental results further validated the practical application of the selected ML classifiers and indicated that ML classifiers can be usefully employed for classifying the network traffic of smartphone applications based on different levels of behaviour and interaction. Furthermore, to optimise the sleep and awake cycles of the WNIC in accordance with the smartphone applications’ network activity. Four CALI power saving modes were developed based on the classified output traffic. Hence, the ML classification model classifies the new unseen samples into one of the classes, and the WNIC will be adjusted to operate into one of CALI power saving modes. In addition, the performance of CALI’s power saving modes were evaluated by comparing the levels of energy consumption with existing benchmark power saving approaches using three varied sets of energy parameters. The experimental results show that CALI consumes up to 75% less power when compared to the currently deployed power saving mechanism on the latest generation of smartphones, and up to 14% less energy when compared to SAPSM power saving approach, which also employs an ML classifier

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    A cross-layer quality-oriented energy-efficient scheme for multimedia delivery in wireless local area networks

    Get PDF
    Wireless communication technologies, although emerged only a few decades ago, have grown fast in both popularity and technical maturity. As a result, mobile devices such as Personal Digital Assistants (PDA) or smart phones equipped with embedded wireless cards have seen remarkable growth in popularity and are quickly becoming one of the most widely used communication tools. This is mainly determined by the flexibility, convenience and relatively low costs associated with these devices and wireless communications. Multimedia applications have become by far one of the most popular applications among mobile users. However this type of application has very high bandwidth requirements, seriously restricting the usage of portable devices. Moreover, the wireless technology involves increased energy consumption and consequently puts huge pressure on the limited battery capacity which presents many design challenges in the context of battery powered devices. As a consequence, power management has raised awareness in both research and industrial communities and huge efforts have been invested into energy conservation techniques and strategies deployed within different components of the mobile devices. Our research presented in this thesis focuses on energy efficient data transmission in wireless local networks, and mainly contributes in the following aspects: 1. Static STELA, which is a Medium Access Control (MAC) layer solution that adapts the sleep/wakeup state schedule of the radio transceiver according to the bursty nature of data traffic and real time observation of data packets in terms of arrival time. The algorithm involves three phases– slow start phase, exponential increase phase, and linear increase phase. The initiation and termination of each phase is self-adapted to real time traffic and user configuration. It is designed to provide either maximum energy efficiency or best Quality of Service (QoS) according to user preference. 2. Dynamic STELA, which is a MAC layer solution deployed on the mobile devices and provides balanced performance between energy efficiency and QoS. Dynamic STELA consists of the three phase algorithm used in static STELA, and additionally employs a traffic modeling algorithm to analyze historical traffic data and estimate the arrival time of the next burst. Dynamic STELA achieves energy saving through intelligent and adaptive increase of Wireless Network Interface Card (WNIC) sleeping interval in the second and the third phase and at the same time guarantees delivery performance through optimal WNIC waking timing before the estimated arrival of new data burst. 3. Q-PASTE, which is a quality-oriented cross-layer solution with two components employed at different network layers, designed for multimedia content delivery. First component, the Packet/ApplicaTion manager (PAT) is deployed at the application layer of both service gateway and client host. The gateway level PAT utilizes fast start, as a widely supported technique for multimedia content delivery, to achieve high QoS and shapes traffic into bursts to reduce the wireless transceiver’s duty cycle. Additionally, gateway-side PAT informs client host the starting and ending time of fast start to assist parameter tuning. The client-side PAT monitors each active session and informs the MAC layer about their traffic-related behavior. The second component, dynamic STELA, deployed at MAC layer, adaptively adjusts the sleep/wake-up behavior of mobile device wireless interfaces in order to reduce energy consumption while also maintaining high Quality of Service (QoS) levels. 4. A comprehensive survey on energy efficient standards and some of the most important state-of-the-art energy saving technologies is also provided as part of the work

    Channel Access Management in Data Intensive Sensor Networks

    Get PDF
    There are considerable challenges for channel access in Data Intensive Sensor Networks - DISN, supporting Data Intensive Applications like Structural Health Monitoring. As the data load increases, considerable degradation of the key performance parameters of such sensor networks is observed. Successful packet delivery ratio drops due to frequent collisions and retransmissions. The data glut results in increased latency and energy consumption overall. With the considerable limitations on sensor node resources like battery power, this implies that excessive transmissions in response to sensor queries can lead to premature network death. After a certain load threshold the performance characteristics of traditional WSNs become unacceptable. Research work indicates that successful packet delivery ratio in 802.15.4 networks can drop from 95% to 55% as the offered network load increases from 1 packet/sec to 10 packets/sec. This result in conjunction with the fact that it is common for sensors in an SHM system to generate 6-8 packets/sec of vibration data makes it important to design appropriate channel access schemes for such data intensive applications.In this work, we address the problem of significant performance degradation in a special-purpose DISN. Our specific focus is on the medium access control layer since it gives a fine-grained control on managing channel access and reducing energy waste. The goal of this dissertation is to design and evaluate a suite of channel access schemes that ensure graceful performance degradation in special-purpose DISNs as the network traffic load increases.First, we present a case study that investigates two distinct MAC proposals based on random access and scheduling access. The results of the case study provide the motivation to develop hybrid access schemes. Next, we introduce novel hybrid channel access protocols for DISNs ranging from a simple randomized transmission scheme that is robust under channel and topology dynamics to one that utilizes limited topological information about neighboring sensors to minimize collisions and energy waste. The protocols combine randomized transmission with heuristic scheduling to alleviate network performance degradation due to excessive collisions and retransmissions. We then propose a grid-based access scheduling protocol for a mobile DISN that is scalable and decentralized. The grid-based protocol efficiently handles sensor mobility with acceptable data loss and limited overhead. Finally, we extend the randomized transmission protocol from the hybrid approaches to develop an adaptable probability-based data transmission method. This work combines probabilistic transmission with heuristics, i.e., Latin Squares and a grid network, to tune transmission probabilities of sensors, thus meeting specific performance objectives in DISNs. We perform analytical evaluations and run simulation-based examinations to test all of the proposed protocols

    A cross-layer approach for optimizing the efficiency of wireless sensor and actor networks

    Get PDF
    Recent development has lead to the emergence of distributed Wireless Sensor and Actor Networks (WSAN), which are capable of observing the physical environment, processing the data, making decisions based on the observations and performing appropriate actions. WSANs represent an important extension of Wireless Sensor Networks (WSNs) and may comprise a large number of sensor nodes and a smaller number of actor nodes. The sensor nodes are low-cost, low energy, battery powered devices with restricted sensing, computational and wireless communication capabilities. Actor nodes are resource richer with superior processing capabilities, higher transmission powers and a longer battery life. A basic operational scenario of a typical WSAN application follows the following sequence of events. The physical environment is periodically sensed and evaluated by the sensor nodes. The sensed data is then routed towards an actor node. Upon receiving sensed data, an actor node performs an action upon the physical environment if necessary, i.e. if the occurrence of a disturbance or critical event has been detected. The specific characteristics of sensor and actor nodes combined with some stringent application constraints impose unique requirements for WSANs. The fundamental challenges for WSANs are to achieve low latency, high energy efficiency and high reliability. The latency and energy efficiency requirements are in a trade-off relationship. The communication and coordination inside WSANs is managed via a Communication Protocol Stack (CPS) situated on every node. The requirements of low latency and energy efficiency have to be addressed at every layer of the CPS to ensure overall feasibility of the WSAN. Therefore, careful design of protocol layers in the CPS is crucial in attempting to meet the unique requirements and handle the abovementioned trade-off relationship in WSANs. The traditional CPS, comprising the application, network, medium access control and physical layer, is a layered protocol stack with every layer, a predefined functional entity. However, it has been found that for similar types of networks with similar stringent network requirements, the strictly layered protocol stack approach performs at a sub-optimal level with regards to network efficiency. A modern cross-layer paradigm, which proposes the employment of interactions between layers in the CPS, has recently attracted a lot of attention. The cross-layer approach promotes network efficiency optimization and promises considerable performance gains. It is found that in literature, the adoption of this cross-layer paradigm has not yet been considered for WSANs. In this dissertation, a complete cross-layer enabled WSAN CPS is developed that features the adoption of the cross-layer paradigm towards promoting optimization of the network efficiency. The newly proposed cross-layer enabled CPS entails protocols that incorporate information from other layers into their local decisions. Every protocol layer provides information identified as beneficial to another layer(s) in the CPS via a newly proposed Simple Cross-Layer Framework (SCLF) for WSANs. The proposed complete cross-layer enabled WSAN CPS comprises a Cross-Layer enabled Network-Centric Actuation Control with Data Prioritization (CL-NCAC-DP) application layer (APPL) protocol, a Cross-Layer enabled Cluster-based Hierarchical Energy/Latency-Aware Geographic Routing (CL-CHELAGR) network layer (NETL) protocol and a Cross-Layer enabled Carrier Sense Multiple Access with Minimum Preamble Sampling and Duty Cycle Doubling (CL-CSMA-MPS-DCD) medium access control layer (MACL) protocol. Each of these protocols builds on an existing simple layered protocol that was chosen as a basis for development of the cross-layer enabled protocols. It was found that existing protocols focus primarily on energy efficiency to ensure maximum network lifetime. However, most WSAN applications require latency minimization to be considered with the same importance. The cross-layer paradigm provides means of facilitating the optimization of both latency and energy efficiency. Specifically, a solution to the latency versus energy trade-off is given in this dissertation. The data generated by sensor nodes is prioritised by the APPL and depending on the delay-sensitivity, handled in a specialised manor by every layer of the CPS. Delay-sensitive data packets are handled in order to achieve minimum latency. On the other hand, delay-insensitive non critical data packets are handled in such a way as to achieve the highest energy efficiency. In effect, either latency minimization or energy efficiency receives an elevated precedence according to the type of data that is to be handled. Specifically, the cross-layer enabled APPL protocol provides information pertaining to the delay-sensitivity of sensed data packets to the other layers. Consequently, when a data packet is detected as highly delay-sensitive, the cross-layer enabled NETL protocol changes its approach from energy efficient routing along the maximum residual energy path to routing along the fastest path towards the cluster-head actor node for latency minimizing of the specific packet. This is done by considering information (contained in the SCLF neighbourhood table) from the MACL that entails wakeup schedules and channel utilization at neighbour nodes. Among the added criteria, the next-hop node is primarily chosen based on the shortest time to wakeup. The cross-layer enabled MACL in turn employs a priority queue and a temporary duty cycle doubling feature to enable rapid relaying of delay-sensitive data. Duty cycle doubling is employed whenever a sensor node’s APPL state indicates that it is part of a critical event reporting route. When the APPL protocol state (found in the SCLF information pool) indicates that the node is not part of the critical event reporting route anymore, the MACL reverts back to promoting energy efficiency by disengaging duty cycle doubling and re-employing a combination of a very low duty cycle and preamble sampling. The APPL protocol conversely considers the current queue size of the MACL and temporarily halts the creation of data packets (only if the sensed value is non critical) to prevent a queue overflow and ease congestion at the MACL By simulation it was shown that the cross-layer enabled WSAN CPS consistently outperforms the layered CPS for various network conditions. The average end-to-end latency of delay-sensitive critical data packets is decreased substantially. Furthermore, the average end-to-end latency of delay-insensitive data packets is also decreased. Finally, the energy efficiency performance is decreased by a tolerable insignificant minor margin as expected. The trivial increase in energy consumption is overshadowed by the high margin of increase in latency performance for delay-sensitive critical data packets. The newly proposed cross-layer CPS achieves an immense latency performance increase for WSANs, while maintaining excellent energy efficiency. It has hence been shown that the adoption of the cross-layer paradigm by the WSAN CPS proves hugely beneficial with regards to the network efficiency performance. This increases the feasibility of WSANs and promotes its application in more areas.Dissertation (MEng)--University of Pretoria, 2009.Electrical, Electronic and Computer Engineeringunrestricte
    corecore