3,158 research outputs found

    Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction

    Get PDF
    This paper reports the results of the NN3 competition, which is a replication of the M3 competition with an extension of the competition towards neural network (NN) and computational intelligence (CI) methods, in order to assess what progress has been made in the 10 years since the M3 competition. Two masked subsets of the M3 monthly industry data, containing 111 and 11 empirical time series respectively, were chosen, controlling for multiple data conditions of time series length (short/long), data patterns (seasonal/non-seasonal) and forecasting horizons (short/medium/long). The relative forecasting accuracy was assessed using the metrics from the M3, together with later extensions of scaled measures, and non-parametric statistical tests. The NN3 competition attracted 59 submissions from NN, CI and statistics, making it the largest CI competition on time series data. Its main findings include: (a) only one NN outperformed the damped trend using the sMAPE, but more contenders outperformed the AutomatANN of the M3; (b) ensembles of CI approaches performed very well, better than combinations of statistical methods; (c) a novel, complex statistical method outperformed all statistical and Cl benchmarks; and (d) for the most difficult subset of short and seasonal series, a methodology employing echo state neural networks outperformed all others. The NN3 results highlight the ability of NN to handle complex data, including short and seasonal time series, beyond prior expectations, and thus identify multiple avenues for future research. (C) 2011 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Modeling of electricity demand forecast for power system

    Full text link
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. The emerging complex circumstances caused by economy, technology, and government policy and the requirement of low-carbon development of power grid lead to many challenges in the power system coordination and operation. However, the real-time scheduling of electricity generation needs accurate modeling of electricity demand forecasting for a range of lead times. In order to better capture the nonlinear and non-stationary characteristics and the seasonal cycles of future electricity demand data, a new concept of the integrated model is developed and successfully applied to research the forecast of electricity demand in this paper. The proposed model combines adaptive Fourier decomposition method, a new signal preprocessing technology, for extracting useful element from the original electricity demand series through filtering the noise factors. Considering the seasonal term existing in the decomposed series, it should be eliminated through the seasonal adjustment method, in which the seasonal indexes are calculated and should multiply the forecasts back to restore the final forecast. Besides, a newly proposed moth-flame optimization algorithm is used to ensure the suitable parameters of the least square support vector machine which can generate the forecasts. Finally, the case studies of Australia demonstrated the efficacy and feasibility of the proposed integrated model. Simultaneously, it can provide a better concept of modeling for electricity demand prediction over different forecasting horizons

    Optimized hybrid ensemble learning approaches applied to very short-term load forecasting

    Get PDF
    The significance of accurate short-term load forecasting (STLF) for modern power systems’ efficient and secure operation is paramount. This task is intricate due to cyclicity, non-stationarity, seasonality, and nonlinear power consumption time series data characteristics. The rise of data accessibility in the power industry has paved the way for machine learning (ML) models, which show the potential to enhance STLF accuracy. This paper presents a novel hybrid ML model combining Gradient Boosting Regressor (GBR), Extreme Gradient Boosting (XGBoost), k-Nearest Neighbors (kNN), and Support Vector Regression (SVR), examining both standalone and integrated, coupled with signal decomposition techniques like STL, EMD, EEMD, CEEMDAN, and EWT. Through Automated Machine Learning (AutoML), these models are integrated and their hyperparameters optimized, predicting each load signal component using data from two sources: The National Operator of Electric System (ONS) and the Independent System Operators New England (ISO-NE), boosting prediction capacity. For the 2019 ONS dataset, combining EWT and XGBoost yielded the best results for very short-term load forecasting (VSTLF) with an RMSE of 1,931.8 MW, MAE of 1,564.9 MW, and MAPE of 2.54%. These findings highlight the necessity for diverse approaches to each VSTLF problem, emphasizing the adaptability and strength of ML models combined with signal decomposition techniques

    Multiple decomposition-aided long short-term memory network for enhanced short-term wind power forecasting.

    Get PDF
    With the increasing penetration of grid-scale wind energy systems, accurate wind power forecasting is critical to optimizing their integration into the power system, ensuring operational reliability, and enabling efficient system asset utilization. Addressing this challenge, this study proposes a novel forecasting model that combines the long-short-term memory (LSTM) neural network with two signal decomposition techniques. The EMD technique effectively extracts stable, stationary, and regular patterns from the original wind power signal, while the VMD technique tackles the most challenging high-frequency component. A deep learning-based forecasting model, i.e. the LSTM neural network, is used to take advantage of its ability to learn from longer sequences of data and its robustness to noise and outliers. The developed model is evaluated against LSTM models employing various decomposition methods using real wind power data from three distinct offshore wind farms. It is shown that the two-stage decomposition significantly enhances forecasting accuracy, with the proposed model achieving R2 values up to 9.5% higher than those obtained using standard LSTM models

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio
    • 

    corecore