18,151 research outputs found

    A constrained swarm optimization algorithm for large-scale long-run investments using Sharpe ratio-based performance measures

    Get PDF
    We study large-scale portfolio optimization problems in which the aim is to maximize a multi-moment performance measure extending the Sharpe ratio. More specifically, we consider the adjusted for skewness Sharpe ratio, which incorporates the third moment of the returns distribution, and the adjusted for skewness and kurtosis Sharpe ratio, which exploits in addition the fourth moment. Further, we account for two types of real-world trading constraints. On the one hand, we impose stock market restrictions through cardinality, buy-in thresholds, and budget constraints. On the other hand, a turnover threshold restricts the total allowed amount of trades in the rebalancing phases. To deal with these asset allocation models, we embed a novel hybrid constraint-handling procedure into an improved dynamic level-based learning swarm optimizer. A repair operator maps candidate solutions onto the set characterized by the first type of constraints. Then, an adaptive l1-exact penalty function manages turnover violations. The focus of the paper is to highlight the importance of including higher-order moments in the performance measures for long-run investments, in particular when the market is turbulent. We carry out empirical tests on two worldwide sets of assets to illustrate the scalability and effectiveness of the proposed strategies, and to evaluate the performance of our investments compared to the strategy maximizing the Sharpe ratio

    A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models

    Get PDF
    This is the post-print version of the Article. The official published can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a hybrid extended Kalman filter (EKF) and switching particle swarm optimization (SPSO) algorithm is proposed for jointly estimating both the parameters and states of the lateral flow immunoassay model through available short time-series measurement. Our proposed method generalizes the well-known EKF algorithm by imposing physical constraints on the system states. Note that the state constraints are encountered very often in practice that give rise to considerable difficulties in system analysis and design. The main purpose of this paper is to handle the dynamic modeling problem with state constraints by combining the extended Kalman filtering and constrained optimization algorithms via the maximization probability method. More specifically, a recently developed SPSO algorithm is used to cope with the constrained optimization problem by converting it into an unconstrained optimization one through adding a penalty term to the objective function. The proposed algorithm is then employed to simultaneously identify the parameters and states of a lateral flow immunoassay model. It is shown that the proposed algorithm gives much improved performance over the traditional EKF method.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant 2009I0016

    Helper and Equivalent Objectives:Efficient Approach for Constrained Optimization

    Get PDF
    Numerous multi-objective evolutionary algorithms have been designed for constrained optimisation over past two decades. The idea behind these algorithms is to transform constrained optimisation problems into multi-objective optimisation problems without any constraint, and then solve them. In this paper, we propose a new multi-objective method for constrained optimisation, which works by converting a constrained optimisation problem into a problem with helper and equivalent objectives. An equivalent objective means that its optimal solution set is the same as that to the constrained problem but a helper objective does not. Then this multi-objective optimisation problem is decomposed into a group of sub-problems using the weighted sum approach. Weights are dynamically adjusted so that each subproblem eventually tends to a problem with an equivalent objective. We theoretically analyse the computation time of the helper and equivalent objective method on a hard problem called ``wide gap''. In a ``wide gap'' problem, an algorithm needs exponential time to cross between two fitness levels (a wide gap). We prove that using helper and equivalent objectives can shorten the time of crossing the ``wide gap''. We conduct a case study for validating our method. An algorithm with helper and equivalent objectives is implemented. Experimental results show that its overall performance is ranked first when compared with other eight state-of-art evolutionary algorithms on IEEE CEC2017 benchmarks in constrained optimisation

    Harmony Search Method: Theory and Applications

    Get PDF
    The Harmony Search (HS) method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem

    Constrained Optimization with Evolutionary Algorithms: A Comprehensive Review

    Get PDF
    Global optimization is an essential part of any kind of system. Various algorithms have been proposed that try to imitate the learning and problem solving abilities of the nature up to certain level. The main idea of all nature-inspired algorithms is to generate an interconnected network of individuals, a population. Although most of unconstrained optimization problems can be easily handled with Evolutionary Algorithms (EA), constrained optimization problems (COPs) are very complex. In this paper, a comprehensive literature review will be presented which summarizes the constraint handling techniques for COP

    A Hybrid MCDM Approach to Transshipment Port Selection

    Get PDF
    Port selection is an intrinsic supply-chain problem that has substantial impact on development of local economies. Shipping business environment developed into complex system where decision making is derived from uncertain and incomplete data. In this study we present a conceptual integrated Multi-Criteria Decision solution to transshipment port selection problem based on Best-Worst MCDM and Artificial Bee Colony Algorithm. Through literature review and expert analysis, 50 relevant criteria have been identified as relevant to the transshipment port selection problem. Decision makers within liner shipping companies evaluate transshipment port selection criteria and establish ranking that is used to determine crisp solution with lowest consistency ratio. ABC based algorithm is used to reduce computational complexity and deliver a single optimal solution by solving both objective and constraint violation functions
    corecore