3,275 research outputs found

    Wireless Network Channel Interference for Mobile Communication: a Systematic Literature Review and Research Agenda

    Get PDF
    The development and renewal of wireless technology is currently a necessity. Wifi technology has now reached wifi 6. Network infrastructure is currently the main thing in the process of distributing data using wireless media to mobile phone or laptop users. By looking at the need for wireless in offices, schools, public places, hospitals, and indoor or outdoor buildings that use a large number of access point devices. Based on a review of existing research obtained problems and opportunities for development, this literature study taken from 25 journal articles aims to be able to plan the construction of wireless network infrastructure so that channel interference does not occur. Research on wireless network channel interference has been carried out in several scenarios, for example, by increasing the number of wireless networks in adjacent areas, providing obstacles, and managing different channels. The eight most common methods used in wireless network channel interference research are descriptive analysis, comparative study, method analysis, model development, case studies, regression models, literature studies, and optimization. Research related to wireless network channel interference can still be further developed by using the latest wireless technology which can simultaneously test existing channel interferenc

    Uncoordinated space-frequency pilot design for multi-antenna wideband opportunistic communications

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The statistical side information of interference channels is exploited in this paper to derive a novel uncoordinated on-line pilot design strategy for opportunistic communications. Assuming a time division duplex (TDD), or frequency division duplex (FDD) with feedback, wireless network and reciprocity, we prove that the space-frequency pilot design technique in terms of minimum cross-interference to external-network users reduces to a classical minimum-norm problem. The advantages of this novel methodology are time-domain invariance to noise-subspace rotations, a maximally flat angle-frequency response, and robustness in front of frequency calibration errors. Simulation results are reported to assess the performance of the proposed strategy and the advantages of its low-resolution quantization in low signal-to- noise ratio (low-SNR) regimes.Peer ReviewedPostprint (published version

    Contextual Beamforming: Exploiting Location and AI for Enhanced Wireless Telecommunication Performance

    Full text link
    The pervasive nature of wireless telecommunication has made it the foundation for mainstream technologies like automation, smart vehicles, virtual reality, and unmanned aerial vehicles. As these technologies experience widespread adoption in our daily lives, ensuring the reliable performance of cellular networks in mobile scenarios has become a paramount challenge. Beamforming, an integral component of modern mobile networks, enables spatial selectivity and improves network quality. However, many beamforming techniques are iterative, introducing unwanted latency to the system. In recent times, there has been a growing interest in leveraging mobile users' location information to expedite beamforming processes. This paper explores the concept of contextual beamforming, discussing its advantages, disadvantages and implications. Notably, the study presents an impressive 53% improvement in signal-to-noise ratio (SNR) by implementing the adaptive beamforming (MRT) algorithm compared to scenarios without beamforming. It further elucidates how MRT contributes to contextual beamforming. The importance of localization in implementing contextual beamforming is also examined. Additionally, the paper delves into the use of artificial intelligence schemes, including machine learning and deep learning, in implementing contextual beamforming techniques that leverage user location information. Based on the comprehensive review, the results suggest that the combination of MRT and Zero forcing (ZF) techniques, alongside deep neural networks (DNN) employing Bayesian Optimization (BO), represents the most promising approach for contextual beamforming. Furthermore, the study discusses the future potential of programmable switches, such as Tofino, in enabling location-aware beamforming

    A Tutorial on Environment-Aware Communications via Channel Knowledge Map for 6G

    Full text link
    Sixth-generation (6G) mobile communication networks are expected to have dense infrastructures, large-dimensional channels, cost-effective hardware, diversified positioning methods, and enhanced intelligence. Such trends bring both new challenges and opportunities for the practical design of 6G. On one hand, acquiring channel state information (CSI) in real time for all wireless links becomes quite challenging in 6G. On the other hand, there would be numerous data sources in 6G containing high-quality location-tagged channel data, making it possible to better learn the local wireless environment. By exploiting such new opportunities and for tackling the CSI acquisition challenge, there is a promising paradigm shift from the conventional environment-unaware communications to the new environment-aware communications based on the novel approach of channel knowledge map (CKM). This article aims to provide a comprehensive tutorial overview on environment-aware communications enabled by CKM to fully harness its benefits for 6G. First, the basic concept of CKM is presented, and a comparison of CKM with various existing channel inference techniques is discussed. Next, the main techniques for CKM construction are discussed, including both the model-free and model-assisted approaches. Furthermore, a general framework is presented for the utilization of CKM to achieve environment-aware communications, followed by some typical CKM-aided communication scenarios. Finally, important open problems in CKM research are highlighted and potential solutions are discussed to inspire future work

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore