3,142 research outputs found

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard

    N=2 gauge theories, instanton moduli spaces and geometric representation theory

    Get PDF
    We survey some of the AGT relations between N=2 gauge theories in four dimensions and geometric representations of symmetry algebras of two-dimensional conformal field theory on the equivariant cohomology of their instanton moduli spaces. We treat the cases of gauge theories on both flat space and ALE spaces in some detail, and with emphasis on the implications arising from embedding them into supersymmetric theories in six dimensions. Along the way we construct new toric noncommutative ALE spaces using the general theory of complex algebraic deformations of toric varieties, and indicate how to generalise the construction of instanton moduli spaces. We also compute the equivariant partition functions of topologically twisted six-dimensional Yang-Mills theory with maximal supersymmetry in a general Omega-background, and use the construction to obtain novel reductions to theories in four dimensions.Comment: 55 pages; v2: typos corrected and reference added; Final version to appear in the Special Issue "Instanton Counting: Moduli Spaces, Representation Theory and Integrable Systems" of the Journal of Geometry and Physics, eds. U. Bruzzo and F. Sal

    Summing the Instantons: Quantum Cohomology and Mirror Symmetry in Toric Varieties

    Full text link
    We use the gauged linear sigma model introduced by Witten to calculate instanton expansions for correlation functions in topological sigma models with target space a toric variety VV or a Calabi--Yau hypersurface MVM \subset V. In the linear model the instanton moduli spaces are relatively simple objects and the correlators are explicitly computable; moreover, the instantons can be summed, leading to explicit solutions for both kinds of models. In the case of smooth VV, our results reproduce and clarify an algebraic solution of the VV model due to Batyrev. In addition, we find an algebraic relation determining the solution for MM in terms of that for VV. Finally, we propose a modification of the linear model which computes instanton expansions about any limiting point in the moduli space. In the smooth case this leads to a (second) algebraic solution of the MM model. We use this description to prove some conjectures about mirror symmetry, including the previously conjectured ``monomial-divisor mirror map'' of Aspinwall, Greene, and Morrison.Comment: 91 pages and 3 figures, harvmac with epsf (Changes in this version: one minor correction, one clarification, one new reference

    Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Full text link
    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular Euclideanization'' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an ``Encyclopedia of Mathematical Physics'' contribution hep-th/0502125.Comment: 55 pages, removal of some typos in section

    Quantum automata, braid group and link polynomials

    Full text link
    The spin--network quantum simulator model, which essentially encodes the (quantum deformed) SU(2) Racah--Wigner tensor algebra, is particularly suitable to address problems arising in low dimensional topology and group theory. In this combinatorial framework we implement families of finite--states and discrete--time quantum automata capable of accepting the language generated by the braid group, and whose transition amplitudes are colored Jones polynomials. The automaton calculation of the polynomial of (the plat closure of) a link L on 2N strands at any fixed root of unity is shown to be bounded from above by a linear function of the number of crossings of the link, on the one hand, and polynomially bounded in terms of the braid index 2N, on the other. The growth rate of the time complexity function in terms of the integer k appearing in the root of unity q can be estimated to be (polynomially) bounded by resorting to the field theoretical background given by the Chern-Simons theory.Comment: Latex, 36 pages, 11 figure

    Quantum 't Hooft operators and S-duality in N=4 super Yang-Mills

    Full text link
    We provide a quantum path integral definition of an 't Hooft loop operator, which inserts a pointlike monopole in a four dimensional gauge theory. We explicitly compute the expectation value of the circular 't Hooft operators in N=4 super Yang-Mills with arbitrary gauge group G up to next to leading order in perturbation theory. We also compute in the strong coupling expansion the expectation value of the circular Wilson loop operators. The result of the computation of an 't Hooft loop operator in the weak coupling expansion exactly reproduces the strong coupling result of the conjectured dual Wilson loop operator under the action of S-duality. This paper demonstrates - for the first time - that correlation functions in N=4 super Yang-Mills admit the action of S-duality.Comment: 38 pages; v2: references added, typos fixe

    Mapping Class Groups and Moduli Spaces of Curves

    Full text link
    This is a survey paper that also contains some new results. It will appear in the proceedings of the AMS summer research institute on Algebraic Geometry at Santa Cruz.Comment: We expanded section 7 and rewrote parts of section 10. We also did some editing and made some minor corrections. latex2e, 46 page

    Loop models and their critical points

    Full text link
    Loop models have been widely studied in physics and mathematics, in problems ranging from polymers to topological quantum computation to Schramm-Loewner evolution. I present new loop models which have critical points described by conformal field theories. Examples include both fully-packed and dilute loop models with critical points described by the superconformal minimal models and the SU(2)_2 WZW models. The dilute loop models are generalized to include SU(2)_k models as well.Comment: 20 pages, 15 figure
    corecore