4,176 research outputs found

    Compliant actuators that mimic biological muscle performance with applications in a highly biomimetic robotic arm

    Full text link
    This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots, thereby fostering the evolution of these robotic systems. We introduce two novel compliant actuators, namely the Internal Torsion Spring Compliant Actuator (ICA) and the External Spring Compliant Actuator (ECA), and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator (MISA) through computational and experimental results. These actuators, employing a motor-tendon system, emulate biological muscle-like forms, enhancing artificial muscle technology. A robotic arm application inspired by the skeletal ligament system is presented. Experiments demonstrate satisfactory power in tasks like lifting dumbbells (peak power: 36W), playing table tennis (end-effector speed: 3.2 m/s), and door opening, without compromising biomimetic aesthetics. Compared to other linear stiffness serial elastic actuators (SEAs), ECA and ICA exhibit high power-to-volume (361 x 10^3 W/m) and power-to-mass (111.6 W/kg) ratios respectively, endorsing the biomimetic design's promise in robotic development

    Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators

    Get PDF
    Ionomeric polymer-metal composite (IPMC) actuators are a type of soft electromechanically active material which offers large displacement, rapid motion with only ~1V stimulus. IPMC’s are entering commercial applications in toys (Ashley 2003) and biomedical devices (Soltanpour 2001; Shahinpoor 2002; Shahinpoor, Shahinpoor et al. 2003; Soltanpour and Shahinpoor 2003; Soltanpour and Shahinpoor 2004), but unfortunately they can only actuate by bending, limiting their utility. Freeform fabrication offers a possible means of producing IPMC with novel geometry and/or tightly integrated with mechanisms which can yield linear or more complex motion. We have developed materials and processes which allow us to freeform fabricate complete IPMC actuators and their fabrication substrate which will allow integration within other freeform fabricated devices. We have produced simple IPMC’s using our multiple material freeform fabrication system, and have demonstrated operation in air for more than 40 minutes and 256 bidirectional actuation cycles. The output stress scaled to input power is two orders of magnitude inferior to that of the best reported performance for devices produced in the traditional manner, but only slightly inferior to devices produced in a more similar manner. Possible explanations and paths to improvement are presented. Freeform fabrication of complete electroactive polymer actuators in unusual geometries, with tailored actuation behavior, and integrated with other freeform fabricated active components, will enable advances in biomedical device engineering, biologically inspired robotics, and other fields. This work constitutes the first demonstration of complete, functional, IPMC actuators produced entirely by freeform fabrication.Mechanical Engineerin

    Dual sensing-actuation artificial muscle based on polypyrrole-carbon nanotube composite

    Get PDF
    Dual sensing artificial muscles based on conducting polymer are faradaic motors driven by electrochemical reactions, which announce the development of proprioceptive devices. The applicability of different composites has been investigated with the aim to improve the performance. Addition of carbon nanotubes may reduce irreversible reactions. We present the testing of a dual sensing artificial muscle based on a conducting polymer and carbon nanotubes composite. Large bending motions (up to 127 degrees) in aqueous solution and simultaneously sensing abilities of the operation conditions are recorded. The sensing and actuation equations are derived for incorporation into a control system.The research was supported by European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 641822

    Freeform Fabrication of Electroactive Polymer Actuators and Electromechanical Devices

    Get PDF
    In pursuit of the goal of producing complete electromechanical systems entirely via solid freeform fabrication, we are developing a library of mutually compatible, functional, freeform elements. Several essential elements – actuation, sensing, and control electronics - still remain to be incorporated into this library. Conducting polymers (CP) are a class of materials which can be used to produce all of these functionalities. Meanwhile, research into actuatable “smart” materials has produced other candidate materials for freeform fabricated actuators that are compatible with our library. We have succeeded in manually producing air-operable actuators that have processing and operating requirements that are compatible with our power source and mechanical component library elements. A survey of candidate actuator materials is presented, experiments performed with two types of actuator materials are described, and complete SFF-producible actuator devices are demonstrated.Mechanical Engineerin

    Wireless aquatic navigator for detection and analysis (WANDA)

    Get PDF
    The cost of monitoring and detecting pollutants in natural waters is of major concern. Current and forthcoming bodies of legislation will continue to drive demand for spatial and selective monitoring of our environment, as the focus increasingly moves towards effective enforcement of legislation through detection of events, and unambiguous identification of perpetrators. However, these monitoring demands are not being met due to the infrastructure and maintenance costs of conventional sensing models. Advanced autonomous platforms capable of performing complex analytical measurements at remote locations still require individual power, wireless communication, processor and electronic transducer units, along with regular maintenance visits. Hence the cost base for these systems is prohibitively high, and the spatial density and frequency of measurements are insufficient to meet requirements. In this paper we present a more cost effective approach for water quality monitoring using a low cost mobile sensing/communications platform together with very low cost stand-alone ‘satellite’ indicator stations that have an integrated colorimetric sensing material. The mobile platform is equipped with a wireless video camera that is used to interrogate each station to harvest information about the water quality. In simulation experiments, the first cycle of measurements is carried out to identify a ‘normal’ condition followed by a second cycle during which the platform successfully detected and communicated the presence of a chemical contaminant that had been localised at one of the satellite stations

    Materials science and the sensor revolution

    Get PDF
    For the past decade, we have been investigating strategies to develop ways to provide chemical sensing platforms capable of long-term deployment in remote locations1-3. This key objective has been driven by the emergence of ubiquitous digital communications and the associated potential for widely deployed wireless sensor networks (WSNs). Understandably, in these early days of WSNs, deployments have been based on very reliable sensors, such as thermistors, accelerometers, flow meters, photodetectors, and digital cameras. Biosensors and chemical sensors (bio/chemo-sensors) are largely missing from this rapidly developing field, despite the obvious value offered by an ability to measure molecular targets at multiple locations in real-time. Interestingly, while this paper is focused on the issues with respect to wide area sensing of the environment, the core challenge is essentially the same for long-term implantable bio/chemo-sensors4, i.e.; how to maintain the integrity of the analytical method at a remote, inaccessible location

    Self-Oscillating Gel as Novel Biomimetic Materials

    Get PDF

    Design of Self-Oscillating Gels and Application to Biomimetic Actuators

    Get PDF
    As a novel biomimetic polymer, we have developed polymer gels with an autonomous self-oscillating function. This was achieved by utilizing oscillating chemical reactions, called the Belousov-Zhabotinsky (BZ) reaction, which is recognized as a chemical model for understanding several autonomous phenomena in biological systems. Under the coexistence of the reactants, the polymer gel undergoes spontaneous swelling-deswelling changes without any on-off switching by external stimuli. In this review, our recent studies on the self-oscillating polymer gels and application to biomimetic actuators are summarized
    • 

    corecore